Acessibilidade / Reportar erro

Diet of a bromeligenous species of treefrog in the Brazilian semiarid

Dieta de uma espécie bromelígena de anuro do semiárido brasileiro

Abstract

Phyllodytes tuberculosus is a bromeligenous anuran species whose geographic distribution is restricted to areas of the Caatinga and to transition zones between Caatinga and Atlantic Forest in the central-south of the state of Bahia. Its existence in close relationship with bromeliads and its occurrence in dry and highly seasonal environments drove us to the supposition that species is opportunistic/generalist regard to diet. We collected the items present in the stomach of 43 P. tuberculosus individuals with stomach-flushing method. Of these, 18 stomach contents were obtained during the dry period (April–October), and 25 during the rainy period (November–March). We recorded nine classes of prey, finding the greatest relative importance for the categories Formicidae and Coleoptera in dry season and Blattodea (Termites), Formicidae and Coleoptera in the rainy season. Phyllodytes tuberculosus presented a varied, possibly opportunistic diet in semiarid environments. Additionally, we report an apparent temporal differentiation related to the typical Caatinga seasonality. This study adds to the data on the natural history of an anuran species adapted to a semiarid environment with a narrow geographic distribution.

Keywords:
caatinga; conservation; lophyohylinae; trophic resources

Resumo

Phyllodytes tuberculosus é uma espécie de anuro bromelígena cuja distribuição geográfica está restrita a áreas de Caatinga e zonas de transição entre Caatinga e Mata Atlântica no centro-sul do estado da Bahia. Sua relação próxima com bromélias e sua ocorrência em ambientes secos e fortemente sazonais nos levou a supor que a espécie apresenta uma dieta generalista/oportunista. Por meio de lavagem estomacal, coletamos os itens alimentares presentes no estômago de 43 indivíduos de P. tuberculosus. Destes, 18 estômagos foram obtidos durante a estação seca (Abril-Outubro) e 25 durante a estação chuvosa (Novembro–Março). Nós registramos nove classes de presas, sendo que as maiores importâncias relativas foram observadas para os itens Formicidae e Coleoptera na estação seca e Blattodea (Termites), Formicidae e Coleoptera no conteúdo recuperado na estação chuvosa. Phyllodytes tuberculosus apresentou uma dieta variada, possivelmente oportunista, condizente com a vida em ambientes semiáridos. Ademais, também observamos uma aparente diferenciação temporal relacionada a sazonalidade típica da Caatinga. Este estudo adiciona dados a respeito da história natural de uma espécie de anuro adaptada a ambientes semiáridos e com distribuição geográfica restrita.

Palavras-chave.
caatinga; conservação; lophyohylinae; recurso alimentar

1. Introduction

The genus Phyllodytes (Wagler, 1830) is composed of 14 species (Frost, 2019FROST, D.R., 2019 [viewed 10 September 2019]. Amphibian species of the world: an online reference. Version 6.0. [online]. Available from: http://research.amnh.org/herpetology/amphibia/index.html.
http://research.amnh.org/herpetology/amp...
). Its representatives present odontoids on the mandible, the principal characteristic that differentiates them from other hylids (Peixoto and Cruz, 1988PEIXOTO, O.L. and CRUZ, C.A.G., 1988. Descrição de duas espécies novas do gênero Phylodytes Wagler (Amphibia, Anura, Hylidae). Revista Brasileira de Biologia, vol. 48, no. 2, pp. 265-272.; Cruz et al., 2006CRUZ, C.A.G., FEIO, R.N. and CARDOSO, M.C.S., 2006. Description of a new species of Phyllodytes Wagler, 1830 (Anura, Hylidae) from the Atlantic rain forest of the States of Minas Gerais and Bahia, Brazil. Arquivos do Museu Nacional. Museu Nacional (Brazil), vol. 64, no. 4, pp. 321-324.). The species that comprise the genus are small to medium in size, have a greenish-yellow color, with wide variation in their dorsal coloration pattern, and live in close association with bromeliads (e.g. Eterovick, 1999ETEROVICK, P.C., 1999. Use and sharing of calling and retreat sites by Phyllodytes luteolus in a modified environment. Journal of Herpetology, vol. 33, no. 1, pp. 17-22. http://dx.doi.org/10.2307/1565538.
http://dx.doi.org/10.2307/1565538...
; Peixoto et al., 2003PEIXOTO, O.L., CARAMASCHI, U. and FREIRE, E.M.X., 2003. Two new species of Phyllodytes (Anura: Hylidae) from the state of Alagoas, Northeastern Brazil. Herpetologica, vol. 59, no. 2, pp. 235-246. http://dx.doi.org/10.1655/0018-0831(2003)059[0235:TNSOPA]2.0.CO;2.
http://dx.doi.org/10.1655/0018-0831(2003...
; Caramaschi and Peixoto, 2004CARAMASCHI, U. and PEIXOTO, O.L., 2004. A new species of Phyllodytes (Anura: Hylidae) from the State of Sergipe, Northeastern Brazil. Amphibia-Reptilia, vol. 25, no. 1, pp. 1-7. http://dx.doi.org/10.1163/156853804322992788.
http://dx.doi.org/10.1163/15685380432299...
); hence their classification as bromeligenous species (sensuPeixoto, 1995PEIXOTO, O.L., 1995. Associação de anuros a Bromeliaceas na Mata Atlântica. Revista de Ciências da Vida, vol. 17, no. 2, pp. 75-83.).

Bromeliads are very particular phytotelmata. In addition to offering shelter and protection to many vertebrate and invertebrate species (Rocha et al., 1997ROCHA, C.F.D., COGLIATTI-CARVALHO, L., ALMEIDA, D. R. and NUNES-FREITAS, A. F., 1997. Bromélias: ampliadoras da biodiversidade. Bromélia, vol. 4, pp. 7-10.; Richardson, 1999RICHARDSON, B.A., 1999. The bromeliad microcosm and the assessment of faunal diversity in a Neotropical forest. Biotropica, vol. 31, no. 2, pp. 321-336. http://dx.doi.org/10.1111/j.1744-7429.1999.tb00144.x.
http://dx.doi.org/10.1111/j.1744-7429.19...
; Juncá and Borges, 2002JUNCÁ, F.A. and BORGES, C.L.S., 2002. Fauna associada a bromélias terrícolas da Serra da Jibóia, Bahia. Sitientibus, vol. 2, pp. 73-81.), they provide ecological and physical-chemical conditions for the development and maintenance of species capable of exploiting this resource (Peixoto, 1995PEIXOTO, O.L., 1995. Associação de anuros a Bromeliaceas na Mata Atlântica. Revista de Ciências da Vida, vol. 17, no. 2, pp. 75-83.). Another highlight of this phytotelma pertains to ecological parameters—its interior constitutes an entire ecosystem (Picado, 1913PICADO, C., 1913. Les broméliacées épiphytes considérées comme milieu biologique. Bulletin scientifique de la France et de la Belgique, vol. 7, pp. 215-360.; Oliveira et al., 1994OLIVEIRA, M.G.N., ROCHA, C.F.D. and BAGNALL, T., 1994. A comunidade animal associada à bromélia tanque Neoregelia cruenta (R. Graham) L. B. Smith. Bromélia, vol. 1, pp. 22-29.; Mestre et al., 2001MESTRE, L.A.M., ARANHA, J.M. and ESPER, M.L.P., 2001. Invertebrate fauna associated to the bromeliad Vriesea inlata of the Atlantic Forest (Paraná State, Southern, Brazil). Brazilian Archives of Biology and Technology, vol. 44, no. 1, pp. 89-94. http://dx.doi.org/10.1590/S1516-89132001000100012.
http://dx.doi.org/10.1590/S1516-89132001...
) in which many associations exist between diverse life forms (Reitz, 1983REITZ, R., 1983. Bromeliáceas e a malária – bromélia endêmica. Itajaí: Herbário Barbosa Rodrigues, 559 p.), a factor that distinguishes the faunistic components within phytotelmas from the ecosystems outside them.

