Acessibilidade / Reportar erro

Rodent helminths in fragmented Atlantic Forest areas in the western region of the state of Paraná

Helmintos de roedores em áreas fragmentadas de Mata Atlântica na região Oeste do Estado do Paraná

Abstract

Rodents are small mammals that can be parasitized by various helminths. This study aimed to identify and describe the ecological indicators of infection in rodents captured in fragments of the Atlantic Forest in the western region of Paraná State, Brazil. Sixty-eight specimens of five rodent species were collected, necropsied, and inspected in search of helminths. The parasites were stored in 70% ethanol, morphologically identified, and counted for calculation of infection indicators. Fourteen species of helminths and one species of Crustacea were recorded: ten in Akodon montensis, four in Mus musculus, two in Thaptomys nigrita, two in Oligoryzomys nigripes, and one in Euryoryzomys russatus. The registered species of parasites were: Rodentolepis akodontis, Angiostrongylus sp., Protospirura numidica criceticola, Trichuris navonae, Syphacia alata, Syphacia criceti, Syphacia evaginata, Trichofreitasia lenti, Stilestrongylus aculeata, Stilestrongylus eta, Stilestrongylus gracielae, Stilestrongylus franciscanus, Stilestrongylus moreli, Stilestrongylus sp., and Pentastomida gen. sp. A positive correlation between the intensity of infection of T. navonae and T. lenti was observed with the body condition index of the host A. montensis. For all species, this study represents a new register of locality, and for eight of them a new host.

Keywords:
Rodentia; Nematoda; Cestoda; fragmentation of habitat

Resumo

Roedores são pequenos mamíferos que podem ser parasitados por uma diversidade de helmintos. Este estudo teve como objetivo identificar e descrever os indicadores ecológicos de infecção por helmintos, em roedores capturados em fragmentos de Mata Atlântica, na região Oeste do Estado do Paraná, Brasil. Sessenta e oito animais foram coletados, necropsiados e inspecionados em busca de helmintos. Os parasitas foram armazenados em etanol 70%, identificados morfologicamente e contados para o cálculo dos indicadores de infecção. Quatorze espécies de helmintos e uma espécie de crustáceo foram registradas: dez em Akodon montensis, quatro em Mus musculus, duas em Thaptomys nigrita, duas em Oligoryzomys nigripes e uma em Euryoryzomys russatus. As espécies de parasitas registradas foram: Rodentolepis akodontis, Angiostrongylus sp., Protospirura numidica criceticola, Trichuris navonae, Syphacia alata, Syphacia criceti, Syphacia evaginata, Trichofreitasia lenti, Stilestrongylus aculeata, Stilestrongylus eta, Stilestrongylus gracielae, Stilestrongylus franciscanus, Stilestrongylus moreli, Stilestrongylus sp., e Pentastomida gen. sp. Uma correlação positiva entre a intensidade parasitária de T. navonae e T. lenti foi observada com o índice de condição corporal do hospedeiro A. montensis. Para todas as espécies, este estudo representa um novo registro de localidade, e para oito delas um novo hospedeiro.

Palavras-chave:
Rodentia; Nematoda; Cestoda; fragmentação de habitat

Introduction

The Atlantic Forest is one of the biomes that suffers most in the world from the processes of habitat loss and fragmentation (Myers et al., 2000Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature 2000; 403(6772): 853-858. http://dx.doi.org/10.1038/35002501. PMid:10706275.
http://dx.doi.org/10.1038/35002501...
; Mittermeier et al., 2005Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, et al. Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. Mexico City: CEMEX, Conservation International; 2005.). Most Atlantic Forest remnants are small and surrounded by an anthropic matrix (Ribeiro et al., 2009Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. The Brazilian Atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 2009; 142(6): 1141-1153. http://dx.doi.org/10.1016/j.biocon.2009.02.021.
http://dx.doi.org/10.1016/j.biocon.2009....
). This scenario changes the natural structure of populations and metapopulations of small mammals, favoring the emergence of small and isolated populations (Fahrig, 2003Fahrig L. Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 2003; 34(1): 487-515. http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132419.
http://dx.doi.org/10.1146/annurev.ecolsy...
), as well as increasing proximity to human and domestic animal populations (Silva et al., 2018Silva MX, Paviolo A, Tambosi LR, Pardini R. Effectiveness of protected areas for biodiversity conservation: Mammal occupancy patterns in the Iguaçu National Park, Brazil. J Nat Conserv 2018; 41: 51-62. http://dx.doi.org/10.1016/j.jnc.2017.11.001.
http://dx.doi.org/10.1016/j.jnc.2017.11....
).

Rodents are a megadiverse group of mammals, representing 40% to 45% of mammalian species, occupying different biomes (Patton et al., 2015Patton JL, Pardiñas UF, D’Elía G. Mammals of South America: rodents. Vol. 2. Chicago: University of Chicago Press; 2015. http://dx.doi.org/10.7208/chicago/9780226169606.001.0001.
http://dx.doi.org/10.7208/chicago/978022...
). These animals can act as reservoirs of parasites causing zoonotic diseases (Froeschke & Matthee, 2014Froeschke G, Matthee S. Landscape characteristics influence helminth infestations in a peri-domestic rodent - implications for possible zoonotic disease. Parasit Vectors 2014; 7(1): 393. http://dx.doi.org/10.1186/1756-3305-7-393. PMid:25159989.
http://dx.doi.org/10.1186/1756-3305-7-39...
), and their eventual proximity to human settlements represent a link between wild and domestic environments, increasing the risk of pathogen transmission to domestic animals and humans (Fundação Nacional de Saúde, 2002Fundação Nacional de Saúde. Manual de controle de roedores. Brasília: Ministério da Saúde, Fundação Nacional de Saúde; 2002.; Klimpel et al., 2007Klimpel S, Förster M, Schmahl G. Parasite fauna of the bank vole (Clethrionomys glareolus) in an urban region of Germany: reservoir host of zoonotic metazoan parasites? Parasitol Res 2007; 102(1): 69-75. http://dx.doi.org/10.1007/s00436-007-0725-2. PMid:17849150.
http://dx.doi.org/10.1007/s00436-007-072...
; Reperant et al., 2009Reperant LA, Hegglin D, Tanner I, Fischer C, Deplazes P. Rodents as shared indicators for zoonotic parasites of carnivores in urban environments. Parasitology 2009; 136(3): 329-337. http://dx.doi.org/10.1017/S0031182008005428. PMid:19154652.
http://dx.doi.org/10.1017/S0031182008005...
).

Thus, it is necessary to understand parasitism in rodents living in small fragmented areas of the Atlantic Forest in western Paraná State, Brazil. We investigate the influence of host species, sex, and body condition on helminth parasitic intensity and prevalence, and the influence of the landscape on the structural patterns of the helminth community.

Materials and Methods

Study area

The research was developed in the remaining Atlantic Forest areas in the state of Paraná, Brazil, comprising the cities of Cascavel and Corbélia. These areas are located in the third plateau of the state, in the western region of Paraná, with an altitude varying around 781 m. The climate is humid subtropical, with an average annual temperature of approximately 19 °C. The average maximum temperature in January is 28.6 °C, and in July the average minimum is 11.2 °C, with the occurrence of frosts. The characteristic vegetation is Semideciduous Seasonal Forest (IBGE, 2017Instituto Brasileiro de Geografia e Estatística – IBGE. Censo Agropecuário 2017 [online]. Rio de Janeiro: IBGE; 2017 [cited 2019 Apr 10]. Available from: https://censoagro2017.ibge.gov.br/templates/censo_agro/resultadosagro/index.html
https://censoagro2017.ibge.gov.br/templa...
).

The remaining Atlantic Forest areas in the region are closely linked to anthropic influences, since the growing demand for food has transformed the surroundings of the small fragments into agricultural landscapes for grain production and dairy farming (Myers et al., 2000Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature 2000; 403(6772): 853-858. http://dx.doi.org/10.1038/35002501. PMid:10706275.
http://dx.doi.org/10.1038/35002501...
). This condition has led to the presence of domestic animals inside and wild animals outside these fragments, since, due to food shortages, rodents have expanded their colonies between and around plantations and peri-domiciliary facilities, and in the home itself (Fundação Nacional de Saúde, 2002Fundação Nacional de Saúde. Manual de controle de roedores. Brasília: Ministério da Saúde, Fundação Nacional de Saúde; 2002.; Silva et al., 2018Silva MX, Paviolo A, Tambosi LR, Pardini R. Effectiveness of protected areas for biodiversity conservation: Mammal occupancy patterns in the Iguaçu National Park, Brazil. J Nat Conserv 2018; 41: 51-62. http://dx.doi.org/10.1016/j.jnc.2017.11.001.
http://dx.doi.org/10.1016/j.jnc.2017.11....
).

Rodent collection

The samples were collected in five small fragments of remaining Atlantic Forest area near the municipalities of Cascavel (24 ° 57 '21 “S, 53 ° 27 '18” O) and Corbélia (24 ° 47 '56 “S, 53 ° 18 '25 “W) in the western region of the state of Paraná. Fragment 1, with an area of 73 ha, Fragment 2, with 96 ha, Fragment 3, covering an area of 28 ha, Fragment 4, with only 11 ha, and Fragment 5, 24 ha of total area (Figure 1).

Figure 1
Small rodent sampling locations, from 2017 to 2018, in small Atlantic Forest fragments in western Paraná, Brazil.

The blocks are composed of three parallel trapping lines, positioned at the intersection (interface) of the fragment with the adjacent agricultural matrix, 100m away towards the interior of the fragment and the matrix. Each line contained 10 traps set 20m apart from each other, and one pitfall trap, totaling 200m of transept.

