Acessibilidade / Reportar erro

Reef fishes biodiversity and conservation at the largest Brazilian coastal Marine Protected Area (MPA Costa dos Corais)

Abstract

Coral reefs harbor one of the largest fish biodiversity on earth; yet information on reef fishes is still absent for many regions. We analyzed reef fish richness, distribution, and conservation on the largest Brazilian multiple use coastal MPA; which cover a large extent of coral reefs at the SWA. A total of 325 fish species have been listed for MPA Costa dos Corais, including Chondrichthyes (28 species) and Actinopterygii (297). Fish species were represented by 81 families and the most representative families were Carangidae (23 species), Labridae (21) and Gobiidae (15). The MPA fish richness represented 44% of all recorded fish species of the Southwestern Atlantic Ocean (SWA) highlighting the large-scale importance of this MPA. A total of 40 species (12%) are registered at Near Threatened (NT), Vulnerable (VU), Endangered (EN) or Critically Endangered (CR). This study reinforces the importance of MPA Costa dos Corais on reef fish biodiversity and conservation and emphasize the urgent need of conservation strategies.

Keywords:
Conservation Unit; Coral Reefs; Fish community; Ichthyofauna; Management Plan

Resumo

Os recifes de coral abrigam uma das maiores biodiversidades de peixes do planeta; no entanto, as informações sobre peixes de recife ainda estão ausentes em muitas regiões. Analisamos a riqueza, distribuição e a conservação de peixes recifais na maior Área de Proteção Ambiental (APA) costeira de uso múltiplo do Brasil; área que possui grande extensão de recifes de corais no SWA. Um total de 325 espécies de peixes foram listadas para APA Costa dos Corais, incluindo Chondrichthyes (28 espécies) e Actinopterygii (297). As espécies de peixes foram representadas por 81 famílias e as famílias mais representativas foram Carangidae (23 espécies), Labridae (21) e Gobiidae (15). A riqueza de peixes da APA representou 44% de todas as espécies de peixes registradas no Oceano Atlântico Sudoeste (SWA), destacando a importância em grande escala desta APA. Um total de 40 espécies (12%) estão registradas como Quase Ameaçada (NT), Vulnerável (VU), Em Perigo (EN) ou Criticamente Em Perigo (CR). Este estudo reforça a importância da APA Costa dos Corais na biodiversidade e conservação dos peixes recifais e enfatiza a necessidade urgente de estratégias de conservação.

Palavras-chave:
Comunidade de peixes; Ictiofauna; Plano de manejo; Recifes de coral; Unidade de conservação

INTRODUCTION

Coral reefs are amongst the most relevant ecosystems on Earth with the greatest biodiversity of all marine habitats (Moberg, Folke, 1999Moberg F, Folke C. Ecological goods and services of coral reef ecosystems. Ecol Econ. 1999; 29(2):215–33. https://doi.org/10.1016/S0921-8009(99)00009-9
https://doi.org/10.1016/S0921-8009(99)00...
; Adey, 2000Adey WH. Coral reef ecosystems and human health: biodiversity counts! Ecosyst Health. 2000; 6(4):227–36. https://doi.org/10.1046/j.1526-0992.2000.006004227.x
https://doi.org/10.1046/j.1526-0992.2000...
). In addition to harbor a rich biodiversity, coral reefs are crucial both ecologically and economically, providing several services, such as fish stocks and coastal protection (Brander et al., 2007Brander LM, Van Beukering P, Cesar HSJ. The recreational value of coral reefs: A meta-analysis. Ecol Econ. 2007; 63(1):209–18. https://doi.org/10.1016/j.ecolecon.2006.11.002
https://doi.org/10.1016/j.ecolecon.2006....
; Paula et al., 2018Paula YC, Schiavetti A, Sampaio CLS, Calderon E. The effects of fish feeding by visitors on reef fish in a Marine Protected Area open to tourism. Biota Neotrop. 2018; 18(3):e20170339. https://doi.org/10.1590/1676-0611-bn-2017-0339
https://doi.org/10.1590/1676-0611-bn-201...
). The use of coral reefs, whether for tourism or fishing, is a notable attraction for the industry (Davenport, Davenport, 2006Davenport J, Davenport JL. The impact of tourism and personal leisure transport on coastal environments: A review. Estuar Coast Shelf Sci. 2006; 67(1–2):280–92. https://doi.org/10.1016/j.ecss.2005.11.026
https://doi.org/10.1016/j.ecss.2005.11.0...
; Cowburn et al., 2018Cowburn B, Moritz C, Birrell C, Grimsditch G, Abdulla A. Can luxury and environmental sustainability co-exist? Assessing the environmental impact of resort tourism on coral reefs in the Maldives. Ocean Coast Manage. 2018; 158:120–27. https://doi.org/10.1016/j.ocecoaman.2018.03.025
https://doi.org/10.1016/j.ocecoaman.2018...
), raising billions of dollars annually and benefiting around 450 million people in 109 countries (Moberg, Folke, 1999Moberg F, Folke C. Ecological goods and services of coral reef ecosystems. Ecol Econ. 1999; 29(2):215–33. https://doi.org/10.1016/S0921-8009(99)00009-9
https://doi.org/10.1016/S0921-8009(99)00...
; Pandolfi et al., 2011Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL. Projecting coral reef futures under global warming and ocean acidification. Science. 2011; 333(6041):418–22. https://doi.org/10.1126/science.1204794
https://doi.org/10.1126/science.1204794...
; Spalding et al., 2017Spalding M, Burke L, Wood SA, Ashpole J, Hutchison J, zu Ermgassen P. Mapping the global value and distribution of coral reef tourism. Mar Policy. 2017; 82:104–13. https://doi.org/10.1016/j.marpol.2017.05.014
https://doi.org/10.1016/j.marpol.2017.05...
).

Brazil has the unique coral reefs with many representative endemics to the southwest Atlantic Ocean (Ferreira et al., 2013Ferreira BP, Costa MBSF, Coxey MS, Gaspar ALB, Veleda D, Araujo M. The effects of sea surface temperature anomalies on oceanic coral reef systems in the southwestern tropical Atlantic. Coral Reefs. 2013; 32:441–54. https://doi.org/10.1007/s00338-012-0992-y
https://doi.org/10.1007/s00338-012-0992-...
; Leão et al., 2016Leão ZMAN, Kikuchi RKP, Ferreira BP, Neves EG, Sovierzoski HH, Oliveira MDM et al. Brazilian coral reefs in a period of global change: A synthesis. Braz J Oceanogr. 2016; 64:97–116. https://doi.org/10.1590/S1679-875920160916064sp2
https://doi.org/10.1590/S1679-8759201609...
). These ecosystems differ from reefs around the world due to the absence of natural disasters, low species richness; yet they present high endemism and high levels of sedimentation (Leão et al., 2003Leão ZMAN, Kikuchi RKP, Testa V. Corals and coral reefs of Brazil. In: Cortés J, editor. Latin American Coral Reefs. Amsterdam: Elsevier Science; 2003. p.9–52. https://doi.org/10.1016/B978-044451388-5/50003-5
https://doi.org/10.1016/B978-044451388-5...
; Leão et al., 2016Leão ZMAN, Kikuchi RKP, Ferreira BP, Neves EG, Sovierzoski HH, Oliveira MDM et al. Brazilian coral reefs in a period of global change: A synthesis. Braz J Oceanogr. 2016; 64:97–116. https://doi.org/10.1590/S1679-875920160916064sp2
https://doi.org/10.1590/S1679-8759201609...
; Soares et al., 2021Soares MO, Rossi S, Gurgel AR, Lucas CC, Tavares TC, Diniz B et al. Impacts of a changing environment on marginal coral reefs in the Tropical Southwestern Atlantic. Ocean Coast Manag. 2021; 210:105692. https://doi.org/10.1016/j.ocecoaman.2021.105692
https://doi.org/10.1016/j.ocecoaman.2021...
). Despite this ecological relevance, Brazilian reefs are still poorly investigated and data on biodiversity assessment of corals and reef fishes are still absent for several regions, including many Marine Protected Areas (MPAs) (Sampaio et al., 2016Sampaio CLS, Santander-neto J, Costa TLA. Hogfish Lachnolaimus maximus (Labridae) confirmed in the south-western Atlantic Ocean. J Fish Biol. 2016; 89(3):1873–79. https://doi.org/10.1111/jfb.13075
https://doi.org/10.1111/jfb.13075...
).