Interactions between bromeliads and the life forms that can be found inside them are particularly interesting in highly seasonal areas. In Caatinga zones, areas characterized by unpredictable rain, with lengthy dry periods in some regions (Krol et al., 2001KROL, M.S., JAEGER, A., BRONSTERT, A. and KRYWKOW, J., 2001. The semiarid integrated model (SDIM), a regional integrated model assessing water availability, vulnerability of ecosystems and society in NE-Brazil. Physics and Chemistry of the Earth, vol. 26, no. 7-8, pp. 529-533. http://dx.doi.org/10.1016/S1464-1909(01)00045-4.
http://dx.doi.org/10.1016/S1464-1909(01)...
), this phytotelma can play role of an oasis (Islair et al., 2015ISLAIR, P., CARVALHO, K.S., FERREIRA, F.C. and ZINA, J., 2015. Bromeliads in Caatinga: an oasis for invertebrates. Biotemas, vol. 28, no. 1, pp. 67-77. http://dx.doi.org/10.5007/2175-7925.2015v28n1p67.
http://dx.doi.org/10.5007/2175-7925.2015...
), providing water and food to species capable of exploiting this resource, as is the case of Phyllodytes tuberculosus Bokermann, 1966, one of the few species of the genus that occurs in Caatinga areas (see Santos & Silva, 2010SANTOS, E.M. and SILVA, G.L., 2010. Geographic distribution: Phyllodytes acuminatus. Herpetological Review, vol. 41, pp. 104.Phyllodytes acuminatus). The existence of this species in Caatinga, a zone characterized by dry and thorny vegetation and scarce precipitation (Andrade-Lima, 1981ANDRADE-LIMA, D., 1981. O domínio da Caatinga. Revista Brasileira de Botanica. Brazilian Journal of Botany, vol. 4, pp. 149-163.; Krol et al., 2001KROL, M.S., JAEGER, A., BRONSTERT, A. and KRYWKOW, J., 2001. The semiarid integrated model (SDIM), a regional integrated model assessing water availability, vulnerability of ecosystems and society in NE-Brazil. Physics and Chemistry of the Earth, vol. 26, no. 7-8, pp. 529-533. http://dx.doi.org/10.1016/S1464-1909(01)00045-4.
http://dx.doi.org/10.1016/S1464-1909(01)...
), implies that the species presents ecological, behavioral and physiological adaptations in response to the selective pressures imposed by the prevailing water deficit and high temperatures of this domain (Hillman et al., 2009HILLMAN, S.S., WHITHERS, P.C., DREWES, R.C. and HILLYARD, S.D., 2009. Ecological and environmental physiology of amphibians. Nova York: Oxford University Press, 464 p.; Jared et al., 2019JARED, C., MAILHO-FONTANA, P.L., MENDELSON, J. and ANTONIAZZI, M.M., 2019. Life history of frog of the Brazilian semi-arid (Caatinga), with emphasis in aestivation. Acta Zoologica, vol. 2019, pp. 1-9. http://dx.doi.org/10.1111/azo.12295.
http://dx.doi.org/10.1111/azo.12295...
). Currently 98 anuran species are known to occur in the Caatinga areas (Garda et al., 2017GARDA, A.A., STEIN, M.G., MACHADO, R.B., LION, M.B., JUNCÁ, F.A. and NAPOLI, M.F. 2017. Ecology, Biogeography, and Conservation of Amphibians of the Caatinga. In: FILHO, E.M.; LEAL, I.R.; TABARELLI, M., eds. Biodiversity, ecosystems services and sustainable development in Caatinga: the largest tropical dry forest region in South America. Berlin: SpringerVerlag, pp. 133-149 http://dx.doi.org/10.1007/978-3-319-68339-3_5.
http://dx.doi.org/10.1007/978-3-319-6833...
).

Seasonal environments with limited resources, such as the Caatinga, may favor generalist species with an opportunistic foraging strategy. The cost related to the maintenance of a more specialized diet may be high in such scenario, due to both potential scarcity of food resources and increase physiological stress during the foraging activity (Friedman et al., 2019FRIEDMAN, D.A, GREENE, M.J. and GORDON, D.M., 2019. The physiology of forager hydration and variation among harvester ant (Pogonomyrmex barbatus) colonies in collective foraging behavior. Nature, vol. 5126, no. 2019, pp. 1-9.). Amphibians are considered as generalist predators, with opportunistic foraging behavior, being the availability of prey the determinant feature of their diet (Macnamara, 1977MACNAMARA, M.C., 1977. Food habits of terrestrial adult migrants and immature red effects of the red-spotted newt Notophtalmus viridescens. Herpetologica, vol. 33, pp. 127-132.; Pough et al., 1998POUGH, F.H., ANDREWS, R.M., CADLE, J.E., CRUMP, M.L., SAVITZKY, A.H. and WELLS, K.D., 1998. Herpetology. New Jersey: Prentice Hall, 612 p.; Solé and Rödder, 2009SOLÉ, M. and RODDER, D. 2009. Dietary assessments of adult amphibians. In: R. C. KENNETH DODD, ed. Amphibian ecology and conservation: a handbook of techniques. Oxford: Oxford University Press, pp. 167-184.). There are few exceptions to this statement; some species may present diet specializations frequently linked to active search foraging strategy (Lieberman, 1986LIEBERMAN, S.S., 1986. Ecology of the leaf litter herpetofauna of a Neotropical rain forest: la selva, Costa Rica. Acta Zoológica Mexicana, vol. 15, pp. 1-72.; Simon and Toft, 1991SIMON, M.P. and TOFT, C.A., 1991. Diet specialization in small vertebrates: miteseating in frogs. Oikos, vol. 61, no. 2, pp. 263-278. http://dx.doi.org/10.2307/3545344.
http://dx.doi.org/10.2307/3545344...
; Lima and Moreira, 1993LIMA, A. and MOREIRA, G., 1993. Effects of prey size and foraging mode on the ontogenetic change in feeding niche of Colostethus stepheni (Anura: dendrobatidae). Oecologia, vol. 95, no. 1, pp. 93-102. http://dx.doi.org/10.1007/BF00649512. PMid:28313317.
http://dx.doi.org/10.1007/BF00649512...
; Das, 1996DAS, I., 1996. Folivory and seasonal changes in diet in Rana hexadactyla (Anura: ranidae). Journal of Zoology, vol. 238, no. 4, pp. 785-794. http://dx.doi.org/10.1111/j.1469-7998.1996.tb05430.x.
http://dx.doi.org/10.1111/j.1469-7998.19...
), such as the mirmecofagy reported to P. edelmoi Peixoto, Caramaschi, and Freire, 2003 by Araujo-Vieira et al. (2018)ARAUJO-VIEIRA, K., GOLÇALVES, U., SANTOS, J.G., FERREIRA, T.G. and SKUK, G., 2018. Feeding habits of the bromeligenous treefrog Phyllodytes edelmoi Peixoto, Caramaschi & Freire, 2003 (Anura: Hylidae) from the State of Alagoas, Northeastern Brazil. Cuadernos de Herpetología, vol. 32, no. 1, pp. 5-13. http://dx.doi.org/10.31017/CdH.2018.(2017-19).
http://dx.doi.org/10.31017/CdH.2018.(201...
. According to these authors, this specialist feeding behavior could be considered a synapomorphy of the genus.