Sherman-type (32.4 × 11.7 × 14.2 cm), Tomahawk (29.5 × 11 × 10.5 cm), and pitfall (60 L buckets and canvas barrier 50 cm high by 18 m long) traps were used. The traps were baited with slices of pineapple, a mixture of paçoca (ground peanuts and sugar), oats, grated tuna, and bacon as bait, and were inspected every morning (Mangini & Nicola, 2006Mangini PR, Nicola PA. Captura e marcação de animais silvestres. In: Cullen-Jr L, Rudran R, Valladares-Padua C. Métodos de estudo em biologia da conservação e manejo da vida silvestre. Curitiba: Editora UFPR; 2006. p. 91-124.).

The sampling occurred simultaneously, over five consecutive nights, in the months of September, November, and December of 2017, and January and February of 2018, corresponding to the initial and late stages of soy cultivation, and April, June, July, and August of 2018, corresponding approximately to the initial and late stages of corn cultivation in the region.

Captured animals were transported to the Laboratory of Metabolism and Human and Animal Physiology of UNIOESTE (Universidade Estadual do Oeste do Paraná - Campus Cascavel), where they were sacrificed by overdose of the volatile anesthetic isoflurane (Brasil, 2012Brasil. Conselho Federal de Medicina Veterinária – CFMV. Resolução nº 1000, de 11 de Maio de 2012. Dispõe sobre procedimentos e métodos de eutanásia em animais, e dá outras providências. Diário Oficial da República Federativa do Brasil [online]. Brasília, 2012 [cited 2019 Apr 4]. Available from: http://www3.cfmv.gov.br/portal/public/lei/index/id/326
http://www3.cfmv.gov.br/portal/public/le...
).

Species identification was done through analysis of the guard hairs, by cytogenetics and by analyzing the external and cranial morphology (Quadros & Monteiro Filho 2006; Bonvicino et al., 2008Bonvicino CR, Oliveira JA, D’andrea PS. Guia de Roedores do Brasil, com chaves para gêneros baseadas em caracteres externos. Rio de Janeiro: Organização Pan-Americaa da Saúde - OPAS/OMS; 2008.). The skin and skull of the specimens were preserved by taxidermy and skeleton, according to Reis et al. (2010)Reis NR, Peracchi AL, Rossaneis BK, Fregonezi MN. Técnicas de estudos aplicadas aos mamíferos silvestres brasileiro. Rio de Janeiro: Technical Books Editora; 2010.. At necropsy, sex, weight, head-to-tail length, tail length, hind limb length, ear length, and width were recorded for each host, according to Reis et al. (2010)Reis NR, Peracchi AL, Rossaneis BK, Fregonezi MN. Técnicas de estudos aplicadas aos mamíferos silvestres brasileiro. Rio de Janeiro: Technical Books Editora; 2010..

Each animal was evaluated individually, and all abdominal cavity organs were removed en bloc, together with the diaphragm muscle, and stored individually in identified plastic bags at -20oC. The material was then sent to the Laboratory of Parasitic Diseases (LabEPar/UNESP-FCAV), Jaboticabal/SP, for parasitological assessment. The animal captures were authorized by the Instituto Chico Mendes de Conservação da Biodiversidade (SISBIO License 59597-1). All the procedures adopted were approved by the Ethics and Animal Use Committee/UNESP - Jaboticabal/SP (Protocol nº 006060/19) and were performed in accordance with international standards.

Parasitological Necropsy

Helminth collection

Parasitological necropsies were performed in LabEPar, where the anatomical segments of the digestive tract (esophagus, stomach, small intestine, and large intestine), trachea, heart, lung, liver, spleen, and kidneys were sectioned separately in Petri dishes and the contents were analyzed with a stereoscopic microscope for harvesting the helminths, which were later fixed and conserved in 70% ethanol.

Helminth taxonomic identification

The helminths were diaphanized in 80% acetic acid and, if necessary, diaphanized in beech creosote on temporary slides for optical microscopy studies. Taxonomic identification was based on 10 individuals of each sex (dioecious species), 10 adult individuals (monoecious species), or the maximum number of individuals available. To obtain morphometric and morphological characteristics, an Olympus BX-51 microscope with a Q-Color 3 digital camera was used and the images were processed by Image-Pro Plus 4. Identifications were based on keys such as described by Travassos (1917)Travassos L. Contribuições para o conhecimento da fauna helmintolojica brazileira. Mem Inst Oswaldo Cruz 1917; 9(1): 5-62. http://dx.doi.org/10.1590/S0074-02761917000100001.
http://dx.doi.org/10.1590/S0074-02761917...
, Yamaguti (1963)Yamaguti S. Systema Helminthum. Vol. V- Acanthocephala. New York: Interscience Publisher; 1963., Rêgo (1967)Rêgo AA. Sôbre alguns Cestódeos parasitos de roedores do Brasil (Cestoda, Cyclophyllidea). Mem Inst Oswaldo Cruz 1967; 65(1): 1-18. http://dx.doi.org/10.1590/S0074-02761967000100001.
http://dx.doi.org/10.1590/S0074-02761967...
, Vicente et al. (1997)Vicente JJ, Rodrigues H, Gomes DC, Pinto RM. Nematóides do Brasil. Parte V: nematóides de mamíferos. Rev Bras Zool 1997; 14(Suppl 1): 1-452. http://dx.doi.org/10.1590/S0101-81751997000500001.
http://dx.doi.org/10.1590/S0101-81751997...
, Anderson et al. (2009)Anderson RC, Chabaud AG, Willmott S. Keys to the nematode parasites of vertebrates: archival volume. Wallingford (UK): CAB International; 2009. http://dx.doi.org/10.1079/9781845935726.0000.
http://dx.doi.org/10.1079/9781845935726....
, and additional literature. Vouchers were deposited in the Collection Oswaldo Cruz Institute (CHIOC/Fiocruz) and additional types were kept in the collection of the LabEPar, FCAV/Unesp.

Analysis of the data

After identification and counting, a descriptive analysis of indicators of parasite infection, such as prevalence, mean intensity, and mean abundance, was performed according to Bush et al. (1997)Bush AO, Lafferty KD, Lotz JM, Shostak AL. Parasitology meets ecology on its own terms: margolis et al. revisited. J Parasitol 1997; 83(4): 575-583. http://dx.doi.org/10.2307/3284227. PMid:9267395.
http://dx.doi.org/10.2307/3284227...
. The host body condition index was determined by a comparison of the mass (g) and total length (cm) (ICC = g/cm) (Schulte-Hostedde et al., 2005Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ. Restitution of mass–size residuals: validating body condition indices. Ecology 2005; 86(1): 155-163. http://dx.doi.org/10.1890/04-0232.
http://dx.doi.org/10.1890/04-0232...
). Only adult specimens were considered for this analysis. Prior to statistical analysis, data distribution was analyzed using the Kolmogorov-Smirnov test. Data with non-normal distributions, were analyzed with non-parametric tests. Fisher's exact test was applied to evaluate the relationship between the sex of the hosts, A. montensis and M. musculus, and the prevalence of each helminth. The Mann-Whitney test was used to verify the relationship between parasitic intensity and sex in A. montensis and M. musculus and parasitic intensity and landscape (border and fragment), only in A. montensis. Spearman's correlation coefficient was used to verify the relationship between the body condition index and the average parasitic intensity by parasite species. The coefficient of similarity of Jaccard was used to quantify the similarity of helminth communities between the different hosts (A. montensis, O. nigripes, and M. musculus) and the influence of the landscape under the helminth fauna of A. montensis (performed only in this host due to the number of samples). All tests were performed using GraphPad Prism 7.04 software with P adjusted to 0.05.

Results

We collected 68 rodents, representing five species of the Rodentia order: 40 Akodon montensis (25 Border - 15 Fragment), 20 Mus musculus (Plantation), five Oligoryzomys nigripes (3 Border - 2 Fragment), two Thaptomys nigrita (1 Border - 1 Fragment), and one Euryoryzomys russatus (Fragment). Sixty-five rodents were parasitized by at least one helminth species. A total of 4543 helminths were recovered, representing 15 species of three Phyla (Figure 2, Tables 1 and 2). Monoxenous parasites were predominant in all rodents analyzed. Morphometric data on the diagnosed species are listed on Table 3.

