Acessibilidade / Reportar erro

Genetic parameters and selection of biofortified lettuce genotypes based on selection indices1 1 Research developed at Monte Carmelo, MG, Brazil

Parâmetros genéticos e seleção de genótipos de alface biofortificadas com base em índices de seleção

ABSTRACT

Obtaining biofortified vegetables with an emphasis on lettuce is a tool to improve the nutritional status of the population. Selection indices can maximize the simultaneous selection of good agronomic traits and high carotenoid levels. The objective of this study was to estimate the genetic parameters and efficiency of different indices in selecting genotypes of biofortified lettuce with high concentrations of carotenoids and favorable agronomic traits. Statistical analyses were performed on 91 genotypes belonging to the vegetable germplasm bank of the Federal University of Uberlândia, Brazil. The variables analyzed were the chlorophyll index of the leaves, plant diameter, stem diameter, and number of leaves per plant. The values found for narrow sense heritability (h²) ranged from 89.63% (stem diameter) to 96.05% (chlorophyll), showing a high magnitude. The Smith-Hazel index, sum of ranks by the Mulamba & Mock index, direct and indirect selection, and Williams base index were used to predict the selection gains. A total of 17 individuals were selected using the selection methodologies. The Smith-Hazel, Williams, and Mulamba & Mock indices were efficient in showing good direct gains for the evaluated traits. Thirteen genotypes were selected for all indices presenting suitable agronomic traits, which show promise for advancing generations within the breeding program to obtain biofortified lettuce strains.

Key words:
Lactuca sativa L.; biofortification; correlation; selection gain

RESUMO

A obtenção de vegetais biofortificados, com destaque para a alface, é uma ferramenta para melhorar o estado nutricional da população. Os índices de seleção podem maximizar a seleção simultânea de boas características agronômicas e altos níveis de carotenoides. O objetivo deste estudo foi estimar os parâmetros genéticos e a eficiência de diferentes índices para a seleção de genótipos de alface biofortificados combinados com características agronômicas adequadas. As análises estatísticas foram realizadas com 91 genótipos pertencentes ao banco de germoplasma de alface biofortificada da Universidade Federal de Uberlândia. As variáveis analisadas foram: índice de clorofila das folhas, diâmetro da planta, diâmetro do caule e número de folhas por planta. Os valores encontrados para herdabilidade no sentido restrito (h²) variaram de 89,63% (diâmetro do caule) a 96,05% (clorofila), apresentando alta magnitude. O índice de Smith-Hazel, a soma de “ranks” de Mulamba & Mock, a seleção direta e indireta e o índice base de Williams foram usados para prever os ganhos de seleção. No total, 17 indivíduos foram selecionados usando as metodologias de seleção. Os índices de Smith-Hazel, Williams e Mulamba & Mock são eficientes em mostrar bons ganhos diretos para as características avaliadas. Treze genótipos foram selecionados por todos os índices apresentando características agronômicas favoráveis, sendo promissores para o avanço de geração no programa de melhoramento para obter linhagens de alface biofortificadas.

Palavras-chave:
Lactuca sativa L.; biofortificação; correlação; ganho de seleção

HIGHLIGHTS:

There is genetic variability in the germplasm of biofortified lettuce.

There is a positive genotypic correlation between agronomic traits in biofortified lettuce.

Smith-Hazel, Williams, and Mulamba & Mock indices showed good direct gains in biofortified lettuce genotypes.

Introduction

Lettuce (Lactuca sativa L.) is one of the most consumed vegetables in the world; consequently, there is a market demand for high-quality lettuce (Candido et al., 2017Candido, W. S.; Tobar-Tosse, D. E.; Soares, R. S.; Santos, L. S.; Franco, C. A.; Braz, L. T. Selection of loose-leaf lettuce breeding lines based on non-parametric indexes. African Journal of Biotechnology, v.16, p.1984-1989, 2017. https://doi.org/10.5897/AJB2017.16176
https://doi.org/10.5897/AJB2017.16176...
). Additionally, the consumption of biofortified vegetables has become essential for improving the nutritional status of those with nutritional deficiencies in the population.