Reef ecosystems harbor a high diversity of fish species (Reaka-Kudla, 1997Reaka-Kudla ML. The global biodiversity of coral reefs: a comparison with rain forests. In: Reaka-Kudla ML, Wilson DE, Wilson ED, editors. Biodiversity II: Understanding and protecting our biological resources. Washington, D.C.: Joseph Henry Press; 1997. p.2: 551.) and the close relationship of fish and reef environments has been extensively described in the last decades (see Mora, 2015Mora C. Ecology of fishes on Coral Reefs. Cambridge: Cambridge University Press; 2015. for a review). Reef fish communities are driven by multiple factors such as depth, wave exposure, latitude, and benthic structure (Gibran, Moura, 2012Gibran FZ, Moura RL. The structure of rocky reef fish assemblages across a nearshore to coastal islands’ gradient in Southeastern Brazil. Neotrop Ichthyol. 2012; 10(2):369–82. https://doi.org/10.1590/S1679-62252012005000013
https://doi.org/10.1590/S1679-6225201200...
; Pereira et al., 2014Pereira PHC, Moraes RL, Santos MVB, Lippi DL, Feitosa JLL, Pedrosa M. The influence of multiple factors upon reef fish abundance and species richness in a tropical coral complex. Ichthyol Res. 2014; 61:375–84. https://doi.org/10.1007/s10228-014-0409-8
https://doi.org/10.1007/s10228-014-0409-...
; Leal et al., 2015Leal ICS, de Araujo ME, da Cunha SR, Pereira PHC. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities. Mar Environ Res. 2015; 108:45–54. https://doi.org/10.1016/j.marenvres.2015.04.009
https://doi.org/10.1016/j.marenvres.2015...
; Pinheiro et al., 2018Pinheiro HT, Rocha LA, Macieira RM, Carvalho-Filho A, Anderson AB, Bender MG et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers Distrib. 2018; 24(7):951–65. https://doi.org/10.1111/ddi.12729
https://doi.org/10.1111/ddi.12729...
). However, human influence has also been currently considered one important factor affecting reef fish community and how management strategies are implemented seem to directly drive reef fish diversity on coral reefs (Graham et al., 2017Graham NAJ, McClanahan TR, MacNeil MA, Wilson SK, Cinner JE, Huchery C et al. Human disruption of coral reef trophic structure. Curr Biol. 2017; 27:231–36. https://doi.org/10.1016/j.cub.2016.10.062
https://doi.org/10.1016/j.cub.2016.10.06...
; Ruppert et al., 2018Ruppert JLW, Vigliola L, Kulbicki M, Labrosse P, Fortin M-J, Meekan MG. Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs. Glob Chang Biol. 2018; 24(1):e67–e79. https://doi.org/10.1111/gcb.13882
https://doi.org/10.1111/gcb.13882...
). In this scenario, the creation of MPAs along with adequate zoning process such as multiple use areas, or restricting any type of exploration, such as no-take zones, rises as a vital reef fish conservation strategy worldwide (Mora et al., 2006Mora C, Andréfouët S, Costello MJ, Kranenburg C, Rollo A, Veron J et al. Coral reefs and the global network of marine protected areas. Science. 2006; 312(5781):1750–51. https://doi.org/10.1126/science.1125295
https://doi.org/10.1126/science.1125295...
; Francini-Filho, Moura, 2008Francini-Filho RB, de Moura RL. Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquat Conserv. 2008; 18(7):1166–79. https://doi.org/10.1002/aqc.966
https://doi.org/10.1002/aqc.966...
; Emslie et al., 2015Emslie MJ, Logan M, Williamson DH, Ayling AM, MacNeil MA, Ceccarelli D et al. Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef Marine Park. Curr Biol. 2015; 25(8):983–92. https://doi.org/10.1016/j.cub.2015.01.073
https://doi.org/10.1016/j.cub.2015.01.07...
; Hall et al., 2021Hall AE, Cameron DS, Kingsford MJ. Partially protected areas as a management tool on inshore reefs. Rev Fish Biol Fish. 2021; 31:631–51. https://doi.org/10.1007/s11160-021-09654-y
https://doi.org/10.1007/s11160-021-09654...
).

During the last decades, the number of studies regarding reef fishes in Brazilian waters extensively increased. Many recent studies described several new fishes, from cryptic species (Smith-Vaniz et al., 2018Smith-Vaniz WF, Tornabene L, Macieira RM. Review of Brazilian jawfishes of the genus Opistognathus with descriptions of two new species (Teleostei, Opistognathidae). ZooKeys. 2018; 794:95–133. https://doi.org/10.3897/zookeys.794.26789
https://doi.org/10.3897/zookeys.794.2678...
; Carvalho-Filho et al., 2020Carvalho-Filho A, Sazima I, Lima SMQ, Almeida D, Mendes L, Dias RM et al. Review of the genus Malacoctenus (Actinopterygii: Labrisomidae) from the Southwestern Atlantic, with description of two new species. Zootaxa. 2020; 4819(3):499–520. https://doi.org/10.11646/zootaxa.4819.3.4
https://doi.org/10.11646/zootaxa.4819.3....
) to large elasmobranchs (Gomes et al., 2000Gomes UL, Rosa RS, Gadig OBF. Dasyatis marianae sp. n.: A new species of stingray (Chondrichthyes: Dasyatidae) from the Southwestern Atlantic. Copeia. 2000; 2000(2):510–15. https://doi.org/10.1643/0045-8511(2000)000[0510:DMSNAN]2.0.CO;2
https://doi.org/10.1643/0045-8511(2000)0...
; Petean et al., 2020Petean FF, Naylor GJP, Lima SMQ. Integrative taxonomy identifies a new stingray species of the genus Hypanus Rafinesque, 1818 (Dasyatidae, Myliobatiformes), from the Tropical Southwestern Atlantic. J Fish Biol. 2020; 97(4):1120–42. https://doi.org/10.1111/jfb.14483
https://doi.org/10.1111/jfb.14483...
) and aimed to understand the relationship of community dynamics and environmental factors (Gibran, Moura, 2012Gibran FZ, Moura RL. The structure of rocky reef fish assemblages across a nearshore to coastal islands’ gradient in Southeastern Brazil. Neotrop Ichthyol. 2012; 10(2):369–82. https://doi.org/10.1590/S1679-62252012005000013
https://doi.org/10.1590/S1679-6225201200...
; Pereira et al., 2014Pereira PHC, Moraes RL, Santos MVB, Lippi DL, Feitosa JLL, Pedrosa M. The influence of multiple factors upon reef fish abundance and species richness in a tropical coral complex. Ichthyol Res. 2014; 61:375–84. https://doi.org/10.1007/s10228-014-0409-8
https://doi.org/10.1007/s10228-014-0409-...
; Andrades et al., 2018Andrades R, Reis-Filho JA, Macieira RM, Giarrizzo T, Joyeux J-C. Endemic fish species structuring oceanic intertidal reef assemblages. Sci Rep. 2018; 8(10791):1–09. https://doi.org/10.1038/s41598-018-29088-0
https://doi.org/10.1038/s41598-018-29088...
; Matheus et al., 2019Matheus Z, Francini-Filho RB, Pereira-Filho GH, Moraes FC, Moura RL, Brasileiro PS et al. Benthic reef assemblages of the Fernando de Noronha Archipelago, tropical South-west Atlantic: Effects of depth, wave exposure and cross-shelf positioning. PLoS ONE. 2019; 14(1):e0210664. https://doi.org/10.1371/journal.pone.0210664
https://doi.org/10.1371/journal.pone.021...
), fish­ing effects (Floeter et al., 2006Floeter SR, Halpern BS, Ferreira CEL. Effects of fishing and protection on Brazilian reef fishes. Biol Conserv. 2006; 128:391–402. https://doi.org/10.1016/j.biocon.2005.10.005
https://doi.org/10.1016/j.biocon.2005.10...
; Rolim et al., 2019Rolim FA, Langlois T, Rodrigues PFC, Bond T, Motta FS, Neves LM et al. Network of small no-take marine reserves reveals greater abundance and body size of fisheries target species. PLoS ONE. 2019; 14(1):e0204970. https://doi.org/10.1371/journal.pone.0204970
https://doi.org/10.1371/journal.pone.020...
) and human induced behavior (Benevides et al., 2019Benevides LJ, Cardozo-Ferreira GC, Ferreira CEL, Pereira PHC, Pinto TK, Sampaio CLS. Fear-induced behavioural modifications in damselfishes can be diver-triggered. J Exp Mar Biol Ecol. 2019; 514–515:34–40. https://doi.org/10.1016/j.jembe.2019.03.009
https://doi.org/10.1016/j.jembe.2019.03....
; Pereira et al., 2020Pereira PHC, Macedo CHR, de Lima GV, Benevides LJ. Effects of depth on reef fish flight initiation distance: implications of deeper reefs conservation. Environ Biol Fishes. 2020; 103(10):1247–56. https://doi.org/10.1007/s10641-020-01017-z
https://doi.org/10.1007/s10641-020-01017...
). In this context, Pinheiro et al., (2018)Pinheiro HT, Rocha LA, Macieira RM, Carvalho-Filho A, Anderson AB, Bender MG et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers Distrib. 2018; 24(7):951–65. https://doi.org/10.1111/ddi.12729
https://doi.org/10.1111/ddi.12729...
recently revealed a very rich reef fish fauna at Southwestern Atlantic Ocean (SWA) with a total of 733 fish species, 405 are SWA resident reef fishes, of which 111 (27%) are endemics and 78 (19%) are globally threatened.