Figure 2
Parasites diagnosed in rodents from small Atlantic Forest fragments in Paraná State, Brazil. (A) Stilestrongylus franciscanus, externo-dorsal rays are asymmetrical, right external-dorsal ray is thin, arising from proximal third of dorsal ray, the left one is robust, arising at base from dorsal ray, both are longer than the dorsal ray (Scale 50μm); (B) Stilestrongylus sp. markedly asymmetrical caudal bursa hypertrophied genital cone (Scale 50μm); (C) Stilestrongylus eta, asymmetric caudal bursa, more developed right lobe, thin ray 8 emerging from the base of the dorsal trunk. (Scale 50μm); (D) Stilestrongylus aculeata, asymmetric caudal bursa, both externo-dorsal rays originate subsymmetrically at the base of the dorsal part of the trunk, but the origin of the left extrerno-dorsal ray is more proximal than the right. (Scale 50μm); (E) Stilestrongylus gracielae, asymmetric caudal bursa with hypertrophied right lobe, type 1-4 pattern, rays 2 appearing first from the trunk than rays 2 to 6 (Scale 50μm); (F) Stilestrongylus moreli, caudal bursa strongly asymmetric, long and tapered spicules with a curvature in the final portion. (Scale 50μm); (G) Rodentolepis akodontis, scolex with four suckers without spines, rostellum armed with 20 to 28 hooks (Scale 50μm); (H) Angiostrongylus sp. fused ventral bursal rays, except at the tips, ventro-lateral rays slightly longer than the ventro-ventral rays, the postero-lateral and medio-lateral rays were fused in the proximal half and separated from the externo-lateral rays after appearance, forming a common trunk, short dorsal bursal ray, ending in tip (Scale 50μm); (I) Protospirura numidica criceticola, present four pairs of pre-cloacal papillae and one unpaired papilla at the anterior edge of the cloacal opening, two large pairs of sessile post-cloacal papillae and four pairs of small paired papillae located at the tip of the tail (Scale 200μm); (J) Pentastomida gen. sp. liver cyst in the nymph stage (Scale 100μm); (K) Syphacia evaginata, well protruded vulva and the perivulvar region ornamented with a series of cuticular ridges (Scale 200μm); (L) Syphacia alata, presence of three equidistant ventral mamelons, tail relatively long (Scale 200μm); (M) Syphacia criceti, presence of mamelons in addition to a spicule, and a gubernacule with the presence of an accessory hook. (Scale 100μm); (N) Trichofreitasia lenti, sub-symmetrical caudal bursa, type 2-2-1, dorsal ray divided at mid-length into two branches, each branch divided into two subequal sub-branches, (Scale 50μm); (O) Trichuris navonae, males without spicular tube, proximal cloacal tube united laterally to distal cloacal tube, cylindrical and spiny spicular sheath (Scale 100μm).
Table 1
Prevalence (P), mean abundance (A), mean intensity (MI), and range intensity (RI) of rodent parasites in small Atlantic Forest fragments in western Paraná, Brazil.
Table 2
Prevalence (P), mean abundance (A) and mean intensity (MI) of each rodent according to intrinsic (sex) and extrinsic (landscape) factors in small fragments of Atlantic Forest in western Paraná, Brazil.
Table 3
Morphometric data of fourteen helminth species identified in small rodents in the Brazilian Atlantic Forest (Measures in millimeters).

All analyzed A. montensis were parasitized by helminths. The most frequent species in this host was the trichostrongylid Stilestrongylus gracielae (70%, 28/40). The less frequent species were the cestode Rodentolepis akodontis (5%) (1/40) parasitizing the small intestine, Angiostrongylus sp. (5%) (1/40) parasitizing the lung, and a species of Pentastomida gen. sp. (5%) (1/40), in the form of an encysted nymph in the liver.

Ninety percent of Mus musculus (18/20) were parasitized by four species of helminths. The most frequent species, diagnosed in 85% of the rodents, was Stilestrongylus aculeata (14/20). Syphacia evaginata and Rodentolepis akodontis were the least diagnosed species, infecting 30% (6/20) of the analyzed hosts.

Eighty percent of the Oligoryzomys nigripes (4/5) were diagnosed with helminths, 40% (2/5) of the rodents were parasitized by Trichofreitasia lenti and Stilestrongylus franciscanus, parasitizing the bile duct and the small intestine, respectively. Analyzed Thaptomys nigrita were parasitized by helminths. The most frequent species, diagnosed in 100% of the animals, was Stilestrongylus sp., followed by the oxyurid Syphacia criceti, diagnosed in 50% (1/2) of the hosts studied. Euryoryzomys russatus was parasitized by the trichostrongylid Stilestrongylus moreli.

The highest mean helminth richness was observed in A. montensis (total richness 10 and mean richness 2.77). The trichostrongylids presented higher abundance and mean parasitic intensity, followed by the oxyurid species. The less abundant species were Pentastomida gen. sp. (nymph), Angiostrongylus sp., P. numidicola criceticola, T. navonae, and R. akodontis.

An intermediate positive correlation was observed between body condition index and mean parasitic intensity involving the nematodes Trichofreitasia lenti (rs1 1 Spearman correlation coefficient = 0.415; P = 0.0118) and Trichuris navonae (rs = 0.477; P = 0.0032) in A. montensis. The interactions between: the sex of the hosts and the prevalence of each helminth, was only analyzed in A. montensis and M. musculus, due to the number of samples; parasitic intensity and landscape (border/fragment) in A. montensis; body condition index and total parasitic intensity by species; showed no statistical differences. Jaccard's index showed a low similarity (0.16) between the infra-communities of parasites in the hosts A. montensis, M. musculus, and O. nigripes, and a high similarity (0.9) between the landscapes in the rodent A. montensis, a test performed only in this host due to the number of samples.

Discussion

The helminthfauna found in this work shows similarities in the composition of the species in relation to those reported in Brazil and Argentina. Nematoda was the most frequent group in this study. Several authors have reported the same findings for other working areas (Cerrado savanna, Pampa grasslands, Caatinga shrubland), and for the same or other small mammal species (Gomes et al., 2003Gomes DC, Cruz RP, Vicente JJ, Pinto RM. Nematode parasites of marsupials and small rodents from the Brazilian Atlantic Forest in state of Rio de Janeiro, Brazil. Rev Bras Zool 2003; 20(4): 699-707. http://dx.doi.org/10.1590/S0101-81752003000400024.
http://dx.doi.org/10.1590/S0101-81752003...
; Navone et al., 2009Navone GT, Notarnicola J, Nava S, Robles MR, Galliari C, Lareschi M. Arthropods and helminths assemblage in Sigmodontine rodents from wetlands of the Río de La Plata, Argentina. Mastozool Neotrop 2009; 16(1): 121-133.; Robles, 2011Robles MR. New species of Trichuris (Nematoda: Trichuridae) from Akodon montensis Thomas, 1913, of the Paranaense Forest in Argentina. J Parasitol 2011; 97(2): 319-327. http://dx.doi.org/10.1645/GE-2434.1. PMid:21506781.
http://dx.doi.org/10.1645/GE-2434.1...
; Simões et al., 2012Simões RO, Maldonado-Júnior A, Luque JL. Helminth communities in three sympatric rodents from the Brazilian Atlantic Forest: contrasting biomass and numerical abundance. Braz J Biol 2012; 72(4): 909-914. http://dx.doi.org/10.1590/S1519-69842012000500018. PMid:23295521.
http://dx.doi.org/10.1590/S1519-69842012...
; Panisse et al., 2017Panisse G, Robles MDR, Digiani MC, Notarnicola J, Galliari C, Navone GT. Description of the helminth communities of sympatric rodents (Muroidea: Cricetidae) from the Atlantic Forest in northeastern Argentina. Zootaxa 2017; 4337(2): 243-262. http://dx.doi.org/10.11646/zootaxa.4337.2.4. PMid:29242441.
http://dx.doi.org/10.11646/zootaxa.4337....
; Hancke & Suárez, 2018Hancke D, Suárez OV. Structure of parasite communities in urban environments: the case of helminths in synanthropic rodents. Folia Parasitol 2018;65:009. https://doi.org/10.14411/fp.2018.009.
https://doi.org/10.14411/fp.2018.009...
; Cardoso et al., 2019Cardoso TS, Macabu CE, Simões RO, Maldonado A Jr, Luque JL, Gentile R. Helminth community structure of two sigmodontine rodents in Serra dos Órgãos National Park, State of Rio De Janeiro, Brazil. Oecol Aust 2019; 23(2): 301-314. http://dx.doi.org/10.4257/oeco.2019.2302.09.
http://dx.doi.org/10.4257/oeco.2019.2302...
).

The total helminth richness observed was similar when compared to that reported in other studies conducted in Brazil; Simões et al. (2011)Simões RO, Souza JGR, Maldonado A Jr, Luque JL. Variation in the helminth community structure of three sympatric sigmodontine rodents from the coastal Atlantic Forest of Rio de Janeiro, Brazil. J Helminthol 2011; 85(2): 171-178. http://dx.doi.org/10.1017/S0022149X10000398. PMid:20701831.
http://dx.doi.org/10.1017/S0022149X10000...
described that A. montensis was parasitized by twelve helminth species in the state ( of Rio de Janeiro. In the state of Santa Catarina; Boullosa et al. (2019)Boullosa RG, Cardoso TS, Costa-Neto SF, Teixeira BR, Freitas TPT, Arnaldo Maldonado-Júnior A, et al. Helminth community structure of three Sigmodontine Rodents in the Atlantic Forest, southern Brazil. Oecol Aust 2019; 24(2): 301-314. http://dx.doi.org/10.4257/oeco.2020.2403.04.
http://dx.doi.org/10.4257/oeco.2020.2403...
reported six species of helminths in A. montensis and two species in O. nigripes. Gomes et al. (2003)Gomes DC, Cruz RP, Vicente JJ, Pinto RM. Nematode parasites of marsupials and small rodents from the Brazilian Atlantic Forest in state of Rio de Janeiro, Brazil. Rev Bras Zool 2003; 20(4): 699-707. http://dx.doi.org/10.1590/S0101-81752003000400024.
http://dx.doi.org/10.1590/S0101-81752003...
reported two species of helminths in Rio de Janeiro state, and Cardoso et al. (2018)Cardoso TS, Braga CAC, Macabu CE, Simões RO, Costa-Neto SF, Maldonado A Jr, et al. Helminth metacommunity structure of wild rodents in a preserved area of the Atlantic Forest, Southeast Brazil. Rev Bras Parasitol Vet 2018; 27(4): 495-504. http://dx.doi.org/10.1590/s1984-296120180066. PMid:30427522.
http://dx.doi.org/10.1590/s1984-29612018...
reported a total richness of six species of parasites in A. montensis and two in O. nigripes in a preserved area of the Atlantic Forest in the same State. Guimarães et al. (2014)Guimarães AO, Valença FM, Sousa JBS, Souza SA, Madi RR, Melo CMM. Parasitic and fungal infections in synanthropic rodents in an area of urban expansion, Aracaju, Sergipe State, Brazil. Acta Sci Biol Sci 2014; 36(1): 113-120. http://dx.doi.org/10.4025/actascibiolsci.v36i1.19760.
http://dx.doi.org/10.4025/actascibiolsci...
diagnosed three species of helminths in M. musculus in the state of Sergipe.