Among the various constituents that characterize biofortification, carotenoids are of great relevance in several species (Machada Junior et al., 2017Machada Junior, R.; Gomes, R. S.; Almeida, C. F.; Alves, F. M.; Delazari, F. T.; Laurindo, R. D. F.; Fernandes, R. H.; Silva, D. J. H. Vegetable breeding as a strategy of biofortification in carotenoids and prevention of vitamin A deficiency. African Journal of Agricultural Research, v.12, p.1059-1066, 2017. https://doi.org/10.5897/AJAR2016.11895
https://doi.org/10.5897/AJAR2016.11895...
; Oliveira et al., 2018Oliveira, V. C.; Faquin, V.; Guimarães, K. C.; Andrade, F. B.; Pereira, J.; Guilherme, L. R. G. Agronomic biofortification of carrot with selenium. Ciência e Agrotecnologia , v.42, p.138-147, 2018. https://doi.org/10.1590/1413-70542018422031217
https://doi.org/10.1590/1413-70542018422...
); however, studies on the biofortification of lettuce are limited. In addition, a positive correlation was observed between carotenoid and chlorophyll concentrations measured indirectly using the soil plant analysis development (SPAD) index (Silva et al., 2014Silva, M. A.; Santos, C. M.; Vitorino, H. S.; Rhein, A. F. L. Pigmentos fotossintéticos e índice SPAD como descritores de intensidade do estresse por deficiência hídrica em cana-de-açúcar. Bioscience Journal, v.1, p.173-181, 2014.; Cassetari et al., 2015Cassetari, L. S.; Gomes, M. S.; Santos, D. C.; Santiago, W. D.; Andrade, J.; Guimarães, A. C.; Souza, J. A.; Cardoso, M. G.; Maluf, W. R.; Gomes, L. A. β-Carotene and chlorophyll levels in cultivars and breeding lines of lettuce. Acta Horticulturae, v.1083, p.469-474, 2015. https://doi.org/10.17660/ActaHortic.2015.1083.60
https://doi.org/10.17660/ActaHortic.2015...
). In this way, the indirect selection of superior individuals with higher carotenoid concentrations is possible by measuring the chlorophyll index. Currently, there are no commercial lettuce cultivars available that have desirable agronomic traits along with a high carotenoid concentration. This may be due to the limited knowledge of the variables that govern the genetic inheritance of chlorophyll production and the main agronomic traits of interest in lettuce (Oliveira et al., 2019Oliveira, A. H. G.; Maciel, G. M.; Jacinto, A. C. P.; Silveira, A. J.; Silva, E. C. Estimates of genetic parameters of pigments and agronomic traits in green and purple lettuce. Ciência e Agrotecnologia, v.43, p.1-8, 2019. https://doi.org/10.1590/1413-7054201943013219
https://doi.org/10.1590/1413-70542019430...
).

Estimates of the parameters of variability, heritability, and genetic gain are reliable indicators for the improvement of the characteristics of a particular genetic material through selection (Kumar et al., 2015Kumar, R.; Kumar, M.; Dogra, R. K.; Bharat, N. K. Variability and character association studies in garden pea (Pisum sativum var. hortense L.) during winter season at mid hills of Himachal Pradesh. Legume Research, v.38, p.164-168, 2015. https://doi.org/10.5958/0976-0571.2015.00051.X
https://doi.org/10.5958/0976-0571.2015.0...
). In addition, knowledge of the correlation between complex traits, such as the yield and its component characteristics, is of considerable importance for a rational approach to yield improvement (Samnotra et al., 2012Samnotra, R. K.; Gupta, A.; Gupta, R. K.; Sharma, R.; Verma, V. S. Character association and path co-efficient studies in lettuce (Lactuca sativa L.) under temperate conditions of Jammu & Kashmir. Vegetos, v.25, p.308-312, 2012.).

Selection indices allow several characteristics to be improved simultaneously, regardless of the existence of a correlation among them (Cruz et al., 2014Cruz, C. D.; Carneiro, P. C. S.; Regazzi, A. J. Modelos biométricos aplicados ao melhoramento genético. 3.ed. Viçosa: UFV, 2014. 668p. ), but there have been limited studies on lettuce strains. Thus, the objective of this study was to estimate the genetic parameters and efficiency of different indices in selecting genotypes of biofortified lettuce with high concentrations of carotenoids and favorable agronomic traits.

Material and Methods

The experiment was carried out under field conditions between February and April 2016 in the city of Monte Carmelo, Brazil (18º 42’ 43.19” S, 47º 29’ 55.8” W; 873 m above sea level). The mean, minimum, and maximum temperatures during the experimental period were 23.54, 18.72, and 30.31 °C, respectively, with a mean relative air humidity of 77.85% and a total precipitation of 426.8 mm (Figures 1A and B).