Nevertheless, despite substantial increase in knowledge regarding reef fish systematic, ecology, biogeography and evolution on the Southwestern Atlantic (Floeter et al., 2008Floeter SR, Rocha LA, Robertson DR, Joyeux JC, Smith-Vaniz WF, Wirtz P et al. Atlantic reef fish biogeography and evolution. J Biogeogr. 2008; 35(1):22–47. https://doi.org/10.1111/j.1365-2699.2007.01790.x
https://doi.org/10.1111/j.1365-2699.2007...
; Morais et al., 2017Morais RA, Ferreira CEL, Floeter SR. Spatial patterns of fish standing biomass across Brazilian reefs. J Fish Biol. 2017; 91(6):1642–67. https://doi.org/10.1111/jfb.13482
https://doi.org/10.1111/jfb.13482...
; Smith-Vaniz et al., 2018Smith-Vaniz WF, Tornabene L, Macieira RM. Review of Brazilian jawfishes of the genus Opistognathus with descriptions of two new species (Teleostei, Opistognathidae). ZooKeys. 2018; 794:95–133. https://doi.org/10.3897/zookeys.794.26789
https://doi.org/10.3897/zookeys.794.2678...
; Lellys et al., 2019Lellys NT, Moura RL, Bonaldo RM, Francini-Filho RB, Gibran FZ. Parrotfish functional morphology and bioerosion on SW Atlantic reefs. Mar Ecol Prog Ser. 2019; 629:149–63.https://doi.org/10.3354/meps13102
https://doi.org/10.3354/meps13102...
; Cordeiro et al., 2021Cordeiro CAMM, Quimbayo JP, Nunes JACC, Nunes LT, Sissini MN, Sampaio CLS et al. Conservation status of the southernmost reef of the Amazon Reef System: The Parcel de Manuel Luis. Coral Reefs. 2021; 40(1):165–85. https://doi.org/10.1007/s00338-020-02026-1
https://doi.org/10.1007/s00338-020-02026...
; Moura et al., 2021Moura RL, Abieri ML, Castro GM, Carlos-Júnior LA, Chiroque-Solano PM, Fernandes NC et al. Tropical rhodolith beds are a major and belittled reef fish habitat. Scientific reports. 2021; 11(1):1–10. https://doi.org/10.1038/s41598-020-80574-w
https://doi.org/10.1038/s41598-020-80574...
), several large reef areas in the SWA remained unknown and poorly studied until recently (Freitas, Lotufo, 2014Freitas JEP, Lotufo TMC. Reef fish assemblage and zoogeographic affinities of a scarcely known region of the western equatorial Atlantic. J Mar Biol Assoc UK. 2014; 95(3):623–33. https://doi.org/10.1017/S0025315414001404
https://doi.org/10.1017/S002531541400140...
; Pinheiro et al., 2014Pinheiro HT, Joyeux J-C, Moura RL. Reef oases in a seamount chain in the southwestern Atlantic. Coral Reefs. 2014; 33:1113–13. https://doi.org/10.1007/s00338-014-1211-9
https://doi.org/10.1007/s00338-014-1211-...
; Anderson et al., 2014Anderson AB, Bonaldo RM, Barneche DR, Hackradt CW, Félix-Hackradt FC, García-Charton JA, Floeter SR. Recovery of grouper assemblages indicates effectiveness of a marine protected area in Southern Brazil. Mar Ecol Prog Ser. 2014; 514:207–15.https://doi.org/10.3354/meps11032
https://doi.org/10.3354/meps11032...
Pinheiro et al., 2015Pinheiro HT, Mazzei E, Moura RL, Amado-Filho GM, Carvalho-Filho A, Braga AC et al. Fish biodiversity of the Vitória-Trindade Seamount Chain, Southwestern Atlantic: An updated database. PLoS ONE. 2015; 10(3):e0118180. https://doi.org/10.1371/journal.pone.0118180
https://doi.org/10.1371/journal.pone.011...
; Pereira et al., 2018Pereira PHC, Macedo CH, Nunes JACC, Marangoni LFB, Bianchini A. Effects of depth on reef fish communities: Insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS One. 2018; 13(9):e0203072. https://doi.org/10.1371/journal.pone.0203072
https://doi.org/10.1371/journal.pone.020...
; Guabiroba et al., 2020Guabiroba HC, Pimentel CR, Mariano Macieira R, Cardozo-Ferreira GC, Teixeira JB, Gasparini JL et al. New records of fishes for the Vitória-Trindade Chain, southwestern Atlantic. Check List. 2020; 16(3):699–705. https://doi.org/10.15560/16.3.699
https://doi.org/10.15560/16.3.699...
; Araújo et al., 2020Araújo ME, Mattos FMG, Melo FPL, Chaves LCT, Feitosa CV, Lippi DL et al. Diversity patterns of reef fish along the Brazilian tropical coast. Mar Environ Res. 2020; 160:e105038. https://doi.org/10.1016/j.marenvres.2020.105038
https://doi.org/10.1016/j.marenvres.2020...
). Hence, this study analyzed reef fishes biodiversity on the largest Brazilian multiple use coastal MPA and provided insights on fishes depth distribution, dispersal potential, IUCN red list categories and trophic/functional groups. Additionally, aspects of conservation and distribution of reef fishes inside MPA Costa dos Corais are also discussed.

MATERIAL AND METHODS

Study area. Marine Protect Area (MPA) “Costa dos Corais” (APACC) is the largest Brazilian coastal MPA created to protect coral reef systems on Brazilian waters. This MPA stretches from 120 km in the Northeast Brazil encompassing two states and 12 municipalities (Maida, Ferreira, 1997Maida M, Ferreira BP. Coral Reefs of Brazil: Overview and field guide. In: Proc. 8th Int Coral Reef Sym. 1997; 1(263):74.; Miranda et al., 2020Miranda RJ, Malhado ACM, Fabré N, Batista V, Santos R, Campos-Silva J et al. Integrating long term ecological research (lter) and marine protected area management: challenges and solutions. Oecologia Australis. 2020; 24(2):279–300. https://doi.org/10.4257/oeco.2020.2402.05
https://doi.org/10.4257/oeco.2020.2402.0...
) (Fig. 1). MPA Costa dos Corais covers a large range of different ecosystems such as shallow reefs, mangroves, seagrass beds, rhodolith/sponge beds and mesophotic reefs (Fig. 2) from the coast to the break of the continental shelf (Maida, Ferreira, 1997Maida M, Ferreira BP. Coral Reefs of Brazil: Overview and field guide. In: Proc. 8th Int Coral Reef Sym. 1997; 1(263):74.; Pereira et al., 2018Pereira PHC, Macedo CH, Nunes JACC, Marangoni LFB, Bianchini A. Effects of depth on reef fish communities: Insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS One. 2018; 13(9):e0203072. https://doi.org/10.1371/journal.pone.0203072
https://doi.org/10.1371/journal.pone.020...
) (Figs. 12).

The multiple use MPA corresponds to an IUCN category VI protected area, where sustainable use is admitted according to its management plan, published in 2013 (ICMBio, 2013). A new version of the management plan elaborated by managers in partnership with local NGOs, researchers, fishers, and touristic trade has just been published (ICMBio, 2021ICMBio. Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). Management Plan of MPA Costa dos Corais. Portaria N° 308 [Internet]. Brasília; 2021. Available from: https://www.icmbio.gov.br/apacostadoscorais/plano-de-manejo
https://www.icmbio.gov.br/apacostadoscor...
). APACC zoning plan is probably the best strategy to promote coral reefs conservation locally with some areas selected as “no take zones” (all human activities, except research, are prohibited), some touristic areas (only low impact visiting activities allowed) and large multiple use locations (fishing and tourists allowed).

FIGURE 1 |
Long-term sampling sites at Marine Protected Area (MPA) “Costa dos Corais” – South America.

FIGURE 2 |
Multiple habitats at MPA Costa dos Corais highlighting ecologically important areas for reef fishes biodiversity within the MPA. A. Deeper reefs (> 30 m depth) with predominance of the hard coral Montastraea cavernosa B. Shallow reefs (< 30 m depth) with dominance of hydrocoral Millepora alcicornis and Brazilian endemic brain coral Mussumila hartii. C. Sponge reefs with predominance of tube sponges from the genus Aplysina.

Sampling design. Present study data represents a decadal field work effort (initiated in 2010) collecting reef fish information inside the MPA with multiple sampling techniques such as, remotely operated underwater vehicle (ROV), baited remote underwater video (BRUV) and scuba diving/transects. A total of 125 sampling sites distributed on MPA from 3 to 70 m depth have been investigated in more than 500 dives and 1000 belt transects (Fig. 1). Species were listed from our database (long term monitoring throughout the MPA since 2010), artisanal fisheries landing and based on literature (Pinheiro et al., 2018Pinheiro HT, Rocha LA, Macieira RM, Carvalho-Filho A, Anderson AB, Bender MG et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers Distrib. 2018; 24(7):951–65. https://doi.org/10.1111/ddi.12729
https://doi.org/10.1111/ddi.12729...
), and authors personal information. Vouchers specimens are listed in Tab. S1.

Species categorization. All recorded species were categorized according to depth distribution, dispersal potential, IUCN (2020) red list category, trophic and functional group as follow: Depth distribution: According to depth distribution species were categorize as: Very shallow (0–10 m), Shallow (10–25 m), Middle (25–50 m), Deep (50–100 m), and Very deep (> 100 m). Dispersal potential: Live birth, pelagic larvae/young, Demersal egg, no pelagic phase, Demersal egg, Balistid-type, demersal egg, Brooded egg, Semipelagic to Pelagic adults, Pelagic eggs and Unknown. IUCN Red list Categories: According to 2020 IUCN red list of threatened species, taxa are classified as: Not Evaluated (NE), Data Deficient (DD), Least Concern (LC), Near Threatened (NT), Vulnerable (VU), Endangered (EN), and Critically Endangered (CR). Trophic Categories: Species were classified according to their trophic categories based on literature (Ferreira et al., 2004Ferreira CEL, Floeter SR, Gasparini JL, Ferreira BP, Joyeux JC. Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison. J Biogeogr. 2004; 31(7):1093–106. https://doi.org/10.1111/j.1365-2699.2004.01044.x
https://doi.org/10.1111/j.1365-2699.2004...
; Pinheiro et al., 2018Pinheiro HT, Rocha LA, Macieira RM, Carvalho-Filho A, Anderson AB, Bender MG et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers Distrib. 2018; 24(7):951–65. https://doi.org/10.1111/ddi.12729
https://doi.org/10.1111/ddi.12729...
) and complementary data: Macro-carnivores, Mobile benthic invertivores/cleaners, Sessile invertivores, Omnivores, Herbivore/detritivores, Piscivores and Planktivores. Functional groups: Species were classified according to their functional groups based on the literature (Pinheiro et al., 2018Pinheiro HT, Rocha LA, Macieira RM, Carvalho-Filho A, Anderson AB, Bender MG et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers Distrib. 2018; 24(7):951–65. https://doi.org/10.1111/ddi.12729
https://doi.org/10.1111/ddi.12729...
) and complementary data: Macro-carnivores, Strict Piscivores, Mobile benthic invertivores/cleaners, Sessile invertivores, Sand invertivores, Spongivores, Diurnal planktivores, Nocturnal planktivores, Territorial Algae/detritus, Turf grazing, Scrapers, Excavator/eroders, Macroalgae browser and General omnivores.