In Argentina, Navone et al. (2009)Navone GT, Notarnicola J, Nava S, Robles MR, Galliari C, Lareschi M. Arthropods and helminths assemblage in Sigmodontine rodents from wetlands of the Río de La Plata, Argentina. Mastozool Neotrop 2009; 16(1): 121-133. reported four species of parasites in O. nigripes, Panisse et al. (2017)Panisse G, Robles MDR, Digiani MC, Notarnicola J, Galliari C, Navone GT. Description of the helminth communities of sympatric rodents (Muroidea: Cricetidae) from the Atlantic Forest in northeastern Argentina. Zootaxa 2017; 4337(2): 243-262. http://dx.doi.org/10.11646/zootaxa.4337.2.4. PMid:29242441.
http://dx.doi.org/10.11646/zootaxa.4337....
eight species in A. montensis, six species in O. nigripes, seven species in E. russatus and four species in T. nigrita. Panisse et al. (2017)Panisse G, Robles MDR, Digiani MC, Notarnicola J, Galliari C, Navone GT. Description of the helminth communities of sympatric rodents (Muroidea: Cricetidae) from the Atlantic Forest in northeastern Argentina. Zootaxa 2017; 4337(2): 243-262. http://dx.doi.org/10.11646/zootaxa.4337.2.4. PMid:29242441.
http://dx.doi.org/10.11646/zootaxa.4337....
conducted a study in the Missiones region, an area with the same biome and geographically close to the area in the present study, showing that ecological similarities can influence parasitism and be associated with the range and composition of the host diet as well as with the environmental characteristics of the analyzed areas, as stated by Poulin (2014)Poulin R. Parasite biodiversity revisited: frontiers and constraints. Int J Parasitol 2014; 44(9): 581-589. http://dx.doi.org/10.1016/j.ijpara.2014.02.003. PMid:24607559.
http://dx.doi.org/10.1016/j.ijpara.2014....
.

Helminth richness and composition differed among the five rodent species. The observed and estimated richness indices indicated higher average richness in A. montensis (2.77) than in the other host species. Total species richness is dependent on the sample size (Walther et al., 1995Walther BA, Cotgreave P, Price RD, Gregory RD, Clayton DH. Sampling effort and parasite species richness. Parasitol Today 1995; 11(8): 306-310. http://dx.doi.org/10.1016/0169-4758(95)80047-6. PMid:15275331.
http://dx.doi.org/10.1016/0169-4758(95)8...
) and, in the present study, the sample size was smaller for some rodent species than for A. montensis. According to Poulin (2014)Poulin R. Parasite biodiversity revisited: frontiers and constraints. Int J Parasitol 2014; 44(9): 581-589. http://dx.doi.org/10.1016/j.ijpara.2014.02.003. PMid:24607559.
http://dx.doi.org/10.1016/j.ijpara.2014....
, host population density is a determinant of the rates of infection of directly transmitted parasites and can be overestimated or underestimated when the sample size is relatively small. Even when a small number of hosts are analyzed, the results help to understand parasite-host dynamics, such as the structure of the parasite community.

Low similarity was observed among hosts in relation to parasite infra-community (Figure 3). The difference in habitat use, and eating habits (Dalmagro & Vieira 2005Dalmagro AD, Vieira EM. Patterns of habitat utilization of small rodents in an area of Araucaria forest in Southern Brazil. Austral Ecol 2005; 30(4): 353-362. http://dx.doi.org/10.1111/j.1442-9993.2005.01447.x.
http://dx.doi.org/10.1111/j.1442-9993.20...
; Cardoso et al., 2016Cardoso TS, Simões RO, Luque JLF, Maldonado A Jr, Gentile R. The influence of habitat fragmentation on helminth communities in rodent populations from a Brazilian Mountain Atlantic Forest. J Helminthol 2016; 90(4): 460-468. http://dx.doi.org/10.1017/S0022149X15000589. PMid:26206199.
http://dx.doi.org/10.1017/S0022149X15000...
), may have favored host specificity in some helminth species (Poulin, 2014Poulin R. Parasite biodiversity revisited: frontiers and constraints. Int J Parasitol 2014; 44(9): 581-589. http://dx.doi.org/10.1016/j.ijpara.2014.02.003. PMid:24607559.
http://dx.doi.org/10.1016/j.ijpara.2014....
). Parasite sharing is more likely to occur between biologically, ecologically, and/or phylogenetically related host species (Dallas & Presley 2014Dallas T, Presley SJ. Relative importance of host environment, transmission potential and host phylogeny to the structure of parasite metacommunities. Oikos 2014; 123(7): 866-874. http://dx.doi.org/10.1111/oik.00707.
http://dx.doi.org/10.1111/oik.00707...
; Bellay et al., 2015Bellay S, Oliveira EF, Almeida-Neto M, Abdallah VD, Azevedo RK, Takemoto RM, et al. The patterns of organisation and structure of interactions in a fish-parasite network of a neotropical river. Int J Parasitol 2015; 45(8): 549-557. http://dx.doi.org/10.1016/j.ijpara.2015.03.003. PMid:25900213.
http://dx.doi.org/10.1016/j.ijpara.2015....
). In this study, the rodent species are of different genera, this could explain the low similarity of helminth fauna found.

Figure 3
Rodent helminth interaction in five small Atlantic Forest fragments in western Paraná state, Brazil.

Stilestrongylus aculeata was recovered from rodents of the genus Akodon in the state of Rio de Janeiro (Gomes et al., 2003Gomes DC, Cruz RP, Vicente JJ, Pinto RM. Nematode parasites of marsupials and small rodents from the Brazilian Atlantic Forest in state of Rio de Janeiro, Brazil. Rev Bras Zool 2003; 20(4): 699-707. http://dx.doi.org/10.1590/S0101-81752003000400024.
http://dx.doi.org/10.1590/S0101-81752003...
) and in Argentina (Panisse et al., 2017Panisse G, Robles MDR, Digiani MC, Notarnicola J, Galliari C, Navone GT. Description of the helminth communities of sympatric rodents (Muroidea: Cricetidae) from the Atlantic Forest in northeastern Argentina. Zootaxa 2017; 4337(2): 243-262. http://dx.doi.org/10.11646/zootaxa.4337.2.4. PMid:29242441.
http://dx.doi.org/10.11646/zootaxa.4337....
). Stilestrongylus eta was recorded in the genus Akodon (Durette-Desset & Digiani, 2010Durette-Desset MC, Digiani MC. Taxonomic revision of the type specimens of Ethiopian Nippostrongylinae (Nematoda) deposited at the Natural History Museum of London. Zootaxa 2010; 2494(1): 1-28. http://dx.doi.org/10.11646/zootaxa.2494.1.1.
http://dx.doi.org/10.11646/zootaxa.2494....
), in Rio de Janeiro state. The species P. numidicola criceticola has been found in several hosts, including carnivores (Stein et al., 1994Stein M, Suriano DM, Novaro AJ. Parasite nematodes from Dusycion griseus (Gray, 1837), D. culpaeus (Molina, 1782) and Conepatus chinga (Molina, 1782) (Mammalia: Carnivora) in Neuquén, Argentina. Systematics and ecology. Bol Chil Parasitol 1994; 49(3-4): 60-65. PMid:7654286.) and rodents (Quentin, 1971Quentin JC. Morphologie comparée des structures céphaliques et génitales des Oxyures du genre Syphacia. Ann Parasitol Hum Comp 1971; 46(1): 15-60. http://dx.doi.org/10.1051/parasite/1971461015. PMid:5563722.
http://dx.doi.org/10.1051/parasite/19714...
; Sutton, 1989Sutton CA. Contribution to the knowledge of Argentina’s parasitological fauna. XVII. Spirurida (Nematoda) from Neotropical Cricetidae: Physaloptera calnuensis n. sp. and Protospirura numidica criceticola Quentin, Karimi and Rodriguez de Almeida. Bull Mus Natl Hist Nat 1989; 11(1): 61-67.; Miño, 2008Miño MH. Infection pattern of the spirurid nematode Protospirura numidica criceticola in the cricetid rodent Akodon azarae on poultry farms of central Argentina. J Helminthol 2008; 82(2): 153-158. http://dx.doi.org/10.1017/S0022149X08912396. PMid:18298867.
http://dx.doi.org/10.1017/S0022149X08912...
; Simões et al., 2010Simões R, Gentile R, Rademaker V, D’Andrea P, Herrera H, Freitas T, et al. Variation in the helminth community structure of Thrichomys pachyurus (Rodentia: Echimyidae) in two sub-regions of the Brazilian Pantanal: the effects of land use and seasonality. J Helminthol 2010; 84(3): 266-275. http://dx.doi.org/10.1017/S0022149X09990629. PMid:19849884.
http://dx.doi.org/10.1017/S0022149X09990...
). Trichofreitasia lenti nematodes and R. akodontis cestodes were previously found to parasitize A. montensis in Argentina (Panisse et al., 2017Panisse G, Robles MDR, Digiani MC, Notarnicola J, Galliari C, Navone GT. Description of the helminth communities of sympatric rodents (Muroidea: Cricetidae) from the Atlantic Forest in northeastern Argentina. Zootaxa 2017; 4337(2): 243-262. http://dx.doi.org/10.11646/zootaxa.4337.2.4. PMid:29242441.
http://dx.doi.org/10.11646/zootaxa.4337....
), and Oligoryzomys nigripes in the state of Santa Catarina, Brazil (Boullosa et al., 2019Boullosa RG, Cardoso TS, Costa-Neto SF, Teixeira BR, Freitas TPT, Arnaldo Maldonado-Júnior A, et al. Helminth community structure of three Sigmodontine Rodents in the Atlantic Forest, southern Brazil. Oecol Aust 2019; 24(2): 301-314. http://dx.doi.org/10.4257/oeco.2020.2403.04.
http://dx.doi.org/10.4257/oeco.2020.2403...
).