Figure 1
(A) Maximum, minimum, and mean temperature, and (B) precipitation and relative air humidity during the experimental period

A total of 91 genotypes were evaluated, with 86 lettuce genotypes from the hybridization between Pira 72 and Uberlândia 10000, which is rich in carotenoids (Sousa et al., 2007Sousa, C. S.; Bonetti, A. M.; Goulart Filho, L. R.; Machado, J. R. A.; Londe, L. N.; Baffi, M. A.; Ramos, R. G.; Vieira, C. U.; Kerr, W. E. Divergência genética entre genótipos de alface por meio de marcadores AFLP. Bragantia, v.66, p.11-16, 2007.https://doi.org/10.1590/S0006-87052007000100002
https://doi.org/10.1590/S0006-8705200700...
), followed by three successive self-fertilizations carried out between 2013 and 2016. A pedigree breeding method was used.

These genotypes are registered at the Federal University of Uberlândia’s Biofortified Lettuce Genetic Improvement Program, and the entire genealogy is stored in the “BG α BIOFORT” software registered at INPI BR512019002403-6 (Maciel et al., 2019Maciel, G. M.; Siquieroli, A. C. S.; Gallis, R. B. A.; Pereira, L. M.; Sales, V. F. BG a BIOFORT. 2019. Patent: Computer program. Registration number: BR512019002403-6, registration date: 10/29/2019, title: “BG a BIOFORT”, Registration institution: Universidade Federal de Uberlândia-UFU, 2019.). Five controls were used: the commercial cultivars Grand Rapids, Pira 72, and Robusta, with low carotenoid concentrations; cv. UFU-Biofort and genotype Uberlândia 10000 (Sousa et al., 2007Sousa, C. S.; Bonetti, A. M.; Goulart Filho, L. R.; Machado, J. R. A.; Londe, L. N.; Baffi, M. A.; Ramos, R. G.; Vieira, C. U.; Kerr, W. E. Divergência genética entre genótipos de alface por meio de marcadores AFLP. Bragantia, v.66, p.11-16, 2007.https://doi.org/10.1590/S0006-87052007000100002
https://doi.org/10.1590/S0006-8705200700...
), with high carotenoid concentrations.

Sowing was carried out in expanded polystyrene trays of 200 cells filled with the commercial substrate (70% sphagnum peat + 30% vermiculite + limestone; electrical conductivity = 0.7 mS cm-1, pH = 5.5 ± 0.25, water holding capacity = 350 mm; dry density = 130 kg m-3). After sowing, the trays were maintained in an arch-type greenhouse, with dimensions of 5 × 6 m and a 3.5 m high ceiling, covered with 150-micron transparent polyethylene film, which was protective against ultraviolet rays, and side curtains made of white anti-aphid screens.

Twenty-five days after sowing, the seedlings were transplanted to the field in 1.25 m seedbeds, which were previously prepared by a rotary harvester. These were fertilized according to recommendations required by the crop(Filgueira, 2013Filgueira, F. A. R. Novo manual de olericultura: Agrotecnologia moderna na produção e comercialização de hortaliças. 3.ed. Viçosa: UFV , 2013. 412p.), which consisted of the application of 643 kg ha-1 of the N-P-K formula (4-14-8) applied at the time of the transplant, and weekly fertilization with the N-P-K formula of 20-5-20 (5 g per plant), and 50 g ha-1 of the mineral calcium borate Calbor®. The soil, classified as Oxisol, presented the following characteristics: clay texture, containing more than 50% clay in its composition; pH in CaCl2 = 4.9; organic matter = 3.9 dag kg-1; P Mehlich-1 = 79.1 mg dm-3; K = 0.29 cmolc dm-3; Ca = 3.3 cmolc dm-3; Mg = 1.3 cmolc dm-3; H + Al = 4.9 cmolc dm-3; sum of bases = 4.90 cmolc dm-3; T = 9.80 cmolc dm-3; V% = 50. Each plot consisted of 20 plants with a spacing of 25 × 25 cm. Six central plants were evaluated.

Forty-five days after transplantation, the following evaluations were performed: (1) chlorophyll index, measured using the chlorophyll meter SPAD (Minolta SPAD-502 CFL1030 model), with an accuracy of ± 1.0 SPAD unit, for values between 0.0 and 50.0 at normal temperature or humidity on the median leaf of the plant in the morning; (2) plant diameter (cm) using a graduated ruler; (3) stem diameter (mm) using digital calipers; and (4) the number of leaves per plant.

The statistical design used was randomized blocks with 91 treatments and three replicates. To assess the existence of genetic variability for the quantitative traits, an analysis of variance (ANOVA) was performed using the following statistical model:

y i j = μ + b j + g i + e i j (1)

where:

yij - observation of the i-th genotype in the j-th block;

μ - fixed effect of the general mean;

bj - effect of the j-th block;

gi - effect of the i-th genotype; and,

eij - experimental error.