RESULTS

A total of 325 fish species have been listed for MPA Costa dos Corais, including Chondrichthyes (28 species) and Actinopterygii (297). This total was represented by 81 families, being the most representative: Carangidae (23 species), Labridae (21), Gobiidae (15), Haemulidae (14), Carcharhinidae (11) and Gerreidae/Ephinephelidae (10) (Tab. 1; Tab. S1). According to depth categories, most species inhabited Middle (120 species) and Shallow (108) areas, while the remaining categories account for 97 species altogether (Fig. 3A).

Taxa were grouped according to the dispersion potential, the most abundant categories were: Pelagic egg (205), followed by Demersal egg (40), Live birth, pelagic larvae/young (31) and Semipelagic to Pelagic adults (27) (Fig. 3B).

Considering IUCN red list categories, most of the species were classified as Least Concern (254 species), followed by Data Deficient (23) and Near Threatened (17). Species classified within threatened categories were mainly Vulnerable (15). Only eight species were Endangered (5) and Critically Endangered (3) (Fig. 3C).

For trophic groups, the most abundant category was Mobile benthic invertivores/cleaners – MINV (133 species), followed by Macro-carnivores – MCAR (107) and Planktivores (29) (Fig. 3D).

Regarding functional groups, the most abundant category was Mobile benthic invertivores/cleaners (115 species), followed by Macro-carnivores (87), Diurnal planktivores (26), Strict Piscivores/Sand invertivores (19 each) and General omnivores (18) (Fig. 3E).

TABLE 1 |
Reef fishes biodiversity at the largest Brazilian coastal marine protection area (MPA Costa dos Corais). Depth category – VSHALL, 0–10 m; SHALL, 10–25 m; MID, 25–50 m; DEEP, 50–100 m; VDEEP, > 100 m. Dispersal potential - LIV: Live birth, pelagic larvae/Young; DNP: Demersal egg, no pelagic phase; DEG: Demersal egg; BAL, Balistid-type, demersal egg; BRO, Brooded egg; PAL: Semipelagic to Pelagic adults; PEL: Pelagic eggs; UK: Unknown. IUCN category - DD: Data deficient; LC: Least Concern; NT: Near Threatened; VU: Vulnerable; EN: Endangered; CR: Critically Endangered; NE: Not evaluated. Trophic category - MCAR: Macro-carnivores; MINV: Mobile benthic invertivores/cleaners; SINV: Sessile invertivores; OMNI: Omnivores; HERB: Herbivore/detritivores; PLANK: Planktivores. Functional group - MCAR: Macro-carnivores; PIS: Strict Piscivores; MINV: Mobile benthic invertivores/cleaners; SINV: Sessile invertivores; SAND: Sand invertivores; SPON: Spongivore; DPLA: Diurnal planktivores; NPLA: Nocturnal planktivores; THER: Territorial Algae/detritos; TRUF: Turf grazing; SCRP: Scrapers; EXCV: Excavator/eroders; MALG: Macroalgae browser; OMNI: General omnivores.

FIGURE 3 |
Marine Protected Area (MPA) “Costa dos Corais” fishes biodiversity grouped in categories (see “Species categorization” in Material and Methods section and Tab. 1). A. Depth category. B. Dispersal potential. C. IUCN category. D. Trophic category. E. Functional group.

DISCUSSION

Our checklist encompassed a total of 325 reef fish species at MPA Costa dos Corais. Pinheiro et al., (2018)Pinheiro HT, Rocha LA, Macieira RM, Carvalho-Filho A, Anderson AB, Bender MG et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers Distrib. 2018; 24(7):951–65. https://doi.org/10.1111/ddi.12729
https://doi.org/10.1111/ddi.12729...
recently compiled reef fish fauna at Southwestern Atlantic Ocean (SWA) with a total of 733 fish species. Our data represents 44% of all the SWA fish biodiversity inside the MPA territory. We highlight the vital large-scale significance of the largest Brazilian coastal MPA as one of the richest reef fish community on the SWA and reinforce the importance of this MPA on reef fish biodiversity and conservation. Additionally, we emphasize the importance of large scale and long-term surveys analyzing reef fish community compositions inside Brazilian MPAs. Initiatives as the present study, which often demonstrate unprecedented rich communities in otherwise poorly assessed and underestimated areas, are vital to enhance the effectiveness of MPAs acting as milestones for species monitoring and conservation (Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13).

FIGURE 4 |
Fish biodiversity from MPA Costa dos Corais. A. Hypanus marianae (35 cm of total length, TL. B. Ginglymostoma cirratum (~ 110 cm TL). C. Aetobatus narinari (~ 80 cm TL). D. Acanthurus bahianus (~ 15 cm TL). E. Acanthurus chirurgus (~ 20 cm TL). F. Acanthurus coeruleus (~ 30 cm TL). G. Apogon americanus (~ 5 cm TL). H. Ophioblennius trinitatis (~ 5 cm TL).

FIGURE 5 |
Fish biodiversity from MPA Costa dos Corais. A. Bothus lunatus (~ 20 cm TL). B. Caranx bartholomaei (~ 20 cm TL). C. Caranx latus (~ 40 cm TL). D. Chloroscombrus chrysurus (~ 10 cm TL). E. Selene vomer (~ 25 cm TL). F. Centropomus undecimalis (~ 50 cm TL). G. Chaetodon ocellatus (~ 5 cm TL). H. Chaetodon striatus (~ 5 cm TL).

FIGURE 6 |
Fish biodiversity from MPA Costa dos Corais. A. Amblycirrhitus pinos (~ 10 cm TL). B. Dactylopterus volitans (~ 20 cm TL). C. Chaetodipterus faber (~ 30 cm TL). D. Alphestes afer (~ 25 cm TL). E. Cephalopholis fulva (~ 30 cm TL). F. Epinephelus adscensionis (~ 20 cm TL). G. Epinephelus itajara (~ 110 cm TL). H. Mycteroperca bonaci (~ 15 cm TL).

FIGURE 7 |
Fish biodiversity from MPA Costa dos Corais. A. Bathygobius soporator (~ 8 cm TL). B. Coryphopterus glaucofraenum (~ 5 cm TL). C. Ctenogobius saepepallens (~ 4 cm TL). D. Elacatinus figaro (~ 4 cm TL). E. Gramma brasiliensis (~ 5 cm TL). F. Paranisotremus moricandi (~ 15 cm TL). G. Anisotremus surinamensis (~ 20 cm TL). H. Anisotremus virginicus (~ 20 cm TL).

FIGURE 8 |
Fish biodiversity from MPA Costa dos Corais. A. Haemulon aurolineatum (~ 18 cm TL). B. Haemulon parra (~ 25 cm TL). C. Haemulon plumieri (~ 25 cm TL). D. Haemulon squamipinna (~ 18 cm TL). E. Myripristis jacobus (~ 20 cm TL). F. Bodianus rufus (~ 20 cm TL). G. Clepticus brasiliensis (~ 30 cm TL). H. Halichoeres brasiliensis (~ 20 cm TL).

Deeper reefs (> 30 m depth) have been considered less impacted from anthropogenic effects compared to shallow reefs (< 30 m depth) (Jankowski et al., 2015Jankowski MW, Graham NAJ, Jones GP. Depth gradients in diversity, distribution and habitat specialisation in coral reef fishes: implications for the depth-refuge hypothesis. Mar Ecol Prog Ser. 2015; 540:203–15. https://doi.org/10.3354/meps11523
https://doi.org/10.3354/meps11523...
; Pereira et al., 2018Pereira PHC, Macedo CH, Nunes JACC, Marangoni LFB, Bianchini A. Effects of depth on reef fish communities: Insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS One. 2018; 13(9):e0203072. https://doi.org/10.1371/journal.pone.0203072
https://doi.org/10.1371/journal.pone.020...
); although it is not universal statement (Rocha et al., 2018Rocha LA, Pinheiro HT, Shepherd B, Papastamatiou YP, Luiz OJ, Pyle RL et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science. 2018; 361(6399):281–84. https://doi.org/10.1126/science.aaq1614
https://doi.org/10.1126/science.aaq1614...
). On the studied multiple use MPA, several species once frequently recorded on shallow areas such as barracudas (Sphyraena barracuda), snappers (Lutjanus spp.) and large parrotfishes (Scarus spp. and Sparisoma spp.) are currently recorded nearly unique at deeper reefs. For instance, Pereira et al., (2021)Pereira PHC, Ternes MLF, Nunes JACC, Giglio VJ. Overexploitation and behavioral changes of the largest South Atlantic parrotfish (Scarus trispinosus): evidence from Fishers’ knowledge. Biol Conserv. 2021; 254:108940. https://doi.org/10.1016/j.biocon.2020.108940
https://doi.org/10.1016/j.biocon.2020.10...
demonstrated by local ecological knowledge (LEK) that fishers used to catch the endemic and endangered parrotfish Scarus trispinosus on shallow reefs three decades ago. Yet, the species is currently rarely recorded at shallow sites; with the remaining populations inhabiting deeper reefs (Pereira et al., 2021Pereira PHC, Ternes MLF, Nunes JACC, Giglio VJ. Overexploitation and behavioral changes of the largest South Atlantic parrotfish (Scarus trispinosus): evidence from Fishers’ knowledge. Biol Conserv. 2021; 254:108940. https://doi.org/10.1016/j.biocon.2020.108940
https://doi.org/10.1016/j.biocon.2020.10...
). Additionally, fish behavior has been altered inside the MPA following human presence (tourism and/or fishing activity). Benevides et al., (2019)Benevides LJ, Cardozo-Ferreira GC, Ferreira CEL, Pereira PHC, Pinto TK, Sampaio CLS. Fear-induced behavioural modifications in damselfishes can be diver-triggered. J Exp Mar Biol Ecol. 2019; 514–515:34–40. https://doi.org/10.1016/j.jembe.2019.03.009
https://doi.org/10.1016/j.jembe.2019.03....
indicated that the zoning applied by APACC has a positive effect on the caution of target species, wherein in the tourist zone, where fishing is prohibited, fish allows a closer approach to the diver than in fishing area. Pereira et al., (2020)Pereira PHC, Macedo CHR, de Lima GV, Benevides LJ. Effects of depth on reef fish flight initiation distance: implications of deeper reefs conservation. Environ Biol Fishes. 2020; 103(10):1247–56. https://doi.org/10.1007/s10641-020-01017-z
https://doi.org/10.1007/s10641-020-01017...
also suggested that fish species on shallow reefs tend to be less tolerant to human presence compared to individuals inhabiting deeper reefs. This could be supporting the idea that deeper reefs could be currently used by fish as “refuge” areas that are likely to be safeguarding both fish communities and species behavior.