Trichuris navonae has been described as parasitizing A. montensis in the Missiones Province, Argentina (Robles, 2011Robles MR. New species of Trichuris (Nematoda: Trichuridae) from Akodon montensis Thomas, 1913, of the Paranaense Forest in Argentina. J Parasitol 2011; 97(2): 319-327. http://dx.doi.org/10.1645/GE-2434.1. PMid:21506781.
http://dx.doi.org/10.1645/GE-2434.1...
), and in Santa Catarina by Boullosa et al. (2019)Boullosa RG, Cardoso TS, Costa-Neto SF, Teixeira BR, Freitas TPT, Arnaldo Maldonado-Júnior A, et al. Helminth community structure of three Sigmodontine Rodents in the Atlantic Forest, southern Brazil. Oecol Aust 2019; 24(2): 301-314. http://dx.doi.org/10.4257/oeco.2020.2403.04.
http://dx.doi.org/10.4257/oeco.2020.2403...
. Digiani & Durette-Desset (2007)Digiani MC, Durette-Desset MC. Trichostrongylina (Nematoda) parasitic in Phyllotis sp. (Rodentia: Sigmodontinae) from Argentina, with description of three new species. Parasitol Int 2007; 56(1): 9-18. http://dx.doi.org/10.1016/j.parint.2006.10.001. PMid:17129752.
http://dx.doi.org/10.1016/j.parint.2006....
reported, for the first time, the species S. gracielae parasitizing Phyllotis sp. (Sigmodontinae) in the Province of Catamarca, Argentina. Stilestrongylus franciscanus is described in the intestine of Graomys griseoflavus in the Province of San Luis, Argentina (Digiani & Durette-Desset, 2003Digiani MC, Durette-Desset MC. Two new species of Nippostrongylinae (Nematoda: Trichostrongylina: Heligmonellidae) from the grey leaf-eared mouse Graomys griseoflavus (Sigmodontinae) in Argentina. Parasite 2003; 10(1): 21-29. http://dx.doi.org/10.1051/parasite/2003101p21. PMid:12669346.
http://dx.doi.org/10.1051/parasite/20031...
). Stilestrongylus moreli was reported by Panisse & Digiani, (2018)Panisse G, Digiani MC. A new species of Stilestrongylus (Nematoda, Heligmonellidae) from the Atlantic Forest of Misiones, Argentina, parasitic in Euryoryzomys russatus (Cricetidae, Sigmodontinae). Parasitol Res 2018; 117(4): 1205-1210. http://dx.doi.org/10.1007/s00436-018-5801-2. PMid:29445859.
http://dx.doi.org/10.1007/s00436-018-580...
from the Argentine Atlantic Forest, in the Misiones province in the rodent Euryoryzomys russatus. Species of Syphacia are often found parasitizing the cecum of cricetid rodents, mainly sigmodontids (Quentin 1971Quentin JC. Morphologie comparée des structures céphaliques et génitales des Oxyures du genre Syphacia. Ann Parasitol Hum Comp 1971; 46(1): 15-60. http://dx.doi.org/10.1051/parasite/1971461015. PMid:5563722.
http://dx.doi.org/10.1051/parasite/19714...
; Hugot 1988Hugot JP. Les nématodes Syphaciinae parasites de Rongeurs et de Lagomorphes. Taxinomie. Zoogéographie. Évolution. Bull Mus Natl Hist Nat 1988; 141: 1-153.).

Nematodes of the genus Angiostrongylus are parasitize rodents and carnivores, residing in the pulmonary or mesenteric arteries of their hosts (Maldonado-Júnior et al., 2012Maldonado-Júnior A, Simões R, Thiengo SC. Angiostrongyliasis in the Americas. In: Lorenzo-Morales J. Zoonosis. Rijeka: InTech; 2012. p. 303-320. http://dx.doi.org/10.5772/38632.
http://dx.doi.org/10.5772/38632...
). Two species are pathogenic in humans: Angiostrongylus cantonensis causes eosinophilic meningitis or meningoencephalitis, and Angiostrongylus costaricensis produces abdominal angiostrongiliasis (Acha & Szyfres, 2003Acha PN, Szyfres B. Zoonosis y enfermedades transmisibles comunes al hombre y a los animales. 3rd ed. Washington: Organización Panamericana de la Salud; 2003.; Maldonado-Júnior et al., 2012Maldonado-Júnior A, Simões R, Thiengo SC. Angiostrongyliasis in the Americas. In: Lorenzo-Morales J. Zoonosis. Rijeka: InTech; 2012. p. 303-320. http://dx.doi.org/10.5772/38632.
http://dx.doi.org/10.5772/38632...
; Spratt, 2015Spratt DM. Species of Angiostrongylus (Nematoda: Metastrongyloidea) in wildlife: a review. Int J Parasitol Parasites Wildl 2015; 4(2): 178-189. http://dx.doi.org/10.1016/j.ijppaw.2015.02.006. PMid:25853051.
http://dx.doi.org/10.1016/j.ijppaw.2015....
). The Angiostrongylus sp. specimens that were recovered from the pulmonary arteries of A. montensis are morphologically compatible with A. costaricensis (Figure 3), but further studies are necessary to clarify this. Unfortunately, we obtained four specimens, and only two of them were not fragmented. As preliminary molecular analyses were not compatible with the generic identification (Benatti et al., unpublished data), additional studies will be performed to confirm the specific identity of the parasite. In an isolate of A. costaricensis from Costa Rica, Eamsobhana et al. (2010)Eamsobhana P, Lim PE, Solano G, Zhang H, Gan X, Yong HS. Molecular differentiation of Angiostrongylus taxa (Nematoda: Angiostrongylidae) by cytochrome c oxidase subunit I (COI) gene sequences. Acta Trop 2010; 116(2): 152-156. http://dx.doi.org/10.1016/j.actatropica.2010.07.005. PMid:20654571.
http://dx.doi.org/10.1016/j.actatropica....
showed differences compared to a Brazilian isolate, with an uncorrected p-distance of 11.39%. Jefferies et al. (2009)Jefferies R, Morgan ER, Shaw SE. A SYBR green real-time PCR assay for the detection of the nematode Angiostrongylus vasorum in definitive and intermediate hosts. Vet Parasitol 2009; 166(1-2): 112-118. http://dx.doi.org/10.1016/j.vetpar.2009.07.042. PMid:19717239.
http://dx.doi.org/10.1016/j.vetpar.2009....
, when comparing isolates of A. vasorum from Europe with isolates from South America also showed differences, indicating the possibility of cryptic species.

Pentastomids are parasites of the respiratory system of vertebrates, and most adults are found in the lungs of reptiles, mainly snakes, lizards, and crocodiles (Bush et al., 2001Bush AO, Fernández JC, Esch GW, Seed JR. Parasitism: the diversity and ecology of animal parasites. Cambridge: Cambridge University Press; 2001.). In rodents, Porocephalus crotali is the most reported species, and the nymph stage can be found in the liver, lung, diaphragm, mesentery, and abdominal cavity (Martínez, 1982Martínez FA. Nymphs of Porocephalus crotali Humboldt, 1808 (Arachnid, Pentastomida) in edentates in Argentina. Bol Chil Parasitol 1982; 37(3-4): 74-75. PMid:7187235.). The adult form occurs mainly in crotalines (Esslinger, 1962Esslinger JH. Morphology of the egg and larva of Porocephalus crotali (Pentastomida). J Parasitol 1962; 48(3): 457-462. http://dx.doi.org/10.2307/3275216. PMid:13890829.
http://dx.doi.org/10.2307/3275216...
), suggesting that A. montensis is involved in the food chain of local snakes.

The helminthfauna of T. nigrita has been previously described by Panisse et al. (2017)Panisse G, Robles MDR, Digiani MC, Notarnicola J, Galliari C, Navone GT. Description of the helminth communities of sympatric rodents (Muroidea: Cricetidae) from the Atlantic Forest in northeastern Argentina. Zootaxa 2017; 4337(2): 243-262. http://dx.doi.org/10.11646/zootaxa.4337.2.4. PMid:29242441.
http://dx.doi.org/10.11646/zootaxa.4337....
and Cardoso et al. (2018)Cardoso TS, Braga CAC, Macabu CE, Simões RO, Costa-Neto SF, Maldonado A Jr, et al. Helminth metacommunity structure of wild rodents in a preserved area of the Atlantic Forest, Southeast Brazil. Rev Bras Parasitol Vet 2018; 27(4): 495-504. http://dx.doi.org/10.1590/s1984-296120180066. PMid:30427522.
http://dx.doi.org/10.1590/s1984-29612018...
. These authors reported the occurrence of a new unnamed species of the genus Stilestrongylus in Argentina and Brazil. In the present study, the only specimen of Stilestrongylus found in T. nigrita seems to be the same species found by Panisse et al. (2017)Panisse G, Robles MDR, Digiani MC, Notarnicola J, Galliari C, Navone GT. Description of the helminth communities of sympatric rodents (Muroidea: Cricetidae) from the Atlantic Forest in northeastern Argentina. Zootaxa 2017; 4337(2): 243-262. http://dx.doi.org/10.11646/zootaxa.4337.2.4. PMid:29242441.
http://dx.doi.org/10.11646/zootaxa.4337....
, based on the morphological characteristics observed.