We believe the use of bromeliads in a strongly seasonal environment would favor generalist species over specialist ones and, in this sense, we predict that P. tuberculosus will present a generalist and opportunist diet exploring the most abundant resource available inside the bromeliads. We aimed to contribute to the knowledge about the ecology of P. tuberculosus filling a gap that in conjunction with other types of data, could enable an understanding of the ecological demands of the species. Additionally, data about diet may provide interesting insights about taxonomic relationship between closely related species (Sih and Christensen, 2001SIH, A. and CHRISTENSEN, B., 2001. Optimal diet theory: when does it work, and when and why does it fail? Animal Behaviour, vol. 61, no. 2, pp. 379-390. http://dx.doi.org/10.1006/anbe.2000.1592.
http://dx.doi.org/10.1006/anbe.2000.1592...
).

2. Material and Methods

This study was conducted in an area surrounding the Barragem da Pedra dam in the village of Santa Clara (13°55'24”S 40°23'57”W), district of Monte Branco, in the municipality of Jequié, central-southern Bahia. It is a region subject to alterations resulting from human occupation (real estate speculation) and the construction and operation of the west–east railway, the Ferrovia de Integração Oeste–Leste (FIOL). The local vegetation is described as shrub-arboreal Caatinga and contains patches of evenly spaced bromeliads. The climate is classified as semiarid steppe climate (BSh) (Peel et al., 2007PEEL, M.C., FINLAYSON, B.L. and MCMAHON, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, vol. 11, no. 5, pp. 1633-1644. http://dx.doi.org/10.5194/hess-11-1633-2007.
http://dx.doi.org/10.5194/hess-11-1633-2...
) with precipitation below 500 mm (SEI, 2003SUPERINTENDÊNCIA DE ESTUDOS ECONÔMICOS E SOCIAIS DA BAHIA – SEI, 2003 [viewed 10 may 2016]. Mapa pluviométrico do estado da Bahia [online]. Salvador: SEI. Available from: https://www.sei.ba.gov.br/site/geoambientais/mapas/pdf/mapa_pluviometria.pdf
https://www.sei.ba.gov.br/site/geoambien...
).

Thirteen field excursions took place between October 2016 and December 2017 (six in the rainy period and seven in the dry period), each one corresponding to one field day (in which various bromeliad patches were visited). We considered the months from November to March as the rainy period (average monthly rainfall of 82.4 mm), and from April to October as the dry period (average monthly rainfall of 41.6 mm) (values obtained from the platform INPE, 2018INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS – INPE and PROGRAMA DE MONITORAMENTO CLIMÁTICO EM TEMPO REAL DA REGIÃO NORDESTE – PROCLIMA, 2018 [viewed 8 May 2018]. Programa de monitoramento climático em tempo real da região nordeste [online]. São José dos Campos: INPE. Available from: http://proclima.cptec.inpe.br/
http://proclima.cptec.inpe.br/...
).

We used visual and acoustic active search methodology at the species’ reproductive sites (Heyer et al., 1994HEYER, W.R., DONNELLY, M.A., MCDIARMID, R.W., HAYER, L.C. and FOSTER, M., 1994. Measuring and Monitoring biological diversity: standard methods for amphibians. Washington: Smithsonian Books, 384 p.) to locate individuals and collect data. Data collection started around 17:30 h and finished between 23:00 h and 00:00 h. During these field excursions, the captured individuals were measured (snout vent length– SVL; mandible length – ML; head width – HW; body weight – BW) using a caliper with 0.1 mm precision, and weighed using a dynamometer with 0.1 g precision.

The stomach contents were collected following the stomach-flushing protocol, proposed by Solé et al. (2005)SOLÉ, M., BECKMANN, O., PELZ, B., KWET, A. and ENGELS, W., 2005. Stomach-flushing for diet analysis in anurans: an improved protocol evaluated in a case study in Araucaria forests, southern Brazil. Studies on Neotropical Fauna and Environment, vol. 40, no. 1, pp. 23-28. http://dx.doi.org/10.1080/01650520400025704.
http://dx.doi.org/10.1080/01650520400025...
, using a 3 ml syringe, 4 cm urethral probe, sieve, forceps and filtered water. We standardized the procedure for four repetitions of stomach-flushing, and, in cases where no stomach contents were found, null was given for diet. The procedure was performed while in the field, a maximum of one hour after each individual had been captured. The stomach contents were stored in an eppendorf® tube containing 70% alcohol. The stomach contents were then identified, using a stereo microscope, to the lowest taxonomic level possible. Next, the contents were distributed into food categories, which were quantified using a millimeter (0.1 cm) graph board. For this, we pressed the ingested material until it reaches 1 mm of height, to minimize de effects of items with different sizes on the analysis (see Hyslop, 1980HYSLOP, E.J., 1980. Stomach contents analysis - a review of methods and their application. Journal of Fish Biology, vol. 17, no. 4, pp. 411-479. http://dx.doi.org/10.1111/j.1095-8649.1980.tb02775.x.
http://dx.doi.org/10.1111/j.1095-8649.19...
). Then, we counted the number of quadrants (= number of points) occupied by each food category, which corresponded to the number of points for that category. Thus, each category’s average number of points (P%) represents a relative subjective measure of its quantity in volume (Hyslop, 1980HYSLOP, E.J., 1980. Stomach contents analysis - a review of methods and their application. Journal of Fish Biology, vol. 17, no. 4, pp. 411-479. http://dx.doi.org/10.1111/j.1095-8649.1980.tb02775.x.
http://dx.doi.org/10.1111/j.1095-8649.19...
; Zavala-Camin, 1996ZAVALA-CAMIN, L.A., 1996. Introdução aos estudos sobre alimentação natural em peixes. Maringá: Eduem/Nupelia, 129 p.). We considered the number of stomachs in which each category was present as the frequency of occurence index. To assess the importance of each prey consumed, we calculated the alimentary importance index (IAi) (Eq. 1), as proposed by Kawakami and Vazzoler (1980)KAWAKAMI, E.E. and VAZZOLER, G., 1980. Método gráfico e estimativa de índice alimentar aplicado no estudo de alimentação de peixes. Boletim do Instituto Oceanográfico, vol. 29, no. 2, pp. 205-207. http://dx.doi.org/10.1590/S0373-55241980000200043.
http://dx.doi.org/10.1590/S0373-55241980...
(with modifications), for each evaluated category:

I A i = F O i x P i i = 1 n ( F O i x P i ) (1)

Where:

IAi = alimentary importance index

i = 1, 2, ... n = determined food category

FO = frequency of occurrence (%) of the food category i

P = average number of points (%) for each food category i

Eleven individuals were collected, euthanized with lidocaine 5%, fixed in formaldehyde 10%, preserved in 70% alcohol (Heyer et al., 1994HEYER, W.R., DONNELLY, M.A., MCDIARMID, R.W., HAYER, L.C. and FOSTER, M., 1994. Measuring and Monitoring biological diversity: standard methods for amphibians. Washington: Smithsonian Books, 384 p.), and deposited in the Zoology Collection of the Universidade Estadual do Sudoeste da Bahia (MHNJCH 1099, MHNJCH 1103, MHNJCH 1104, MHNJCH 1106, MHNJCH 1107, MHNJCH 1108, MHNJCH 1109, MHNJCH 1110, MHNJCH 1126, MHNJCH 1132, MHNJCH 1133) under collection permit n° 54629-1.

To determine the correlation between body measurements and the relative volume of the food categories, we performed a non-parametric Spearman’s rank correlation tests, confronting each measurement (SVL, ML, HW, body mass) of captured individuals with the number of points of the categories observed in their respective stomachs. For this test we only consider the food categories that occurred in more than five stomachs.

The temporal analysis of the diet was performed according to the periodicity established for the dry season (April–October) and rainy season (November–March). To verify if the food categories differed in order of importance between the seasons, we performed a Spearmann’s rank correlation test (Fritz, 1974FRITZ, E.S., 1974. Total diet comparison in fishes by Spearman rank correlation coefficients. Copeia, vol. 1, no. 1, pp. 210-214. http://dx.doi.org/10.2307/1443025.
http://dx.doi.org/10.2307/1443025...
) using the IAi values obtained for each category in each season. To verify difference in diet activity according to the season (wet and dry) we compare the number of points obtained for each stomach throughout Mann-Whitney test.

We considered significant values of p < 0.05.

3. Results

Among the 51 individuals analyzed, only 43 presented stomach contents, 25 of which corresponded to the rainy period and 18 to the dry period. We distributed the stomach contents in nine food categories (Table 1). The IAi showed that Formicidae and Coleoptera were the most important categories, followed by Blattoidea (Termitidae) (Table 1). Plant material was not recorded in the composition of the analyzed stomach contents.

Table 1
Percentage values of frequency of occurrence (FO), average number of points (P%) and alimentary importance index (IAi) of each category, representing the composition of the diet of Phyllodytes tuberculosus, municipality of Jequié, state of Bahia.

The averages of the morphometric measurements of the Phyllodytes tuberculosus individuals were as follows: body mass of 0.96 g (SD ± 0.27, range = 0.40–1.50 g, N = 43), SVL of 24.26 mm (SD ± 2.32, range = 14.0–29.1 mm, N = 43), HW of 9.13 mm (SD ± 0.99, range = 6.0–11.1 mm, N = 43) and ML of 6.78 mm (SD ± 1.14, range = 5.0–10.8 mm, N = 43). There was no significant correlation between the morphometric parameters and the size of each food category (Table 2).

Table 2
Correlation between morphometric measurements (SVL= snout vent length, HL= head length, ML= mandible length, BW= body weight) and the number of points per food category (rs = Sperman coefficient).

In the temporal analysis, we observed no correlation between the IAi values of the food categories (r = 0.611; p = 0.088), indicating distinct diets in rainy and dry seasons. This finding is due mainly to the food category Blattodea (Termites) having a higher importance value in the rainy period (IAi = 58.78) compared to the dry period (IAi = 12.71), during which the categories Coleoptera and Formicidae were consumed with greater frequency (Table 1) (Figure 1). There was no difference in the diet activity of the species according to the season (U= 281,5 P= 0.427). However, we highlight that the number of empty stomachs were three times greater in the dry season (6 stomachs).

Figure 1
Values of alimentary importance index (Iai) of each food category [1 - Hymenoptera (Formicidae); 2 - Coleoptera; 3 - Blattodea (Termitidae); 4 - Blattodea (no Termitidae); 5 - Orthoptera; 6 - Lepidoptera; 7 - Diptera; 8 - Mantodea; 9 Aranae] for two distinct periods (rainy and dry periods) of Phyllodytes tuberculosus, municipality of Jequié, state of Bahia.

All P. tuberculosus individuals recorded in this study were observed in bromeliads of the genus Aechmea, most of them probably of the same species.

4. Discussion

The association established between fauna and bromeliads is a relationship that benefits both involved parts. The obvious benefits to the fauna cover shelter, foraging area and reproduction (Rocha et al., 1997ROCHA, C.F.D., COGLIATTI-CARVALHO, L., ALMEIDA, D. R. and NUNES-FREITAS, A. F., 1997. Bromélias: ampliadoras da biodiversidade. Bromélia, vol. 4, pp. 7-10.; Richardson, 1999RICHARDSON, B.A., 1999. The bromeliad microcosm and the assessment of faunal diversity in a Neotropical forest. Biotropica, vol. 31, no. 2, pp. 321-336. http://dx.doi.org/10.1111/j.1744-7429.1999.tb00144.x.
http://dx.doi.org/10.1111/j.1744-7429.19...
; Juncá and Borges, 2002JUNCÁ, F.A. and BORGES, C.L.S., 2002. Fauna associada a bromélias terrícolas da Serra da Jibóia, Bahia. Sitientibus, vol. 2, pp. 73-81.). For the bromeliads, the fauna confers nutrients (organic material and the excreta of the individuals that occupy this micro-habitat) (Benzing, 2000BENZING, D.H. 2000. Bromeliaceae: profile of an adaptive radiation. New York: Cambridge University Press, 690 p. http://dx.doi.org/10.1017/CBO9780511565175.
http://dx.doi.org/10.1017/CBO97805115651...
) that can be assimilated by the plants (Frank and Lounibos 1983FRANK, J.H. and LOUNIBOS, L.P., 1983. Phytotelmata: terrestrial plants as hosts for aquatic insects communities. Medford: Plexus Publishing, 293 p.; Kitching 2000KITCHING, R.L., 2000. Food webs and container habitats: the natural history and ecology of phytotelmata. Cambridge: Cambridge University Press, 448 p. http://dx.doi.org/10.1017/CBO9780511542107.
http://dx.doi.org/10.1017/CBO97805115421...
, 2001KITCHING, R.L., 2001. Food webs in phytotelmata: “bottom-up” and “top-down” explanations for community structure. Annual Review of Entomology, vol. 4, no. 1, pp. 729-760. http://dx.doi.org/10.1146/annurev.ento.46.1.729. PMid:11112185.
http://dx.doi.org/10.1146/annurev.ento.4...
). In a harsh environment such as the Caatinga, this plant-animal relationship is fundamental to the maintenance of different populations even in the scarcity of resources, a natural condition in highly seasonal environments.