Rezoning process on MPA Costa dos Corais has been recently conducted and published (ICMBio, 2021ICMBio. Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). Management Plan of MPA Costa dos Corais. Portaria N° 308 [Internet]. Brasília; 2021. Available from: https://www.icmbio.gov.br/apacostadoscorais/plano-de-manejo
https://www.icmbio.gov.br/apacostadoscor...
). During rezoning process, a series of new no-take zones have been selected and thoughtfully discussed with local communities to increase coral reefs conservation and effective local community engagement. However, it should be noted that there are controversies regarding the shared use of multiple use locations by fishers. These differences are mainly due to the dispute over territories between fishers and the tourism industry. Catamarans, speedboats, and jet skis are perceived by artisanal fishers as negative impacts that keep fish away and cause damage to fishing gear (Araújo et al., 2014; Zatan, 2019). In this context, the importance of the management plan aims to regulate nautical activity is appreciated, supporting biodiversity conservation, as well as strengthening artisanal fishing activity and community-based tourism (Zatan, 2019).

This no-take zones effort represents an increase of 900% in no-take zones inside the MPA Costa dos Corais that, together with local engagement, will represent a major conservation outcome on large scale reef fish conservation for the SWA Ocean. Most of these new no-take zones encompass both shallow and deeper reefs allowing a cross-shelf protection of reef biodiversity and ensuring connectivity of fish population between multiple habitats such as shallow and deeper reefs, seagrass and algae beds, mud/sand bottoms and rhodolith beds.

FIGURE 9 |
Fish biodiversity from MPA Costa dos Corais. A. Halichoeres dimidiatus (~ 10 cm TL). B. Halichoeres poeyi (~ 12 cm TL). C. Scarus trispinosus (~ 25 cm TL). D. Scarus zelindae (~ 30 cm TL). E. Sparisoma amplum (~ 35 cm TL). F. Sparisoma axillare (~ 32 cm TL). G. Sparisoma frondosum (~ 30 cm TL). H. Sparisoma radians (~ 15 cm TL).

FIGURE 10 |
Fish biodiversity from MPA Costa dos Corais. A. Gobioclinus kalisherae (~ 5 cm TL). B. Labrisomus cricota (~ 4 cm TL). C. Labrisomus nuchipinnis (~ 5 cm TL). D. Lutjanus alexandrei (~ 20 cm TL). E. Lutjanus analis (~ 22 cm TL). F. Lutjanus jocu (~ 30 cm TL). G. Lutjanus synagris (~ 20 cm TL). H. Ocyurus chrysurus (~ 18 cm TL).

FIGURE 11 |
Fish biodiversity from MPA Costa dos Corais. A. Mulloidichthys martinicus (~ 20 cm TL). B. Pseudupeneus maculatus (~ 18 cm TL). C. Gymnothorax vicinus (~ 30 cm TL). D. Gymnothorax funebris (~ 80 cm TL). E. Muraena pavonina (~ 50 cm TL). F. Ogcocephalus vespertilio (~ 20 cm TL). G. Myrichthys ocellatus (~ 30 cm TL). H. Pempheris schomburgkii (~ 5 cm TL).

FIGURE 12 |
Fish biodiversity from MPA Costa dos Corais. A. Holacanthus ciliaris (~ 30 cm TL). B. Pomacanthus paru (~ 25 cm TL). C. Abudefduf saxatilis (~ 10 cm TL). D. Azurina multilineata (~ 8 cm TL). E. Stegastes fuscus (~ 5 cm TL). F. Stegastes variabilis (~ 5 cm TL). G. Odontoscion dentex (~ 10 cm TL). H. Pareques acuminatus (~ 4 cm TL).

FIGURE 13 |
Fish biodiversity from MPA Costa dos Corais. A. Scorpaena plumieri (~ 20 cm TL). B. Rypticus saponaceus (~ 22 cm TL). C. Serranus flaviventris (~ 8 cm TL). D. Calamus penna (~ 12 cm TL). E. Sphyraena barracuda (~ 60 cm TL). F. Hippocampus reidi (~ 8 cm TL). G. Synodus intermedius (~ 25 cm TL). H. Prionotus punctatus (~ 18 cm TL).

A total of 12% (40 species) from the present study are registered on the 2020 IUCN red list as Near Threatened (NT), Vulnerable (VU), Endangered (EN) or Critically Endangered (CR). Additionally, 9% (29 species) are on Brazilian red list species (ICMBio, 2018ICMBio. Livro vermelho da fauna brasileira ameaçada de extinção. Brasília: ICMBio/MMA. 2018.). Overexploitation of many Brazilian reef fish species have been reported by several authors (Araújo, Martins, 2009; Bender et al., 2014; Di Dario et al., 2015Di Dario F, Alves CBM, Boos H, Frédou FL, Lessa RPT, Mincarone MM et al. A better way forward for Brazil’s fisheries. Science. 2015; 347:1079. https://doi.org/10.1126/science.347.6226.1079-a
https://doi.org/10.1126/science.347.6226...
; Pereira et al., 2021Pereira PHC, Ternes MLF, Nunes JACC, Giglio VJ. Overexploitation and behavioral changes of the largest South Atlantic parrotfish (Scarus trispinosus): evidence from Fishers’ knowledge. Biol Conserv. 2021; 254:108940. https://doi.org/10.1016/j.biocon.2020.108940
https://doi.org/10.1016/j.biocon.2020.10...
). Studies suggested that a total of 60% of the red‐listed marine species are primarily jeopardized by overfishing and the remaining 40% are threatened by habitat degradation and other non‐fisheries related impacts (Pinheiro et al., 2015Pinheiro HT, Mazzei E, Moura RL, Amado-Filho GM, Carvalho-Filho A, Braga AC et al. Fish biodiversity of the Vitória-Trindade Seamount Chain, Southwestern Atlantic: An updated database. PLoS ONE. 2015; 10(3):e0118180. https://doi.org/10.1371/journal.pone.0118180
https://doi.org/10.1371/journal.pone.011...
). However, fisheries monitoring along Brazilian coast is nearly inexistent and only 0.8% of the coastal zone is included within no‐take areas (Di Dario et al., 2015Di Dario F, Alves CBM, Boos H, Frédou FL, Lessa RPT, Mincarone MM et al. A better way forward for Brazil’s fisheries. Science. 2015; 347:1079. https://doi.org/10.1126/science.347.6226.1079-a
https://doi.org/10.1126/science.347.6226...
; Vila‐Nova et al., 2014Vila-Nova DA, Ferreira CEL, Barbosa FG, Floeter SR. Reef fish hotspots as surrogates for marine conservation in the Brazilian coast. Ocean Coast Manag. 2014; 102:88–93. https://doi.org/10.1016/j.ocecoaman.2014.09.005
https://doi.org/10.1016/j.ocecoaman.2014...
); regardless, consistent evidence of no‐take MPAs and strict no‐entry marine reserves demonstrating a fish recovery/spillover potential (Francini, Moura, 2008Francini-Filho RB, de Moura RL. Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquat Conserv. 2008; 18(7):1166–79. https://doi.org/10.1002/aqc.966
https://doi.org/10.1002/aqc.966...
; Anderson et al., 2014Anderson AB, Bonaldo RM, Barneche DR, Hackradt CW, Félix-Hackradt FC, García-Charton JA, Floeter SR. Recovery of grouper assemblages indicates effectiveness of a marine protected area in Southern Brazil. Mar Ecol Prog Ser. 2014; 514:207–15.https://doi.org/10.3354/meps11032
https://doi.org/10.3354/meps11032...
; Motta et al., 2021Motta FS, Moura RL, Neves LM, Souza GR, Gibran FZ, Francini CL et al. Effects of marine protected areas under different management regimes in a hot spot of biodiversity and cumulative impacts from SW Atlantic. Reg Stud Mar Sci. 2021; 47:101951. https://doi.org/10.1016/j.rsma.2021.101951
https://doi.org/10.1016/j.rsma.2021.1019...
; PHCP and collaborators, work in progress).