Exotic parasite populations in M. musculus may originate by transfer from other populations of the same host species or by transfer from other host species in close ecological contact (Tattersall et al., 1994Tattersall FH, Nowell F, Smith RH. A review of the endoparasites of wild House Mice Mus domesticus. Mammal Rev 1994; 24(2): 61-71. http://dx.doi.org/10.1111/j.1365-2907.1994.tb00135.x.
http://dx.doi.org/10.1111/j.1365-2907.19...
). This could explain the presence of helminths S. aculeata, R. akodontis, and S. criceti, which are most commonly found in wild rodents (Gomes et al., 2003Gomes DC, Cruz RP, Vicente JJ, Pinto RM. Nematode parasites of marsupials and small rodents from the Brazilian Atlantic Forest in state of Rio de Janeiro, Brazil. Rev Bras Zool 2003; 20(4): 699-707. http://dx.doi.org/10.1590/S0101-81752003000400024.
http://dx.doi.org/10.1590/S0101-81752003...
; Panisse et al., 2017Panisse G, Robles MDR, Digiani MC, Notarnicola J, Galliari C, Navone GT. Description of the helminth communities of sympatric rodents (Muroidea: Cricetidae) from the Atlantic Forest in northeastern Argentina. Zootaxa 2017; 4337(2): 243-262. http://dx.doi.org/10.11646/zootaxa.4337.2.4. PMid:29242441.
http://dx.doi.org/10.11646/zootaxa.4337....
). This may be an indication of a spill back event, that is, a parasite, commonly found in native host species, adapting to an exotic host species (Tattersall et al., 1994Tattersall FH, Nowell F, Smith RH. A review of the endoparasites of wild House Mice Mus domesticus. Mammal Rev 1994; 24(2): 61-71. http://dx.doi.org/10.1111/j.1365-2907.1994.tb00135.x.
http://dx.doi.org/10.1111/j.1365-2907.19...
).

The prevalence and abundance of helminths in wild rodents depend on both extrinsic (temporal, seasonal, and local effects) and intrinsic (age, sex) factors, which interact in various ways to shape the structure of the component community in a given habitat at a specific time (Abu-Madi et al., 2000Abu-Madi MA, Behnke JM, Lewis JW, Gilbert FS. Seasonal and site specific variation in the component community structure of intestinal helminths from Apodemus sylvaticus from three contrasting habitats in south‐east England. J Helminthol 2000; 74(1): 7-15. http://dx.doi.org/10.1017/S0022149X00000020. PMid:10831048.
http://dx.doi.org/10.1017/S0022149X00000...
; Behnke et al., 2005Behnke JM, Gilbert FS, Abu-Madi MA, Lewis JW. Do the helminth parasites of wood mice interact? J Anim Ecol 2005; 74(5): 982-993. http://dx.doi.org/10.1111/j.1365-2656.2005.00995.x.
http://dx.doi.org/10.1111/j.1365-2656.20...
). The age of the host is perhaps the most important of the intrinsic factors, with older or adult animals generally harboring more species of helminths and greater parasitic loading, the so-called cumulative effect (Behnke et al., 1999Behnke JM, Lewis JW, Zain SNM, Gilbert FS. Helminth infections in Apodemus sylvaticus in southern England: interactive effects of host‐age, sex and year on prevalence and abundance of infections. J Helminthol 1999; 73(1): 31-44. http://dx.doi.org/10.1017/S0022149X99000049. PMid:10431369.
http://dx.doi.org/10.1017/S0022149X99000...
). In this study, older animals showed greater susceptibility or exposure to Trichuris navonae and Trichofreitasia lenti, demonstrating that older individuals are more at risk due to the longer exposure time (Behnke et al., 1999Behnke JM, Lewis JW, Zain SNM, Gilbert FS. Helminth infections in Apodemus sylvaticus in southern England: interactive effects of host‐age, sex and year on prevalence and abundance of infections. J Helminthol 1999; 73(1): 31-44. http://dx.doi.org/10.1017/S0022149X99000049. PMid:10431369.
http://dx.doi.org/10.1017/S0022149X99000...
).

Sympatric host species generally show differences in feeding strategy and habitat occupation or present distinct activity patterns (Simões et al., 2010Simões R, Gentile R, Rademaker V, D’Andrea P, Herrera H, Freitas T, et al. Variation in the helminth community structure of Thrichomys pachyurus (Rodentia: Echimyidae) in two sub-regions of the Brazilian Pantanal: the effects of land use and seasonality. J Helminthol 2010; 84(3): 266-275. http://dx.doi.org/10.1017/S0022149X09990629. PMid:19849884.
http://dx.doi.org/10.1017/S0022149X09990...
). Thus, the establishment of parasitic communities is influenced by the diet of these animals, which, in many species, includes small insects that can act as intermediate hosts of the parasites (Reis et al., 2010Reis NR, Peracchi AL, Rossaneis BK, Fregonezi MN. Técnicas de estudos aplicadas aos mamíferos silvestres brasileiro. Rio de Janeiro: Technical Books Editora; 2010.). Similarly, the composition and use of the landscape is also a determining factor for host populations (Umetsu & Pardini, 2007Umetsu F, Pardini R. Small mammals in a mosaic of forest remnants and anthropogenic habitats - evaluating matrix quality in an Atlantic forest landscape. Landsc Ecol 2007; 22(4): 517-530. http://dx.doi.org/10.1007/s10980-006-9041-y.
http://dx.doi.org/10.1007/s10980-006-904...
; Simões et al., 2010Simões R, Gentile R, Rademaker V, D’Andrea P, Herrera H, Freitas T, et al. Variation in the helminth community structure of Thrichomys pachyurus (Rodentia: Echimyidae) in two sub-regions of the Brazilian Pantanal: the effects of land use and seasonality. J Helminthol 2010; 84(3): 266-275. http://dx.doi.org/10.1017/S0022149X09990629. PMid:19849884.
http://dx.doi.org/10.1017/S0022149X09990...
). Some of these factors can be applied to the differences observed in the helminthic community of the analyzed wild rodent population.

This study represents a new location record for all helminth species, extending the geographical distribution of parasites and new host records for Syphacia alata, S. criceti, S. evaginata, Stilestrongylus gracielae, S. franciscanus, S. moreli, S. aculeata, and Rodentolepis akodontis.

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and by the National Council for Scientific and Technological Development - Brazil (CNPq).

  • 1
    Spearman correlation coefficient
  • How to cite: Benatti D, Andrietti LF, Cândido Júnior JF, Vogliotti A, Moraes MFD, Tebaldi JH, et al. Rodent helminths in fragmented Atlantic Forest areas in the western region of the state of Paraná. Braz J Vet Parasitol 2021; 30(3): e009521. https://doi.org/10.1590/S1984-29612021058