Besides the above-mentioned benefits offered by the bromeliads to bromeligenous species, the bromeliad represents for P. tuberculosus the additional advantage of being a semi-permanent body of water, used by the species as a site for vocalization, egg deposition and tadpole development (reproductive mode 6, Haddad et al., 2013HADDAD, C.F.B., TOLEDO, L.F., PRADO, C.P.A., LOEBMANN, D., GASPARINI, J.L. and SAZIMA, I., 2013. Guia de anfíbios da Mata Atlântica: diversidade de biologia. São Paulo: Anolis books. 544 p.). It is important to note that bromeliads in Caatinga environments often offer the only water bodies available for many vertebrate and invertebrate species, acting as an oasis, and creating a very particular dynamic of community organization (Islair et al., 2015ISLAIR, P., CARVALHO, K.S., FERREIRA, F.C. and ZINA, J., 2015. Bromeliads in Caatinga: an oasis for invertebrates. Biotemas, vol. 28, no. 1, pp. 67-77. http://dx.doi.org/10.5007/2175-7925.2015v28n1p67.
http://dx.doi.org/10.5007/2175-7925.2015...
).

In general, the diet composition of species that live in association with bromeliads presents specific characteristics, such as the presence of fauna that also frequents this plant (Araujo-Vieira et al., 2018ARAUJO-VIEIRA, K., GOLÇALVES, U., SANTOS, J.G., FERREIRA, T.G. and SKUK, G., 2018. Feeding habits of the bromeligenous treefrog Phyllodytes edelmoi Peixoto, Caramaschi & Freire, 2003 (Anura: Hylidae) from the State of Alagoas, Northeastern Brazil. Cuadernos de Herpetología, vol. 32, no. 1, pp. 5-13. http://dx.doi.org/10.31017/CdH.2018.(2017-19).
http://dx.doi.org/10.31017/CdH.2018.(201...
). The life restricted to the bromeliad’s interior explains the absence of plant material in its diet composition, a common characteristic of the diets of anurans whose lifestyle is associated with the occupation of bromeliads (see Brandão et al., 2003BRANDÃO, R.A., GARDA, A., BRAZ, V. and FONSECA, B., 2003. Observations on the ecology of Pseudis bolbodactyla (Anura, Pseudidae) in central Brazil. Phyllomedusa, vol. 2, no. 1, pp. 3-8. http://dx.doi.org/10.11606/issn.2316-9079.v2i1p03-08.
http://dx.doi.org/10.11606/issn.2316-907...
).

We did not observe dipteran larvae in the diet of P. tuberculosus adults nor within the bromeliads. Perhaps this result is an artefact stemming from the failure to recover these items. However, the absence of dipteran larvae in the diets of other anuran species has also been observed by other authors (Pinto, 2011PINTO, T.M., 2011. Ecologia alimentar de uma taxocenose de anuros terrestres no Brasil Central. Brasília: Instituto de Biologia, Universidade de Brasília, 101 p. Dissertação de Mestrado em Biologia Animal.; Amado, 2014AMADO, T.F., 2014. Ecologia trófica de anfíbios anuros: relações filogenéticas em diferentes escalas. Natal: Universidade Federal do Rio Grande do Norte, 71 p. Dissertação de Mestrado em Ecologia.). Recently, Salinas et al. (2018)SALINAS, A.S., COSTA, R.N., ORRICO, V.G.D. and SOLÉ, M., 2018. Tadpoles of the bromeliad-dwelling frog Phyllodytes luteolus are able to prey on mosquito larvae. Ethology Ecology and Evolution, vol. 30, no. 2018, pp. 485-496. confirmed the importance of this food category in the larval diet of another bromeligenous species of Phyllodytes (P. luteolus (Wied-Neuwied, 1824)), which points to a predator-prey relationship between larvae; this finding represents a promising direction for future ecological studies in the Caatinga.

In general, the species’ diet analyzed here is similar to that observed in sand coastal plains by Ferreira et al. (2012)FERREIRA, R.F., SCHINEIDER, J.A.P. and TEIXEIRA, R.L., 2012. Diet, fecundity and use of bromeliads by Phyllodytes luteolus (Anura: Hylidae) in southeastern Brazil. Journal of Herpetology, vol. 46, no. 1, pp. 19-24. http://dx.doi.org/10.1670/09-040.
http://dx.doi.org/10.1670/09-040...
in the states of Bahia and Espírito Santo, and by Motta-Tavares et al. (2016)MOTTA-TAVARES, T., MAIA-CARNEIRO, T., DANTAS, L.F., SLUYS, M.V., HATANO, F.H., VRCIBRADIC, D. and ROCHA, C.F.D., 2016. Ecology of the bromeligenous frog Phyllodytes luteolus (Anura, Hylidae) from three restinga remnants across Brazil’s coast. Anais da Academia Brasileira de Ciências, vol. 88, no. 1, pp. 93-104. http://dx.doi.org/10.1590/0001-3765201620140380. PMid:26871497.
http://dx.doi.org/10.1590/0001-376520162...
in the state of Espírito Santo, for Phyllodytes luteolus; these studies found a predominance of ants and termites. The huge presence of termites (Termitidae) in the composition of the P. tuberculosus diet is due to the location of termite mounds, which are situated above bromeliads (personal observation) and are susceptible to seasonal variation. Termites, as well as other social organisms whose populations undergo seasonal reproductive effects, constitute a food resource that, when available, occurs in abundance (Noirot, 1989NOIROT, C., 1989. Social structure in termite societies. Ethology Ecology and Evolution, vol. 1, no. 1, pp. 1-17. http://dx.doi.org/10.1080/08927014.1989.9525528.
http://dx.doi.org/10.1080/08927014.1989....
). Thus, they must be exploited as a food resource within a short timeframe. These data explain the presence of a large number of termites concentrated in periods favorable to the termite colony (rainy periods).

Pertel et al. (2010)PERTEL, W., TEIXEIRA, R.L. and FERREIRA, R.B., 2010. Comparison of diet and use of bromeliads between a bromelicolous and a bromeligenous anuran at an inselberg in the southeastern of Brazil. Caldasia, vol. 32, no. 1, pp. 149-159. verify that Ololygon arduous (Peixoto, 2002), a bromeligenous treefrog species may forage outside the bromeliads. Although we registered some items in the diet that we did not observe inside the bromeliad (i.e. Mantodea), we cannot state that P. tuberculosus forage outside the plant, nor we can predicate that the species forage exclusive inside the phytotelma. Likewise we cannot rule out the possibility that items not recorded here may indeed exist within bromeliads but were not found within the plants we analyzed, whether because of the small number of plants analyzed, the period in which the bromeliads were collected or the prey’s sporadic use of the plant. However, we must add here that, during this study, we did not observe any P. tuberculosus individual outside the phytotelmata.