Coral cover and structural complexity have been described as an important variable influencing reef fish abundance and richness worldwide (Pereira, Munday, 2016Pereira PHC, Munday PL. Coral colony size and structure as determinants of habitat use and fitness of coral-dwelling fishes. Mar Ecol Prog Ser. 2016; 553:163–72.https://doi.org/10.3354/meps11745
https://doi.org/10.3354/meps11745...
; Darling et al., 2017Darling ES, Graham NAJ, Januchowski-Hartley FA, Nash KL, Pratchett MS, Wilson SK.Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs. 2017; 36:561–75. https://doi.org/10.1007/s00338-017-1539-z
https://doi.org/10.1007/s00338-017-1539-...
). An increase on habitat complexity, food provision and shelter suggest that higher coral cover is likely to increase fish diversity (Leal et al., 2015Leal ICS, de Araujo ME, da Cunha SR, Pereira PHC. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities. Mar Environ Res. 2015; 108:45–54. https://doi.org/10.1016/j.marenvres.2015.04.009
https://doi.org/10.1016/j.marenvres.2015...
; Mora, 2015Mora C. Ecology of fishes on Coral Reefs. Cambridge: Cambridge University Press; 2015.). Previous studies have demonstrated up to 50% of coral cover on some areas of the MPA (PHCP and collaborators, work in progress), a much higher coral cover value compared to Brazilian coast with an average of 4.38% ± 8.17 (Aued et al., 2018Aued AW, Smith F, Quimbayo JP, Cândido DV, Longo GO, Ferreira CEL, Witman JD, Floeter SR, Segal B. Large-scale patterns of benthic marine communities in the Brazilian Province. PLoS ONE. 2018; 13(6):e0198452. https://doi.org/10.1371/journal.pone.0198452
https://doi.org/10.1371/journal.pone.019...
). Hence, together with Abrolhos bank (up to 21% of coral cover) (Teixeira et al., 2021Teixeira CD, Chiroque-Solano PM, Ribeiro FV, Carlos-Júnior LA, Neves LM, Salomon OS et al. Decadal (2006–2018) dynamics of Southwestern Atlantic’s largest turbid zone reefs. PloS One. 2021; 16(2):e0247111. https://doi.org/10.1371/journal.pone.0247111
https://doi.org/10.1371/journal.pone.024...
), MPA Costa dos Corais stands as one of highest coral cover areas on Brazilian coast. This trend likely to influence and explain such a high reef fish richness, featuring an unique and relevant site for fish biodiversity and conservation on the Southwestern Atlantic Ocean.

Brazilian marine biodiversity has been recently jeopardized due to a series of inconsistent governmental policies (Pinheiro et al., 2015Pinheiro HT, Mazzei E, Moura RL, Amado-Filho GM, Carvalho-Filho A, Braga AC et al. Fish biodiversity of the Vitória-Trindade Seamount Chain, Southwestern Atlantic: An updated database. PLoS ONE. 2015; 10(3):e0118180. https://doi.org/10.1371/journal.pone.0118180
https://doi.org/10.1371/journal.pone.011...
; Miranda et al., 2020Miranda RJ, Malhado ACM, Fabré N, Batista V, Santos R, Campos-Silva J et al. Integrating long term ecological research (lter) and marine protected area management: challenges and solutions. Oecologia Australis. 2020; 24(2):279–300. https://doi.org/10.4257/oeco.2020.2402.05
https://doi.org/10.4257/oeco.2020.2402.0...
). Many SWA biodiversity hotspots are under risk such Fernando de Noronha Archipelago – UNESCO Heritage, Vitória‐Trindade Chain (VTC), Abrolhos Bank and MPA Costa dos Corais (Mazzei et al., 2017Mazzei EF, Bertoncini AA, Pinheiro HT, Machado LF, Vilar CC, Guabiroba HC et al. Newly discovered reefs in the southern Abrolhos Bank, Brazil: Anthropogenic impacts and urgent conservation needs. Mar Pollut Bulletin. 2017; 114(1):123–33. https://doi.org/10.1016/j.marpolbul.2016.08.059
https://doi.org/10.1016/j.marpolbul.2016...
; Magris et al., 2020Magris RA, Costa MDP, Ferreira CEL, Vilar CC, Joyeux JC, Creed JC et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers Distrib. 2020; 27(2):198–215. https://doi.org/10.1111/ddi.13183
https://doi.org/10.1111/ddi.13183...
; Pimentel et al., 2020Pimentel CR, Rocha LA, Shepherd B, Phelps TAY, Joyeux JC, Martins AS et al. Mesophotic ecosystems at Fernando de Noronha Archipelago, Brazil (South-western Atlantic), reveal unique ichthyofauna and need for conservation. Neotrop Ichthyol. 2020;18(4):e200050. https://doi.org/10.1590/1982-0224-2020-0050
https://doi.org/10.1590/1982-0224-2020-0...
) that would compromise reef fish biodiversity on SWA. Hence, local strategies such as co-management, surveillance and local community compliance/engagement seems to be vital approaches for marine habitat conservation and maintenance of reef fish populations.

ACKNOWLEDGEMENTS

We would like to thank Julian Caon for map preparation. We also thank APACC management team and Projeto Conservação Recifal (PCR) staff for all the help during field activity. This work is part of the Long-Term Ecological Research – Brazil site PELD-CCAL (Projeto Ecológico de Longa Duração - Costa dos Corais Alagoas) funded by the Brazilian National Council for Scientific and Technological Development – CNPq (#441657/2016-8), the Brazilian Coordination for the Improvement of Higher Education Personnel PELD/CAPES (23038.000452/2017-16) and the Research Support Foundation of the State of Alagoas – FAPEAL (#60030.1564/2016). This study was also supported by: Rufford Small Grants, Instituto Linha D’Água (Edital Linha D’Água Tubarões e Raias), “Reef fish under diver influence: behavioual changes and subsidies for management of underwater tourism” (FAPEAL 600030001270/2017), Conservation Leadership Program (CLP), Marine Conservation Action Fund, Mohamed Bin Zayed Species Conservation and The Prince Bernhard Nature Fund (PBNF) grants for PHCP and PCR. We thank Fundação SOS Mata Atlântica and Fundação Toyota for support during APACC field trips.