References

  • Abu-Madi MA, Behnke JM, Lewis JW, Gilbert FS. Seasonal and site specific variation in the component community structure of intestinal helminths from Apodemus sylvaticus from three contrasting habitats in south‐east England. J Helminthol 2000; 74(1): 7-15. http://dx.doi.org/10.1017/S0022149X00000020 PMid:10831048.
    » http://dx.doi.org/10.1017/S0022149X00000020
  • Acha PN, Szyfres B. Zoonosis y enfermedades transmisibles comunes al hombre y a los animales 3rd ed. Washington: Organización Panamericana de la Salud; 2003.
  • Anderson RC, Chabaud AG, Willmott S. Keys to the nematode parasites of vertebrates: archival volume Wallingford (UK): CAB International; 2009. http://dx.doi.org/10.1079/9781845935726.0000
    » http://dx.doi.org/10.1079/9781845935726.0000
  • Behnke JM, Gilbert FS, Abu-Madi MA, Lewis JW. Do the helminth parasites of wood mice interact? J Anim Ecol 2005; 74(5): 982-993. http://dx.doi.org/10.1111/j.1365-2656.2005.00995.x
    » http://dx.doi.org/10.1111/j.1365-2656.2005.00995.x
  • Behnke JM, Lewis JW, Zain SNM, Gilbert FS. Helminth infections in Apodemus sylvaticus in southern England: interactive effects of host‐age, sex and year on prevalence and abundance of infections. J Helminthol 1999; 73(1): 31-44. http://dx.doi.org/10.1017/S0022149X99000049 PMid:10431369.
    » http://dx.doi.org/10.1017/S0022149X99000049
  • Bellay S, Oliveira EF, Almeida-Neto M, Abdallah VD, Azevedo RK, Takemoto RM, et al. The patterns of organisation and structure of interactions in a fish-parasite network of a neotropical river. Int J Parasitol 2015; 45(8): 549-557. http://dx.doi.org/10.1016/j.ijpara.2015.03.003 PMid:25900213.
    » http://dx.doi.org/10.1016/j.ijpara.2015.03.003
  • Bonvicino CR, Oliveira JA, D’andrea PS. Guia de Roedores do Brasil, com chaves para gêneros baseadas em caracteres externos Rio de Janeiro: Organização Pan-Americaa da Saúde - OPAS/OMS; 2008.
  • Boullosa RG, Cardoso TS, Costa-Neto SF, Teixeira BR, Freitas TPT, Arnaldo Maldonado-Júnior A, et al. Helminth community structure of three Sigmodontine Rodents in the Atlantic Forest, southern Brazil. Oecol Aust 2019; 24(2): 301-314. http://dx.doi.org/10.4257/oeco.2020.2403.04
    » http://dx.doi.org/10.4257/oeco.2020.2403.04
  • Brasil. Conselho Federal de Medicina Veterinária – CFMV. Resolução nº 1000, de 11 de Maio de 2012. Dispõe sobre procedimentos e métodos de eutanásia em animais, e dá outras providências. Diário Oficial da República Federativa do Brasil [online]. Brasília, 2012 [cited 2019 Apr 4]. Available from: http://www3.cfmv.gov.br/portal/public/lei/index/id/326
    » http://www3.cfmv.gov.br/portal/public/lei/index/id/326
  • Bush AO, Fernández JC, Esch GW, Seed JR. Parasitism: the diversity and ecology of animal parasites Cambridge: Cambridge University Press; 2001.
  • Bush AO, Lafferty KD, Lotz JM, Shostak AL. Parasitology meets ecology on its own terms: margolis et al. revisited. J Parasitol 1997; 83(4): 575-583. http://dx.doi.org/10.2307/3284227 PMid:9267395.
    » http://dx.doi.org/10.2307/3284227
  • Cardoso TS, Braga CAC, Macabu CE, Simões RO, Costa-Neto SF, Maldonado A Jr, et al. Helminth metacommunity structure of wild rodents in a preserved area of the Atlantic Forest, Southeast Brazil. Rev Bras Parasitol Vet 2018; 27(4): 495-504. http://dx.doi.org/10.1590/s1984-296120180066 PMid:30427522.
    » http://dx.doi.org/10.1590/s1984-296120180066
  • Cardoso TS, Macabu CE, Simões RO, Maldonado A Jr, Luque JL, Gentile R. Helminth community structure of two sigmodontine rodents in Serra dos Órgãos National Park, State of Rio De Janeiro, Brazil. Oecol Aust 2019; 23(2): 301-314. http://dx.doi.org/10.4257/oeco.2019.2302.09
    » http://dx.doi.org/10.4257/oeco.2019.2302.09
  • Cardoso TS, Simões RO, Luque JLF, Maldonado A Jr, Gentile R. The influence of habitat fragmentation on helminth communities in rodent populations from a Brazilian Mountain Atlantic Forest. J Helminthol 2016; 90(4): 460-468. http://dx.doi.org/10.1017/S0022149X15000589 PMid:26206199.
    » http://dx.doi.org/10.1017/S0022149X15000589
  • Dallas T, Presley SJ. Relative importance of host environment, transmission potential and host phylogeny to the structure of parasite metacommunities. Oikos 2014; 123(7): 866-874. http://dx.doi.org/10.1111/oik.00707
    » http://dx.doi.org/10.1111/oik.00707
  • Dalmagro AD, Vieira EM. Patterns of habitat utilization of small rodents in an area of Araucaria forest in Southern Brazil. Austral Ecol 2005; 30(4): 353-362. http://dx.doi.org/10.1111/j.1442-9993.2005.01447.x
    » http://dx.doi.org/10.1111/j.1442-9993.2005.01447.x
  • Digiani MC, Durette-Desset MC. Trichostrongylina (Nematoda) parasitic in Phyllotis sp. (Rodentia: Sigmodontinae) from Argentina, with description of three new species. Parasitol Int 2007; 56(1): 9-18. http://dx.doi.org/10.1016/j.parint.2006.10.001 PMid:17129752.
    » http://dx.doi.org/10.1016/j.parint.2006.10.001
  • Digiani MC, Durette-Desset MC. Two new species of Nippostrongylinae (Nematoda: Trichostrongylina: Heligmonellidae) from the grey leaf-eared mouse Graomys griseoflavus (Sigmodontinae) in Argentina. Parasite 2003; 10(1): 21-29. http://dx.doi.org/10.1051/parasite/2003101p21 PMid:12669346.
    » http://dx.doi.org/10.1051/parasite/2003101p21
  • Durette-Desset MC, Digiani MC. Taxonomic revision of the type specimens of Ethiopian Nippostrongylinae (Nematoda) deposited at the Natural History Museum of London. Zootaxa 2010; 2494(1): 1-28. http://dx.doi.org/10.11646/zootaxa.2494.1.1
    » http://dx.doi.org/10.11646/zootaxa.2494.1.1
  • Eamsobhana P, Lim PE, Solano G, Zhang H, Gan X, Yong HS. Molecular differentiation of Angiostrongylus taxa (Nematoda: Angiostrongylidae) by cytochrome c oxidase subunit I (COI) gene sequences. Acta Trop 2010; 116(2): 152-156. http://dx.doi.org/10.1016/j.actatropica.2010.07.005 PMid:20654571.
    » http://dx.doi.org/10.1016/j.actatropica.2010.07.005
  • Esslinger JH. Morphology of the egg and larva of Porocephalus crotali (Pentastomida). J Parasitol 1962; 48(3): 457-462. http://dx.doi.org/10.2307/3275216 PMid:13890829.
    » http://dx.doi.org/10.2307/3275216
  • Fahrig L. Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 2003; 34(1): 487-515. http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132419
    » http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132419
  • Froeschke G, Matthee S. Landscape characteristics influence helminth infestations in a peri-domestic rodent - implications for possible zoonotic disease. Parasit Vectors 2014; 7(1): 393. http://dx.doi.org/10.1186/1756-3305-7-393 PMid:25159989.
    » http://dx.doi.org/10.1186/1756-3305-7-393
  • Fundação Nacional de Saúde. Manual de controle de roedores Brasília: Ministério da Saúde, Fundação Nacional de Saúde; 2002.
  • Gomes DC, Cruz RP, Vicente JJ, Pinto RM. Nematode parasites of marsupials and small rodents from the Brazilian Atlantic Forest in state of Rio de Janeiro, Brazil. Rev Bras Zool 2003; 20(4): 699-707. http://dx.doi.org/10.1590/S0101-81752003000400024
    » http://dx.doi.org/10.1590/S0101-81752003000400024
  • Guimarães AO, Valença FM, Sousa JBS, Souza SA, Madi RR, Melo CMM. Parasitic and fungal infections in synanthropic rodents in an area of urban expansion, Aracaju, Sergipe State, Brazil. Acta Sci Biol Sci 2014; 36(1): 113-120. http://dx.doi.org/10.4025/actascibiolsci.v36i1.19760
    » http://dx.doi.org/10.4025/actascibiolsci.v36i1.19760
  • Hancke D, Suárez OV. Structure of parasite communities in urban environments: the case of helminths in synanthropic rodents. Folia Parasitol 2018;65:009. https://doi.org/10.14411/fp.2018.009
    » https://doi.org/10.14411/fp.2018.009
  • Hugot JP. Les nématodes Syphaciinae parasites de Rongeurs et de Lagomorphes. Taxinomie. Zoogéographie. Évolution. Bull Mus Natl Hist Nat 1988; 141: 1-153.
  • Instituto Brasileiro de Geografia e Estatística – IBGE. Censo Agropecuário 2017 [online]. Rio de Janeiro: IBGE; 2017 [cited 2019 Apr 10]. Available from: https://censoagro2017.ibge.gov.br/templates/censo_agro/resultadosagro/index.html
    » https://censoagro2017.ibge.gov.br/templates/censo_agro/resultadosagro/index.html
  • Jefferies R, Morgan ER, Shaw SE. A SYBR green real-time PCR assay for the detection of the nematode Angiostrongylus vasorum in definitive and intermediate hosts. Vet Parasitol 2009; 166(1-2): 112-118. http://dx.doi.org/10.1016/j.vetpar.2009.07.042 PMid:19717239.
    » http://dx.doi.org/10.1016/j.vetpar.2009.07.042
  • Klimpel S, Förster M, Schmahl G. Parasite fauna of the bank vole (Clethrionomys glareolus) in an urban region of Germany: reservoir host of zoonotic metazoan parasites? Parasitol Res 2007; 102(1): 69-75. http://dx.doi.org/10.1007/s00436-007-0725-2 PMid:17849150.