The alimentary importance index (IAi) allows the most appropriate distinction of relative importance of each food category, even given variations in terms volume and occurrence of categories (Kawakami and Vazzoler, 1980KAWAKAMI, E.E. and VAZZOLER, G., 1980. Método gráfico e estimativa de índice alimentar aplicado no estudo de alimentação de peixes. Boletim do Instituto Oceanográfico, vol. 29, no. 2, pp. 205-207. http://dx.doi.org/10.1590/S0373-55241980000200043.
http://dx.doi.org/10.1590/S0373-55241980...
). This analysis dilutes the effects of prey of high volume but low occurrence, and of prey that is frequent but very small in size (see Kawakami and Vazzoler, 1980KAWAKAMI, E.E. and VAZZOLER, G., 1980. Método gráfico e estimativa de índice alimentar aplicado no estudo de alimentação de peixes. Boletim do Instituto Oceanográfico, vol. 29, no. 2, pp. 205-207. http://dx.doi.org/10.1590/S0373-55241980000200043.
http://dx.doi.org/10.1590/S0373-55241980...
). In the present study we observed a high proportion of termites in the rainy period but the IAis indicated that the most important food categories in the studied species’ diet were coleopterans, followed by ants. Termites were considered only the third most important category (IAi = 0.267), possibly due to the cyclical nature of their occurrence. Leite-Filho et al. (2015)LEITE-FILHO, E., VIEIRA, W.L.S., SANTANA, G., ELOI, F.J. and MESQUITA, D.O., 2015. Structure of a Caatinga anuran assemblage in Northeastern Brazil. Neotropical Biology and Conservation, vol. 10, no. 2, pp. 63-73. http://dx.doi.org/10.4013/nbc.2015.102.02.
http://dx.doi.org/10.4013/nbc.2015.102.0...
observed the same pattern (higher importance values for coleoptera and ants) for Leptodactylys caatingae, L. macrosternum, Physalaemus albifrons, P. cicada, Proceratophrys cristiceps, Rhinella granulosa and R. jimi in a Caatinga area in Northeastern Brazil. The same result was also observed for other bromeligenous species (see Pertel et al., 2010PERTEL, W., TEIXEIRA, R.L. and FERREIRA, R.B., 2010. Comparison of diet and use of bromeliads between a bromelicolous and a bromeligenous anuran at an inselberg in the southeastern of Brazil. Caldasia, vol. 32, no. 1, pp. 149-159.). The lack of information about the diet of anurans from Caatinga prevent us to better explore hypotheses about the diet of anurans from this biome or the diet of bromeliads species of Caatinga.

We found no correlation between the morphological parameters of P. tuberculosus and the ingested contents, which suggests that the species consumes prey of various sizes. This data, together with the discussed above, suggests that the species diet reflects the composition of resources frequently or occasionally available in the phytotelma, what seems to be a pattern of bromeligenous frogs. Phyllodytes tuberculosus enjoys a vast array of food resources which could lead us to question the diet specialization raised by Araujo-Vieira et al. (2018)ARAUJO-VIEIRA, K., GOLÇALVES, U., SANTOS, J.G., FERREIRA, T.G. and SKUK, G., 2018. Feeding habits of the bromeligenous treefrog Phyllodytes edelmoi Peixoto, Caramaschi & Freire, 2003 (Anura: Hylidae) from the State of Alagoas, Northeastern Brazil. Cuadernos de Herpetología, vol. 32, no. 1, pp. 5-13. http://dx.doi.org/10.31017/CdH.2018.(2017-19).
http://dx.doi.org/10.31017/CdH.2018.(201...
, and in consequence, the use of this source of information as a synapomorphy for the group. These finds corroborate our premise the species would probably exhibit a generalist and opportunistic diet, most advantageous in strong seasonal environments.

The present study offers new data on the diet of P. tuberculosus, a species of restricted geographic occurrence, endemic to the Caatinga and transition areas in the interior of Bahia. It is also one of a small group of species with distribution in semiarid areas. The information presented here increases the knowledge about the genus, and it represents the first step to uncover the ecological and historical mechanisms that enable this species to occupy Caatinga environments.

Acknowledgements

The authors are grateful to Nathana Pereira, Marina Faraulo, Deivson Fraga, Tiago Reis for field assistance. Megan King for the English version. Iuri Dias and Cynthia P. A. Prado for earlier suggestion on the manuscript. This work was supported by the Fapesb under Grant 1262/2016.

  • (With 1 figure)