REFERENCES

  • Adey WH. Coral reef ecosystems and human health: biodiversity counts! Ecosyst Health. 2000; 6(4):227–36. https://doi.org/10.1046/j.1526-0992.2000.006004227.x
    » https://doi.org/10.1046/j.1526-0992.2000.006004227.x
  • Anderson AB, Bonaldo RM, Barneche DR, Hackradt CW, Félix-Hackradt FC, García-Charton JA, Floeter SR. Recovery of grouper assemblages indicates effectiveness of a marine protected area in Southern Brazil. Mar Ecol Prog Ser. 2014; 514:207–15.https://doi.org/10.3354/meps11032
    » https://doi.org/10.3354/meps11032
  • Andrades R, Reis-Filho JA, Macieira RM, Giarrizzo T, Joyeux J-C. Endemic fish species structuring oceanic intertidal reef assemblages. Sci Rep. 2018; 8(10791):1–09. https://doi.org/10.1038/s41598-018-29088-0
    » https://doi.org/10.1038/s41598-018-29088-0
  • Araújo ME, Mattos FMG, Melo FPL, Chaves LCT, Feitosa CV, Lippi DL et al Diversity patterns of reef fish along the Brazilian tropical coast. Mar Environ Res. 2020; 160:e105038. https://doi.org/10.1016/j.marenvres.2020.105038
    » https://doi.org/10.1016/j.marenvres.2020.105038
  • Aued AW, Smith F, Quimbayo JP, Cândido DV, Longo GO, Ferreira CEL, Witman JD, Floeter SR, Segal B. Large-scale patterns of benthic marine communities in the Brazilian Province. PLoS ONE. 2018; 13(6):e0198452. https://doi.org/10.1371/journal.pone.0198452
    » https://doi.org/10.1371/journal.pone.0198452
  • Benevides LJ, Cardozo-Ferreira GC, Ferreira CEL, Pereira PHC, Pinto TK, Sampaio CLS. Fear-induced behavioural modifications in damselfishes can be diver-triggered. J Exp Mar Biol Ecol. 2019; 514–515:34–40. https://doi.org/10.1016/j.jembe.2019.03.009
    » https://doi.org/10.1016/j.jembe.2019.03.009
  • Brander LM, Van Beukering P, Cesar HSJ. The recreational value of coral reefs: A meta-analysis. Ecol Econ. 2007; 63(1):209–18. https://doi.org/10.1016/j.ecolecon.2006.11.002
    » https://doi.org/10.1016/j.ecolecon.2006.11.002
  • Carvalho-Filho A, Sazima I, Lima SMQ, Almeida D, Mendes L, Dias RM et al Review of the genus Malacoctenus (Actinopterygii: Labrisomidae) from the Southwestern Atlantic, with description of two new species. Zootaxa. 2020; 4819(3):499–520. https://doi.org/10.11646/zootaxa.4819.3.4
    » https://doi.org/10.11646/zootaxa.4819.3.4
  • Cordeiro CAMM, Quimbayo JP, Nunes JACC, Nunes LT, Sissini MN, Sampaio CLS et al Conservation status of the southernmost reef of the Amazon Reef System: The Parcel de Manuel Luis. Coral Reefs. 2021; 40(1):165–85. https://doi.org/10.1007/s00338-020-02026-1
    » https://doi.org/10.1007/s00338-020-02026-1
  • Cowburn B, Moritz C, Birrell C, Grimsditch G, Abdulla A. Can luxury and environmental sustainability co-exist? Assessing the environmental impact of resort tourism on coral reefs in the Maldives. Ocean Coast Manage. 2018; 158:120–27. https://doi.org/10.1016/j.ocecoaman.2018.03.025
    » https://doi.org/10.1016/j.ocecoaman.2018.03.025
  • Darling ES, Graham NAJ, Januchowski-Hartley FA, Nash KL, Pratchett MS, Wilson SK.Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs. 2017; 36:561–75. https://doi.org/10.1007/s00338-017-1539-z
    » https://doi.org/10.1007/s00338-017-1539-z
  • Davenport J, Davenport JL. The impact of tourism and personal leisure transport on coastal environments: A review. Estuar Coast Shelf Sci. 2006; 67(1–2):280–92. https://doi.org/10.1016/j.ecss.2005.11.026
    » https://doi.org/10.1016/j.ecss.2005.11.026
  • Di Dario F, Alves CBM, Boos H, Frédou FL, Lessa RPT, Mincarone MM et al A better way forward for Brazil’s fisheries. Science. 2015; 347:1079. https://doi.org/10.1126/science.347.6226.1079-a
    » https://doi.org/10.1126/science.347.6226.1079-a
  • Emslie MJ, Logan M, Williamson DH, Ayling AM, MacNeil MA, Ceccarelli D et al Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef Marine Park. Curr Biol. 2015; 25(8):983–92. https://doi.org/10.1016/j.cub.2015.01.073
    » https://doi.org/10.1016/j.cub.2015.01.073
  • Ferreira BP, Costa MBSF, Coxey MS, Gaspar ALB, Veleda D, Araujo M. The effects of sea surface temperature anomalies on oceanic coral reef systems in the southwestern tropical Atlantic. Coral Reefs. 2013; 32:441–54. https://doi.org/10.1007/s00338-012-0992-y
    » https://doi.org/10.1007/s00338-012-0992-y
  • Ferreira CEL, Floeter SR, Gasparini JL, Ferreira BP, Joyeux JC. Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison. J Biogeogr. 2004; 31(7):1093–106. https://doi.org/10.1111/j.1365-2699.2004.01044.x
    » https://doi.org/10.1111/j.1365-2699.2004.01044.x
  • Floeter SR, Halpern BS, Ferreira CEL. Effects of fishing and protection on Brazilian reef fishes. Biol Conserv. 2006; 128:391–402. https://doi.org/10.1016/j.biocon.2005.10.005
    » https://doi.org/10.1016/j.biocon.2005.10.005
  • Floeter SR, Rocha LA, Robertson DR, Joyeux JC, Smith-Vaniz WF, Wirtz P et al Atlantic reef fish biogeography and evolution. J Biogeogr. 2008; 35(1):22–47. https://doi.org/10.1111/j.1365-2699.2007.01790.x
    » https://doi.org/10.1111/j.1365-2699.2007.01790.x
  • Francini-Filho RB, de Moura RL. Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquat Conserv. 2008; 18(7):1166–79. https://doi.org/10.1002/aqc.966
    » https://doi.org/10.1002/aqc.966
  • Freitas JEP, Lotufo TMC. Reef fish assemblage and zoogeographic affinities of a scarcely known region of the western equatorial Atlantic. J Mar Biol Assoc UK. 2014; 95(3):623–33. https://doi.org/10.1017/S0025315414001404
    » https://doi.org/10.1017/S0025315414001404
  • Gibran FZ, Moura RL. The structure of rocky reef fish assemblages across a nearshore to coastal islands’ gradient in Southeastern Brazil. Neotrop Ichthyol. 2012; 10(2):369–82. https://doi.org/10.1590/S1679-62252012005000013
    » https://doi.org/10.1590/S1679-62252012005000013
  • Gomes UL, Rosa RS, Gadig OBF Dasyatis marianae sp. n.: A new species of stingray (Chondrichthyes: Dasyatidae) from the Southwestern Atlantic. Copeia. 2000; 2000(2):510–15. https://doi.org/10.1643/0045-8511(2000)000[0510:DMSNAN]2.0.CO;2
    » https://doi.org/10.1643/0045-8511(2000)000[0510:DMSNAN]2.0.CO;2
  • Graham NAJ, McClanahan TR, MacNeil MA, Wilson SK, Cinner JE, Huchery C et al Human disruption of coral reef trophic structure. Curr Biol. 2017; 27:231–36. https://doi.org/10.1016/j.cub.2016.10.062
    » https://doi.org/10.1016/j.cub.2016.10.062
  • Guabiroba HC, Pimentel CR, Mariano Macieira R, Cardozo-Ferreira GC, Teixeira JB, Gasparini JL et al New records of fishes for the Vitória-Trindade Chain, southwestern Atlantic. Check List. 2020; 16(3):699–705. https://doi.org/10.15560/16.3.699
    » https://doi.org/10.15560/16.3.699
  • Hall AE, Cameron DS, Kingsford MJ. Partially protected areas as a management tool on inshore reefs. Rev Fish Biol Fish. 2021; 31:631–51. https://doi.org/10.1007/s11160-021-09654-y
    » https://doi.org/10.1007/s11160-021-09654-y
  • ICMBio. Livro vermelho da fauna brasileira ameaçada de extinção. Brasília: ICMBio/MMA. 2018.
  • ICMBio. Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). Management Plan of MPA Costa dos Corais. Portaria N° 308 [Internet]. Brasília; 2021. Available from: https://www.icmbio.gov.br/apacostadoscorais/plano-de-manejo
    » https://www.icmbio.gov.br/apacostadoscorais/plano-de-manejo
  • Jankowski MW, Graham NAJ, Jones GP. Depth gradients in diversity, distribution and habitat specialisation in coral reef fishes: implications for the depth-refuge hypothesis. Mar Ecol Prog Ser. 2015; 540:203–15. https://doi.org/10.3354/meps11523
    » https://doi.org/10.3354/meps11523
  • Leal ICS, de Araujo ME, da Cunha SR, Pereira PHC. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities. Mar Environ Res. 2015; 108:45–54. https://doi.org/10.1016/j.marenvres.2015.04.009
    » https://doi.org/10.1016/j.marenvres.2015.04.009
  • Leão ZMAN, Kikuchi RKP, Ferreira BP, Neves EG, Sovierzoski HH, Oliveira MDM et al Brazilian coral reefs in a period of global change: A synthesis. Braz J Oceanogr. 2016; 64:97–116. https://doi.org/10.1590/S1679-875920160916064sp2
    » https://doi.org/10.1590/S1679-875920160916064sp2
  • Leão ZMAN, Kikuchi RKP, Testa V. Corals and coral reefs of Brazil. In: Cortés J, editor. Latin American Coral Reefs. Amsterdam: Elsevier Science; 2003. p.9–52. https://doi.org/10.1016/B978-044451388-5/50003-5
    » https://doi.org/10.1016/B978-044451388-5/50003-5
  • Lellys NT, Moura RL, Bonaldo RM, Francini-Filho RB, Gibran FZ. Parrotfish functional morphology and bioerosion on SW Atlantic reefs. Mar Ecol Prog Ser. 2019; 629:149–63.https://doi.org/10.3354/meps13102
    » https://doi.org/10.3354/meps13102
  • Maida M, Ferreira BP. Coral Reefs of Brazil: Overview and field guide. In: Proc. 8th Int Coral Reef Sym. 1997; 1(263):74.
  • Magris RA, Costa MDP, Ferreira CEL, Vilar CC, Joyeux JC, Creed JC et al A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers Distrib. 2020; 27(2):198–215. https://doi.org/10.1111/ddi.13183
    » https://doi.org/10.1111/ddi.13183
  • Matheus Z, Francini-Filho RB, Pereira-Filho GH, Moraes FC, Moura RL, Brasileiro PS et al Benthic reef assemblages of the Fernando de Noronha Archipelago, tropical South-west Atlantic: Effects of depth, wave exposure and cross-shelf positioning. PLoS ONE. 2019; 14(1):e0210664. https://doi.org/10.1371/journal.pone.0210664