    » http://dx.doi.org/10.1007/s00436-007-0725-2
  • Maldonado-Júnior A, Simões R, Thiengo SC. Angiostrongyliasis in the Americas. In: Lorenzo-Morales J. Zoonosis Rijeka: InTech; 2012. p. 303-320. http://dx.doi.org/10.5772/38632
    » http://dx.doi.org/10.5772/38632
  • Mangini PR, Nicola PA. Captura e marcação de animais silvestres. In: Cullen-Jr L, Rudran R, Valladares-Padua C. Métodos de estudo em biologia da conservação e manejo da vida silvestre. Curitiba: Editora UFPR; 2006. p. 91-124.
  • Martínez FA. Nymphs of Porocephalus crotali Humboldt, 1808 (Arachnid, Pentastomida) in edentates in Argentina. Bol Chil Parasitol 1982; 37(3-4): 74-75. PMid:7187235.
  • Miño MH. Infection pattern of the spirurid nematode Protospirura numidica criceticola in the cricetid rodent Akodon azarae on poultry farms of central Argentina. J Helminthol 2008; 82(2): 153-158. http://dx.doi.org/10.1017/S0022149X08912396 PMid:18298867.
    » http://dx.doi.org/10.1017/S0022149X08912396
  • Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, et al. Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions Mexico City: CEMEX, Conservation International; 2005.
  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature 2000; 403(6772): 853-858. http://dx.doi.org/10.1038/35002501 PMid:10706275.
    » http://dx.doi.org/10.1038/35002501
  • Navone GT, Notarnicola J, Nava S, Robles MR, Galliari C, Lareschi M. Arthropods and helminths assemblage in Sigmodontine rodents from wetlands of the Río de La Plata, Argentina. Mastozool Neotrop 2009; 16(1): 121-133.
  • Panisse G, Digiani MC. A new species of Stilestrongylus (Nematoda, Heligmonellidae) from the Atlantic Forest of Misiones, Argentina, parasitic in Euryoryzomys russatus (Cricetidae, Sigmodontinae). Parasitol Res 2018; 117(4): 1205-1210. http://dx.doi.org/10.1007/s00436-018-5801-2 PMid:29445859.
    » http://dx.doi.org/10.1007/s00436-018-5801-2
  • Panisse G, Robles MDR, Digiani MC, Notarnicola J, Galliari C, Navone GT. Description of the helminth communities of sympatric rodents (Muroidea: Cricetidae) from the Atlantic Forest in northeastern Argentina. Zootaxa 2017; 4337(2): 243-262. http://dx.doi.org/10.11646/zootaxa.4337.2.4 PMid:29242441.
    » http://dx.doi.org/10.11646/zootaxa.4337.2.4
  • Patton JL, Pardiñas UF, D’Elía G. Mammals of South America: rodents Vol. 2. Chicago: University of Chicago Press; 2015. http://dx.doi.org/10.7208/chicago/9780226169606.001.0001
    » http://dx.doi.org/10.7208/chicago/9780226169606.001.0001
  • Poulin R. Parasite biodiversity revisited: frontiers and constraints. Int J Parasitol 2014; 44(9): 581-589. http://dx.doi.org/10.1016/j.ijpara.2014.02.003 PMid:24607559.
    » http://dx.doi.org/10.1016/j.ijpara.2014.02.003
  • Quadros J, Monteiro-Filho ELA. Coleta e preparação de pêlos de mamíferos para identificação em microscopia óptica. Rev Bras Zool 2006; 23(1): 274-278. http://dx.doi.org/10.1590/S0101-81752006000100022
    » http://dx.doi.org/10.1590/S0101-81752006000100022
  • Quentin JC. Morphologie comparée des structures céphaliques et génitales des Oxyures du genre Syphacia. Ann Parasitol Hum Comp 1971; 46(1): 15-60. http://dx.doi.org/10.1051/parasite/1971461015 PMid:5563722.
    » http://dx.doi.org/10.1051/parasite/1971461015
  • Rêgo AA. Sôbre alguns Cestódeos parasitos de roedores do Brasil (Cestoda, Cyclophyllidea). Mem Inst Oswaldo Cruz 1967; 65(1): 1-18. http://dx.doi.org/10.1590/S0074-02761967000100001
    » http://dx.doi.org/10.1590/S0074-02761967000100001
  • Reis NR, Peracchi AL, Rossaneis BK, Fregonezi MN. Técnicas de estudos aplicadas aos mamíferos silvestres brasileiro. Rio de Janeiro: Technical Books Editora; 2010.
  • Reperant LA, Hegglin D, Tanner I, Fischer C, Deplazes P. Rodents as shared indicators for zoonotic parasites of carnivores in urban environments. Parasitology 2009; 136(3): 329-337. http://dx.doi.org/10.1017/S0031182008005428 PMid:19154652.
    » http://dx.doi.org/10.1017/S0031182008005428
  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. The Brazilian Atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 2009; 142(6): 1141-1153. http://dx.doi.org/10.1016/j.biocon.2009.02.021
    » http://dx.doi.org/10.1016/j.biocon.2009.02.021
  • Robles MR. New species of Trichuris (Nematoda: Trichuridae) from Akodon montensis Thomas, 1913, of the Paranaense Forest in Argentina. J Parasitol 2011; 97(2): 319-327. http://dx.doi.org/10.1645/GE-2434.1 PMid:21506781.
    » http://dx.doi.org/10.1645/GE-2434.1
  • Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ. Restitution of mass–size residuals: validating body condition indices. Ecology 2005; 86(1): 155-163. http://dx.doi.org/10.1890/04-0232
    » http://dx.doi.org/10.1890/04-0232
  • Silva MX, Paviolo A, Tambosi LR, Pardini R. Effectiveness of protected areas for biodiversity conservation: Mammal occupancy patterns in the Iguaçu National Park, Brazil. J Nat Conserv 2018; 41: 51-62. http://dx.doi.org/10.1016/j.jnc.2017.11.001
    » http://dx.doi.org/10.1016/j.jnc.2017.11.001
  • Simões R, Gentile R, Rademaker V, D’Andrea P, Herrera H, Freitas T, et al. Variation in the helminth community structure of Thrichomys pachyurus (Rodentia: Echimyidae) in two sub-regions of the Brazilian Pantanal: the effects of land use and seasonality. J Helminthol 2010; 84(3): 266-275. http://dx.doi.org/10.1017/S0022149X09990629 PMid:19849884.
    » http://dx.doi.org/10.1017/S0022149X09990629
  • Simões RO, Maldonado-Júnior A, Luque JL. Helminth communities in three sympatric rodents from the Brazilian Atlantic Forest: contrasting biomass and numerical abundance. Braz J Biol 2012; 72(4): 909-914. http://dx.doi.org/10.1590/S1519-69842012000500018 PMid:23295521.
    » http://dx.doi.org/10.1590/S1519-69842012000500018
  • Simões RO, Souza JGR, Maldonado A Jr, Luque JL. Variation in the helminth community structure of three sympatric sigmodontine rodents from the coastal Atlantic Forest of Rio de Janeiro, Brazil. J Helminthol 2011; 85(2): 171-178. http://dx.doi.org/10.1017/S0022149X10000398 PMid:20701831.
    » http://dx.doi.org/10.1017/S0022149X10000398
  • Spratt DM. Species of Angiostrongylus (Nematoda: Metastrongyloidea) in wildlife: a review. Int J Parasitol Parasites Wildl 2015; 4(2): 178-189. http://dx.doi.org/10.1016/j.ijppaw.2015.02.006 PMid:25853051.
    » http://dx.doi.org/10.1016/j.ijppaw.2015.02.006
  • Stein M, Suriano DM, Novaro AJ. Parasite nematodes from Dusycion griseus (Gray, 1837), D. culpaeus (Molina, 1782) and Conepatus chinga (Molina, 1782) (Mammalia: Carnivora) in Neuquén, Argentina. Systematics and ecology. Bol Chil Parasitol 1994; 49(3-4): 60-65. PMid:7654286.
  • Sutton CA. Contribution to the knowledge of Argentina’s parasitological fauna. XVII. Spirurida (Nematoda) from Neotropical Cricetidae: Physaloptera calnuensis n. sp. and Protospirura numidica criceticola Quentin, Karimi and Rodriguez de Almeida. Bull Mus Natl Hist Nat 1989; 11(1): 61-67.
  • Tattersall FH, Nowell F, Smith RH. A review of the endoparasites of wild House Mice Mus domesticus. Mammal Rev 1994; 24(2): 61-71. http://dx.doi.org/10.1111/j.1365-2907.1994.tb00135.x
    » http://dx.doi.org/10.1111/j.1365-2907.1994.tb00135.x
  • Travassos L. Contribuições para o conhecimento da fauna helmintolojica brazileira. Mem Inst Oswaldo Cruz 1917; 9(1): 5-62. http://dx.doi.org/10.1590/S0074-02761917000100001
    » http://dx.doi.org/10.1590/S0074-02761917000100001
  • Umetsu F, Pardini R. Small mammals in a mosaic of forest remnants and anthropogenic habitats - evaluating matrix quality in an Atlantic forest landscape. Landsc Ecol 2007; 22(4): 517-530. http://dx.doi.org/10.1007/s10980-006-9041-y
    » http://dx.doi.org/10.1007/s10980-006-9041-y
  • Vicente JJ, Rodrigues H, Gomes DC, Pinto RM. Nematóides do Brasil. Parte V: nematóides de mamíferos. Rev Bras Zool 1997; 14(Suppl 1): 1-452. http://dx.doi.org/10.1590/S0101-81751997000500001
    » http://dx.doi.org/10.1590/S0101-81751997000500001
  • Walther BA, Cotgreave P, Price RD, Gregory RD, Clayton DH. Sampling effort and parasite species richness. Parasitol Today 1995; 11(8): 306-310. http://dx.doi.org/10.1016/0169-4758(95)80047-6 PMid:15275331.
    » http://dx.doi.org/10.1016/0169-4758(95)80047-6
  • Yamaguti S. Systema Helminthum Vol. V- Acanthocephala. New York: Interscience Publisher; 1963.

Publication Dates

  • Publication in this collection
    09 July 2021
  • Date of issue
    2021

History

  • Received
    21 May 2021
  • Accepted
    01 June 2021
Colégio Brasileiro de Parasitologia Veterinária FCAV/UNESP - Departamento de Patologia Veterinária, Via de acesso Prof. Paulo Donato Castellane s/n, Zona Rural, , 14884-900 Jaboticabal - SP, Brasil, Fone: (16) 3209-7100 RAMAL 7934 - Jaboticabal - SP - Brazil
E-mail: cbpv_rbpv.fcav@unesp.br