References

  • AMADO, T.F., 2014. Ecologia trófica de anfíbios anuros: relações filogenéticas em diferentes escalas Natal: Universidade Federal do Rio Grande do Norte, 71 p. Dissertação de Mestrado em Ecologia.
  • ANDRADE-LIMA, D., 1981. O domínio da Caatinga. Revista Brasileira de Botanica. Brazilian Journal of Botany, vol. 4, pp. 149-163.
  • ARAUJO-VIEIRA, K., GOLÇALVES, U., SANTOS, J.G., FERREIRA, T.G. and SKUK, G., 2018. Feeding habits of the bromeligenous treefrog Phyllodytes edelmoi Peixoto, Caramaschi & Freire, 2003 (Anura: Hylidae) from the State of Alagoas, Northeastern Brazil. Cuadernos de Herpetología, vol. 32, no. 1, pp. 5-13. http://dx.doi.org/10.31017/CdH.2018.(2017-19)
    » http://dx.doi.org/10.31017/CdH.2018.(2017-19)
  • BENZING, D.H. 2000. Bromeliaceae: profile of an adaptive radiation New York: Cambridge University Press, 690 p. http://dx.doi.org/10.1017/CBO9780511565175
    » http://dx.doi.org/10.1017/CBO9780511565175
  • BRANDÃO, R.A., GARDA, A., BRAZ, V. and FONSECA, B., 2003. Observations on the ecology of Pseudis bolbodactyla (Anura, Pseudidae) in central Brazil. Phyllomedusa, vol. 2, no. 1, pp. 3-8. http://dx.doi.org/10.11606/issn.2316-9079.v2i1p03-08
    » http://dx.doi.org/10.11606/issn.2316-9079.v2i1p03-08
  • CARAMASCHI, U. and PEIXOTO, O.L., 2004. A new species of Phyllodytes (Anura: Hylidae) from the State of Sergipe, Northeastern Brazil. Amphibia-Reptilia, vol. 25, no. 1, pp. 1-7. http://dx.doi.org/10.1163/156853804322992788
    » http://dx.doi.org/10.1163/156853804322992788
  • CRUZ, C.A.G., FEIO, R.N. and CARDOSO, M.C.S., 2006. Description of a new species of Phyllodytes Wagler, 1830 (Anura, Hylidae) from the Atlantic rain forest of the States of Minas Gerais and Bahia, Brazil. Arquivos do Museu Nacional. Museu Nacional (Brazil), vol. 64, no. 4, pp. 321-324.
  • DAS, I., 1996. Folivory and seasonal changes in diet in Rana hexadactyla (Anura: ranidae). Journal of Zoology, vol. 238, no. 4, pp. 785-794. http://dx.doi.org/10.1111/j.1469-7998.1996.tb05430.x
    » http://dx.doi.org/10.1111/j.1469-7998.1996.tb05430.x
  • ETEROVICK, P.C., 1999. Use and sharing of calling and retreat sites by Phyllodytes luteolus in a modified environment. Journal of Herpetology, vol. 33, no. 1, pp. 17-22. http://dx.doi.org/10.2307/1565538
    » http://dx.doi.org/10.2307/1565538
  • FERREIRA, R.F., SCHINEIDER, J.A.P. and TEIXEIRA, R.L., 2012. Diet, fecundity and use of bromeliads by Phyllodytes luteolus (Anura: Hylidae) in southeastern Brazil. Journal of Herpetology, vol. 46, no. 1, pp. 19-24. http://dx.doi.org/10.1670/09-040
    » http://dx.doi.org/10.1670/09-040
  • FRANK, J.H. and LOUNIBOS, L.P., 1983. Phytotelmata: terrestrial plants as hosts for aquatic insects communities Medford: Plexus Publishing, 293 p.
  • FRIEDMAN, D.A, GREENE, M.J. and GORDON, D.M., 2019. The physiology of forager hydration and variation among harvester ant (Pogonomyrmex barbatus) colonies in collective foraging behavior. Nature, vol. 5126, no. 2019, pp. 1-9.
  • FRITZ, E.S., 1974. Total diet comparison in fishes by Spearman rank correlation coefficients. Copeia, vol. 1, no. 1, pp. 210-214. http://dx.doi.org/10.2307/1443025
    » http://dx.doi.org/10.2307/1443025
  • FROST, D.R., 2019 [viewed 10 September 2019]. Amphibian species of the world: an online reference. Version 6.0 [online]. Available from: http://research.amnh.org/herpetology/amphibia/index.html
    » http://research.amnh.org/herpetology/amphibia/index.html
  • GARDA, A.A., STEIN, M.G., MACHADO, R.B., LION, M.B., JUNCÁ, F.A. and NAPOLI, M.F. 2017. Ecology, Biogeography, and Conservation of Amphibians of the Caatinga. In: FILHO, E.M.; LEAL, I.R.; TABARELLI, M., eds. Biodiversity, ecosystems services and sustainable development in Caatinga: the largest tropical dry forest region in South America Berlin: SpringerVerlag, pp. 133-149 http://dx.doi.org/10.1007/978-3-319-68339-3_5
    » http://dx.doi.org/10.1007/978-3-319-68339-3_5
  • HADDAD, C.F.B., TOLEDO, L.F., PRADO, C.P.A., LOEBMANN, D., GASPARINI, J.L. and SAZIMA, I., 2013. Guia de anfíbios da Mata Atlântica: diversidade de biologia São Paulo: Anolis books. 544 p.
  • HEYER, W.R., DONNELLY, M.A., MCDIARMID, R.W., HAYER, L.C. and FOSTER, M., 1994. Measuring and Monitoring biological diversity: standard methods for amphibians Washington: Smithsonian Books, 384 p.
  • HILLMAN, S.S., WHITHERS, P.C., DREWES, R.C. and HILLYARD, S.D., 2009. Ecological and environmental physiology of amphibians Nova York: Oxford University Press, 464 p.
  • HYSLOP, E.J., 1980. Stomach contents analysis - a review of methods and their application. Journal of Fish Biology, vol. 17, no. 4, pp. 411-479. http://dx.doi.org/10.1111/j.1095-8649.1980.tb02775.x
    » http://dx.doi.org/10.1111/j.1095-8649.1980.tb02775.x
  • INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS – INPE and PROGRAMA DE MONITORAMENTO CLIMÁTICO EM TEMPO REAL DA REGIÃO NORDESTE – PROCLIMA, 2018 [viewed 8 May 2018]. Programa de monitoramento climático em tempo real da região nordeste [online]. São José dos Campos: INPE. Available from: http://proclima.cptec.inpe.br/
    » http://proclima.cptec.inpe.br/
  • ISLAIR, P., CARVALHO, K.S., FERREIRA, F.C. and ZINA, J., 2015. Bromeliads in Caatinga: an oasis for invertebrates. Biotemas, vol. 28, no. 1, pp. 67-77. http://dx.doi.org/10.5007/2175-7925.2015v28n1p67
    » http://dx.doi.org/10.5007/2175-7925.2015v28n1p67
  • JARED, C., MAILHO-FONTANA, P.L., MENDELSON, J. and ANTONIAZZI, M.M., 2019. Life history of frog of the Brazilian semi-arid (Caatinga), with emphasis in aestivation. Acta Zoologica, vol. 2019, pp. 1-9. http://dx.doi.org/10.1111/azo.12295
    » http://dx.doi.org/10.1111/azo.12295
  • JUNCÁ, F.A. and BORGES, C.L.S., 2002. Fauna associada a bromélias terrícolas da Serra da Jibóia, Bahia. Sitientibus, vol. 2, pp. 73-81.
  • KAWAKAMI, E.E. and VAZZOLER, G., 1980. Método gráfico e estimativa de índice alimentar aplicado no estudo de alimentação de peixes. Boletim do Instituto Oceanográfico, vol. 29, no. 2, pp. 205-207. http://dx.doi.org/10.1590/S0373-55241980000200043
    » http://dx.doi.org/10.1590/S0373-55241980000200043
  • KITCHING, R.L., 2000. Food webs and container habitats: the natural history and ecology of phytotelmata Cambridge: Cambridge University Press, 448 p. http://dx.doi.org/10.1017/CBO9780511542107
    » http://dx.doi.org/10.1017/CBO9780511542107
  • KITCHING, R.L., 2001. Food webs in phytotelmata: “bottom-up” and “top-down” explanations for community structure. Annual Review of Entomology, vol. 4, no. 1, pp. 729-760. http://dx.doi.org/10.1146/annurev.ento.46.1.729 PMid:11112185.
    » http://dx.doi.org/10.1146/annurev.ento.46.1.729