    » https://doi.org/10.1371/journal.pone.0210664
  • Mazzei EF, Bertoncini AA, Pinheiro HT, Machado LF, Vilar CC, Guabiroba HC et al Newly discovered reefs in the southern Abrolhos Bank, Brazil: Anthropogenic impacts and urgent conservation needs. Mar Pollut Bulletin. 2017; 114(1):123–33. https://doi.org/10.1016/j.marpolbul.2016.08.059
    » https://doi.org/10.1016/j.marpolbul.2016.08.059
  • Miranda RJ, Malhado ACM, Fabré N, Batista V, Santos R, Campos-Silva J et al Integrating long term ecological research (lter) and marine protected area management: challenges and solutions. Oecologia Australis. 2020; 24(2):279–300. https://doi.org/10.4257/oeco.2020.2402.05
    » https://doi.org/10.4257/oeco.2020.2402.05
  • Moberg F, Folke C. Ecological goods and services of coral reef ecosystems. Ecol Econ. 1999; 29(2):215–33. https://doi.org/10.1016/S0921-8009(99)00009-9
    » https://doi.org/10.1016/S0921-8009(99)00009-9
  • Mora C, Andréfouët S, Costello MJ, Kranenburg C, Rollo A, Veron J et al Coral reefs and the global network of marine protected areas. Science. 2006; 312(5781):1750–51. https://doi.org/10.1126/science.1125295
    » https://doi.org/10.1126/science.1125295
  • Mora C. Ecology of fishes on Coral Reefs. Cambridge: Cambridge University Press; 2015.
  • Motta FS, Moura RL, Neves LM, Souza GR, Gibran FZ, Francini CL et al Effects of marine protected areas under different management regimes in a hot spot of biodiversity and cumulative impacts from SW Atlantic. Reg Stud Mar Sci. 2021; 47:101951. https://doi.org/10.1016/j.rsma.2021.101951
    » https://doi.org/10.1016/j.rsma.2021.101951
  • Morais RA, Ferreira CEL, Floeter SR. Spatial patterns of fish standing biomass across Brazilian reefs. J Fish Biol. 2017; 91(6):1642–67. https://doi.org/10.1111/jfb.13482
    » https://doi.org/10.1111/jfb.13482
  • Moura RL, Abieri ML, Castro GM, Carlos-Júnior LA, Chiroque-Solano PM, Fernandes NC et al Tropical rhodolith beds are a major and belittled reef fish habitat. Scientific reports. 2021; 11(1):1–10. https://doi.org/10.1038/s41598-020-80574-w
    » https://doi.org/10.1038/s41598-020-80574-w
  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL. Projecting coral reef futures under global warming and ocean acidification. Science. 2011; 333(6041):418–22. https://doi.org/10.1126/science.1204794
    » https://doi.org/10.1126/science.1204794
  • Paula YC, Schiavetti A, Sampaio CLS, Calderon E. The effects of fish feeding by visitors on reef fish in a Marine Protected Area open to tourism. Biota Neotrop. 2018; 18(3):e20170339. https://doi.org/10.1590/1676-0611-bn-2017-0339
    » https://doi.org/10.1590/1676-0611-bn-2017-0339
  • Pereira PHC, Munday PL. Coral colony size and structure as determinants of habitat use and fitness of coral-dwelling fishes. Mar Ecol Prog Ser. 2016; 553:163–72.https://doi.org/10.3354/meps11745
    » https://doi.org/10.3354/meps11745
  • Pereira PHC, Macedo CH, Nunes JACC, Marangoni LFB, Bianchini A. Effects of depth on reef fish communities: Insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS One. 2018; 13(9):e0203072. https://doi.org/10.1371/journal.pone.0203072
    » https://doi.org/10.1371/journal.pone.0203072
  • Pereira PHC, Macedo CHR, de Lima GV, Benevides LJ. Effects of depth on reef fish flight initiation distance: implications of deeper reefs conservation. Environ Biol Fishes. 2020; 103(10):1247–56. https://doi.org/10.1007/s10641-020-01017-z
    » https://doi.org/10.1007/s10641-020-01017-z
  • Pereira PHC, Moraes RL, Santos MVB, Lippi DL, Feitosa JLL, Pedrosa M. The influence of multiple factors upon reef fish abundance and species richness in a tropical coral complex. Ichthyol Res. 2014; 61:375–84. https://doi.org/10.1007/s10228-014-0409-8
    » https://doi.org/10.1007/s10228-014-0409-8
  • Pereira PHC, Ternes MLF, Nunes JACC, Giglio VJ. Overexploitation and behavioral changes of the largest South Atlantic parrotfish (Scarus trispinosus): evidence from Fishers’ knowledge. Biol Conserv. 2021; 254:108940. https://doi.org/10.1016/j.biocon.2020.108940
    » https://doi.org/10.1016/j.biocon.2020.108940
  • Petean FF, Naylor GJP, Lima SMQ. Integrative taxonomy identifies a new stingray species of the genus Hypanus Rafinesque, 1818 (Dasyatidae, Myliobatiformes), from the Tropical Southwestern Atlantic. J Fish Biol. 2020; 97(4):1120–42. https://doi.org/10.1111/jfb.14483
    » https://doi.org/10.1111/jfb.14483
  • Pimentel CR, Rocha LA, Shepherd B, Phelps TAY, Joyeux JC, Martins AS et al Mesophotic ecosystems at Fernando de Noronha Archipelago, Brazil (South-western Atlantic), reveal unique ichthyofauna and need for conservation. Neotrop Ichthyol. 2020;18(4):e200050. https://doi.org/10.1590/1982-0224-2020-0050
    » https://doi.org/10.1590/1982-0224-2020-0050
  • Pinheiro HT, Joyeux J-C, Moura RL. Reef oases in a seamount chain in the southwestern Atlantic. Coral Reefs. 2014; 33:1113–13. https://doi.org/10.1007/s00338-014-1211-9
    » https://doi.org/10.1007/s00338-014-1211-9
  • Pinheiro HT, Mazzei E, Moura RL, Amado-Filho GM, Carvalho-Filho A, Braga AC et al Fish biodiversity of the Vitória-Trindade Seamount Chain, Southwestern Atlantic: An updated database. PLoS ONE. 2015; 10(3):e0118180. https://doi.org/10.1371/journal.pone.0118180
    » https://doi.org/10.1371/journal.pone.0118180
  • Pinheiro HT, Rocha LA, Macieira RM, Carvalho-Filho A, Anderson AB, Bender MG et al South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers Distrib. 2018; 24(7):951–65. https://doi.org/10.1111/ddi.12729
    » https://doi.org/10.1111/ddi.12729
  • Reaka-Kudla ML. The global biodiversity of coral reefs: a comparison with rain forests. In: Reaka-Kudla ML, Wilson DE, Wilson ED, editors. Biodiversity II: Understanding and protecting our biological resources. Washington, D.C.: Joseph Henry Press; 1997. p.2: 551.
  • Rocha LA, Pinheiro HT, Shepherd B, Papastamatiou YP, Luiz OJ, Pyle RL et al Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science. 2018; 361(6399):281–84. https://doi.org/10.1126/science.aaq1614
    » https://doi.org/10.1126/science.aaq1614
  • Rolim FA, Langlois T, Rodrigues PFC, Bond T, Motta FS, Neves LM et al Network of small no-take marine reserves reveals greater abundance and body size of fisheries target species. PLoS ONE. 2019; 14(1):e0204970. https://doi.org/10.1371/journal.pone.0204970
    » https://doi.org/10.1371/journal.pone.0204970
  • Ruppert JLW, Vigliola L, Kulbicki M, Labrosse P, Fortin M-J, Meekan MG. Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs. Glob Chang Biol. 2018; 24(1):e67–e79. https://doi.org/10.1111/gcb.13882
    » https://doi.org/10.1111/gcb.13882
  • Sampaio CLS, Santander-neto J, Costa TLA. Hogfish Lachnolaimus maximus (Labridae) confirmed in the south-western Atlantic Ocean. J Fish Biol. 2016; 89(3):1873–79. https://doi.org/10.1111/jfb.13075
    » https://doi.org/10.1111/jfb.13075
  • Smith-Vaniz WF, Tornabene L, Macieira RM. Review of Brazilian jawfishes of the genus Opistognathus with descriptions of two new species (Teleostei, Opistognathidae). ZooKeys. 2018; 794:95–133. https://doi.org/10.3897/zookeys.794.26789
    » https://doi.org/10.3897/zookeys.794.26789
  • Soares MO, Rossi S, Gurgel AR, Lucas CC, Tavares TC, Diniz B et al Impacts of a changing environment on marginal coral reefs in the Tropical Southwestern Atlantic. Ocean Coast Manag. 2021; 210:105692. https://doi.org/10.1016/j.ocecoaman.2021.105692
    » https://doi.org/10.1016/j.ocecoaman.2021.105692
  • Spalding M, Burke L, Wood SA, Ashpole J, Hutchison J, zu Ermgassen P. Mapping the global value and distribution of coral reef tourism. Mar Policy. 2017; 82:104–13. https://doi.org/10.1016/j.marpol.2017.05.014
    » https://doi.org/10.1016/j.marpol.2017.05.014
  • Teixeira CD, Chiroque-Solano PM, Ribeiro FV, Carlos-Júnior LA, Neves LM, Salomon OS et al Decadal (2006–2018) dynamics of Southwestern Atlantic’s largest turbid zone reefs. PloS One. 2021; 16(2):e0247111. https://doi.org/10.1371/journal.pone.0247111
    » https://doi.org/10.1371/journal.pone.0247111
  • Vila-Nova DA, Ferreira CEL, Barbosa FG, Floeter SR. Reef fish hotspots as surrogates for marine conservation in the Brazilian coast. Ocean Coast Manag. 2014; 102:88–93. https://doi.org/10.1016/j.ocecoaman.2014.09.005
    » https://doi.org/10.1016/j.ocecoaman.2014.09.005

ADDITIONAL NOTES

  • HOW TO CITE THIS ARTICLE

    Pereira PHC, Côrtes LGF, Lima GV, Gomes E, Pontes AVF, Mattos F, Araújo ME, Ferreira-Junior F, Sampaio CLS. Reef fishes biodiversity and conservation at the largest Brazilian coastal Marine Protected Area (MPA Costa dos Corais). Neotrop Ichthyol. 2021; 19(4):e210071. https://doi.org/10.1590/1982-0224-2021-0071

Edited-by

Fernando Gibran

Publication Dates

  • Publication in this collection
    13 Dec 2021
  • Date of issue
    2021

History

  • Received
    26 Mar 2021
  • Accepted
    5 July 2021
Sociedade Brasileira de Ictiologia Neotropical Ichthyology, Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Universidade Estadual de Maringá., Av. Colombo, 5790, 87020-900, Phone number: +55 44-3011-4632 - Maringá - PR - Brazil
E-mail: neoichth@nupelia.uem.br