The data obtained were analyzed to estimate the selection gain. In addition, the F test (p ≤ 0.01) was performed to obtain the mean square (MS) and coefficient of variation (CV). The coefficient of genetic variation (CVg), the ratio between the CVg and the coefficient of experimental variation (CVe): CVg/CVe, and the narrow sense heritability (h2) for each variable were also assessed. The h2 was calculated using the following equations:

h 2 = σ p 2 G M S r (2)

σ p 2 = G M S - E M S r (3)

where:

h² - narrow sense heritability;

σp 2 - variance component;

GMS - genotype mean square;

EMS - error mean square; and,

R - number of replicates.

The CVg and (CVe) were calculated using Eqs. 4 and 5:

C V g % = σ p 0 . 5 M 100 (4)

C V e = σ E M 100 (5)

where:

σE - standard deviation of the experimental residue, equal to EMS0.5; and,

M - experimental average.

The genotypic correlation estimator was:

r g = σ g x y σ g x 2 σ g y 2 (6)

where:

rg - genotypic correlation estimator;

X and Y - traits analyzed;

σgxy - genotypic covariance between X and Y; and,

σgx2 and σgy2 - genotypic variance estimators of X and Y, respectively (Cruz et al., 2014Cruz, C. D.; Carneiro, P. C. S.; Regazzi, A. J. Modelos biométricos aplicados ao melhoramento genético. 3.ed. Viçosa: UFV, 2014. 668p. ).

The estimates of the selection gains were obtained through methodologies using different indices, such as direct and indirect selection (Cruz et al., 2014Cruz, C. D.; Carneiro, P. C. S.; Regazzi, A. J. Modelos biométricos aplicados ao melhoramento genético. 3.ed. Viçosa: UFV, 2014. 668p. ), the classic index proposed by Smith (1936Smith, H. F. A discriminant function for plant selection. Annals of Eugenics, v.7, p.240-250, 1936. https://doi.org/10.1111/j.1469-1809.1936.tb02143.x
https://doi.org/10.1111/j.1469-1809.1936...
) and Hazel (1943Hazel, L. N. The genetic basis for constructing selection indexes. Genetics, v.28, p.476-490, 1943. https://doi.org/10.1093/genetics/28.6.476
https://doi.org/10.1093/genetics/28.6.47...
), Mulamba & Mock rank index (1978Mulamba, N. N.; Mock, J. J. Improvement of yield potential of the Eto Blanco maize (Zea may L.) population by breeding for plant traits. Egyptian Journal of Genetic Cytology, v.7, p.40-51, 1978.), and Williams base index (1962Williams, J. S. The evaluation of a selection index. Biometrics, v.18, p.375-393, 1962. https://doi.org/10.2307/2527479
https://doi.org/10.2307/2527479...
). The selection intensity was set at 20%. The selection gain was obtained through the product of the heritability value by the selection differential value, and the results are presented as percentage values (Eq. 7):

S G % = X s i - X o i h i 2 100 = D S i h 2 100 (7)

where:

SG(%) - selection gain in percentage;

Xsi - average of the strains selected for character i;

Xoi - original average of the population;

DSi - selection differential practiced in the population;

h²i - heritability of character i; and,

h2 - narrow sense heritability.

The Smith (1936Smith, H. F. A discriminant function for plant selection. Annals of Eugenics, v.7, p.240-250, 1936. https://doi.org/10.1111/j.1469-1809.1936.tb02143.x
https://doi.org/10.1111/j.1469-1809.1936...
) and Hazel (1943Hazel, L. N. The genetic basis for constructing selection indexes. Genetics, v.28, p.476-490, 1943. https://doi.org/10.1093/genetics/28.6.476
https://doi.org/10.1093/genetics/28.6.47...
) indices were estimated using the selection index (I) and the genotypic aggregate (H) (Eqs. 8 and 9):

I = b 1 y 1 + b 2 y 2 + . . . + b n y n = i - 1 n b i y i = y ' b (8)

H = a 1 g 1 + a 2 g 2 + . . . + a n g n = i - 1 n a i g i = g ' a (9)

where:

n - number of characters evaluated;

b - vector of dimension 1 × n of the weighting coefficients of the selection index to be estimated;

y - dimension matrix n × p (plants) of phenotypic values of the characters;

a - vector of dimension 1 × n of previously established economic weights; and,

g - n × p dimension matrix of unknown genetic values of the n characters considered.