  • KROL, M.S., JAEGER, A., BRONSTERT, A. and KRYWKOW, J., 2001. The semiarid integrated model (SDIM), a regional integrated model assessing water availability, vulnerability of ecosystems and society in NE-Brazil. Physics and Chemistry of the Earth, vol. 26, no. 7-8, pp. 529-533. http://dx.doi.org/10.1016/S1464-1909(01)00045-4
    » http://dx.doi.org/10.1016/S1464-1909(01)00045-4
  • LEITE-FILHO, E., VIEIRA, W.L.S., SANTANA, G., ELOI, F.J. and MESQUITA, D.O., 2015. Structure of a Caatinga anuran assemblage in Northeastern Brazil. Neotropical Biology and Conservation, vol. 10, no. 2, pp. 63-73. http://dx.doi.org/10.4013/nbc.2015.102.02
    » http://dx.doi.org/10.4013/nbc.2015.102.02
  • LIEBERMAN, S.S., 1986. Ecology of the leaf litter herpetofauna of a Neotropical rain forest: la selva, Costa Rica. Acta Zoológica Mexicana, vol. 15, pp. 1-72.
  • LIMA, A. and MOREIRA, G., 1993. Effects of prey size and foraging mode on the ontogenetic change in feeding niche of Colostethus stepheni (Anura: dendrobatidae). Oecologia, vol. 95, no. 1, pp. 93-102. http://dx.doi.org/10.1007/BF00649512 PMid:28313317.
    » http://dx.doi.org/10.1007/BF00649512
  • MACNAMARA, M.C., 1977. Food habits of terrestrial adult migrants and immature red effects of the red-spotted newt Notophtalmus viridescens. Herpetologica, vol. 33, pp. 127-132.
  • MESTRE, L.A.M., ARANHA, J.M. and ESPER, M.L.P., 2001. Invertebrate fauna associated to the bromeliad Vriesea inlata of the Atlantic Forest (Paraná State, Southern, Brazil). Brazilian Archives of Biology and Technology, vol. 44, no. 1, pp. 89-94. http://dx.doi.org/10.1590/S1516-89132001000100012
    » http://dx.doi.org/10.1590/S1516-89132001000100012
  • MOTTA-TAVARES, T., MAIA-CARNEIRO, T., DANTAS, L.F., SLUYS, M.V., HATANO, F.H., VRCIBRADIC, D. and ROCHA, C.F.D., 2016. Ecology of the bromeligenous frog Phyllodytes luteolus (Anura, Hylidae) from three restinga remnants across Brazil’s coast. Anais da Academia Brasileira de Ciências, vol. 88, no. 1, pp. 93-104. http://dx.doi.org/10.1590/0001-3765201620140380 PMid:26871497.
    » http://dx.doi.org/10.1590/0001-3765201620140380
  • NOIROT, C., 1989. Social structure in termite societies. Ethology Ecology and Evolution, vol. 1, no. 1, pp. 1-17. http://dx.doi.org/10.1080/08927014.1989.9525528
    » http://dx.doi.org/10.1080/08927014.1989.9525528
  • OLIVEIRA, M.G.N., ROCHA, C.F.D. and BAGNALL, T., 1994. A comunidade animal associada à bromélia tanque Neoregelia cruenta (R. Graham) L. B. Smith. Bromélia, vol. 1, pp. 22-29.
  • PEEL, M.C., FINLAYSON, B.L. and MCMAHON, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, vol. 11, no. 5, pp. 1633-1644. http://dx.doi.org/10.5194/hess-11-1633-2007
    » http://dx.doi.org/10.5194/hess-11-1633-2007
  • PEIXOTO, O.L. and CRUZ, C.A.G., 1988. Descrição de duas espécies novas do gênero Phylodytes Wagler (Amphibia, Anura, Hylidae). Revista Brasileira de Biologia, vol. 48, no. 2, pp. 265-272.
  • PEIXOTO, O.L., 1995. Associação de anuros a Bromeliaceas na Mata Atlântica. Revista de Ciências da Vida, vol. 17, no. 2, pp. 75-83.
  • PEIXOTO, O.L., CARAMASCHI, U. and FREIRE, E.M.X., 2003. Two new species of Phyllodytes (Anura: Hylidae) from the state of Alagoas, Northeastern Brazil. Herpetologica, vol. 59, no. 2, pp. 235-246. http://dx.doi.org/10.1655/0018-0831(2003)059[0235:TNSOPA]2.0.CO;2
    » http://dx.doi.org/10.1655/0018-0831(2003)059[0235:TNSOPA]2.0.CO;2
  • PERTEL, W., TEIXEIRA, R.L. and FERREIRA, R.B., 2010. Comparison of diet and use of bromeliads between a bromelicolous and a bromeligenous anuran at an inselberg in the southeastern of Brazil. Caldasia, vol. 32, no. 1, pp. 149-159.
  • PICADO, C., 1913. Les broméliacées épiphytes considérées comme milieu biologique. Bulletin scientifique de la France et de la Belgique, vol. 7, pp. 215-360.
  • PINTO, T.M., 2011. Ecologia alimentar de uma taxocenose de anuros terrestres no Brasil Central Brasília: Instituto de Biologia, Universidade de Brasília, 101 p. Dissertação de Mestrado em Biologia Animal.
  • POUGH, F.H., ANDREWS, R.M., CADLE, J.E., CRUMP, M.L., SAVITZKY, A.H. and WELLS, K.D., 1998. Herpetology New Jersey: Prentice Hall, 612 p.
  • REITZ, R., 1983. Bromeliáceas e a malária – bromélia endêmica Itajaí: Herbário Barbosa Rodrigues, 559 p.
  • RICHARDSON, B.A., 1999. The bromeliad microcosm and the assessment of faunal diversity in a Neotropical forest. Biotropica, vol. 31, no. 2, pp. 321-336. http://dx.doi.org/10.1111/j.1744-7429.1999.tb00144.x
    » http://dx.doi.org/10.1111/j.1744-7429.1999.tb00144.x
  • ROCHA, C.F.D., COGLIATTI-CARVALHO, L., ALMEIDA, D. R. and NUNES-FREITAS, A. F., 1997. Bromélias: ampliadoras da biodiversidade. Bromélia, vol. 4, pp. 7-10.
  • SALINAS, A.S., COSTA, R.N., ORRICO, V.G.D. and SOLÉ, M., 2018. Tadpoles of the bromeliad-dwelling frog Phyllodytes luteolus are able to prey on mosquito larvae. Ethology Ecology and Evolution, vol. 30, no. 2018, pp. 485-496.
  • SANTOS, E.M. and SILVA, G.L., 2010. Geographic distribution: Phyllodytes acuminatus. Herpetological Review, vol. 41, pp. 104.
  • SIH, A. and CHRISTENSEN, B., 2001. Optimal diet theory: when does it work, and when and why does it fail? Animal Behaviour, vol. 61, no. 2, pp. 379-390. http://dx.doi.org/10.1006/anbe.2000.1592
    » http://dx.doi.org/10.1006/anbe.2000.1592
  • SIMON, M.P. and TOFT, C.A., 1991. Diet specialization in small vertebrates: miteseating in frogs. Oikos, vol. 61, no. 2, pp. 263-278. http://dx.doi.org/10.2307/3545344
    » http://dx.doi.org/10.2307/3545344
  • SOLÉ, M. and RODDER, D. 2009. Dietary assessments of adult amphibians. In: R. C. KENNETH DODD, ed. Amphibian ecology and conservation: a handbook of techniques Oxford: Oxford University Press, pp. 167-184.
  • SOLÉ, M., BECKMANN, O., PELZ, B., KWET, A. and ENGELS, W., 2005. Stomach-flushing for diet analysis in anurans: an improved protocol evaluated in a case study in Araucaria forests, southern Brazil. Studies on Neotropical Fauna and Environment, vol. 40, no. 1, pp. 23-28. http://dx.doi.org/10.1080/01650520400025704
    » http://dx.doi.org/10.1080/01650520400025704
  • SUPERINTENDÊNCIA DE ESTUDOS ECONÔMICOS E SOCIAIS DA BAHIA – SEI, 2003 [viewed 10 may 2016]. Mapa pluviométrico do estado da Bahia [online]. Salvador: SEI. Available from: https://www.sei.ba.gov.br/site/geoambientais/mapas/pdf/mapa_pluviometria.pdf
    » https://www.sei.ba.gov.br/site/geoambientais/mapas/pdf/mapa_pluviometria.pdf
  • ZAVALA-CAMIN, L.A., 1996. Introdução aos estudos sobre alimentação natural em peixes. Maringá: Eduem/Nupelia, 129 p.

Publication Dates

  • Publication in this collection
    20 May 2020
  • Date of issue
    Mar-May 2021

History

  • Received
    08 Oct 2019
  • Accepted
    05 Dec 2019
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br