The vector used was:

b = P - 1 G a

where:

P-1 - inverse of the matrix, dimension n × n, of phenotypic variances, and covariance between the characters; and,

Ga - matrix, dimension n × n, of the genetic variances, and covariance between the characters.

The expected gain for character j was expressed by Eq. 10:

Δ g i i = D S i i h 2 j (10)

where:

∆gj(i) - expected gain for character j, with selection based on index I;

DSj(i) - selection differential for character j, with selection based on index I; and,

h2j - heritability of character j.

In the Mulamba & Mock index, the order of each genotype was added, resulting in the selection index, as described in Eq. 11:

I = r 1 + r 2 + . . . + r n (11)

where:

I - value of the index for a given individual or family;

rj - classification (or “rank”) of an individual in relation to the j-th character; and,

n - number of characters considered in the index.

Weights were given by:

I = p 1 r 1 + p 2 r 2 + . . . + p n r n (12)

where:

pj - economic weight attributed to the j-th character.

For the Williams index, the following index was used as the selection criterion (Eq. 13):

I = a 1 y 1 + a 2 y 2 + . . . + a n y n = i - 1 n a i y i = y ' a (13)

where:

y - averages; and,

a - economic weights of the characters studied.

The selection criterion used was increased for all traits for direct and indirect selection (Mulamba & Mock, 1978Mulamba, N. N.; Mock, J. J. Improvement of yield potential of the Eto Blanco maize (Zea may L.) population by breeding for plant traits. Egyptian Journal of Genetic Cytology, v.7, p.40-51, 1978.; Smith, 1936Smith, H. F. A discriminant function for plant selection. Annals of Eugenics, v.7, p.240-250, 1936. https://doi.org/10.1111/j.1469-1809.1936.tb02143.x
https://doi.org/10.1111/j.1469-1809.1936...
; Hazel, 1943Hazel, L. N. The genetic basis for constructing selection indexes. Genetics, v.28, p.476-490, 1943. https://doi.org/10.1093/genetics/28.6.476
https://doi.org/10.1093/genetics/28.6.47...
; Williams, 1962Williams, J. S. The evaluation of a selection index. Biometrics, v.18, p.375-393, 1962. https://doi.org/10.2307/2527479
https://doi.org/10.2307/2527479...
) indices. The economic weight adopted was the coefficient of genetic variation for each variable, as recommended by Cruz (2012Cruz, C. D. Simultaneous selection in progenies of yellow passion fruit using selection indices. Revista Ceres, v.59, p.95-101, 2012. https://doi.org/10.1590/S0034-737X2012000100014
https://doi.org/10.1590/S0034-737X201200...
). The data were analyzed using the GENES software (version 2015.5.0) (Cruz, 2013Cruz, C. D. GENES: A software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy, v.35, p.271-276, 2013. ).

Results and Discussion

Genetic variability was observed in the following characteristics: chlorophyll index, plant diameter, stem diameter, and number of leaves (Table 1). Therefore, it is possible to select agronomically superior accessions for these traits (Cruz, 2012Cruz, C. D. Simultaneous selection in progenies of yellow passion fruit using selection indices. Revista Ceres, v.59, p.95-101, 2012. https://doi.org/10.1590/S0034-737X2012000100014
https://doi.org/10.1590/S0034-737X201200...
).

Table 1
Mean squares, coefficients of variance, and genetic parameters of variables analyzed in 91 lettuce genotypes

The CVe ranged from 13.20% for plant diameter to 19.19% for stem diameter (Table1). In this study, the CVe were considered to be medium, demonstrating the good precision of the experiment. According to Pimentel-Gomes (2009Pimentel-Gomes, F. Curso de estatística experimental. 15.ed. Piracicaba: FEALQ, 2009. 451p.), in field conditions, CV values below 10% are considered low, medium if between 10 and 20%, high if between 20 and 30%, and very high if above 30%.

Cândido et al. (2017) found CV values of 7.79% for the number of leaves in lettuce. Peixoto et al. (2020Peixoto, J. V. M.; Maciel, G. M.; Siquieroli, A. C. S.; Pereira, L. M.; Luz, J. M. Q.; Marques, D. J. Comparison between non-parametric indexes in the selection of biofortified curly lettuce. Comunicata Scientiae v.11, p.1-9, 2020. https://doi.org/10.14295/cs.v11i.3351
https://doi.org/10.14295/cs.v11i.3351...
), in their study on biofortified curly lettuce, found CV values similar to those found in the present study for stem diameter (11.99%), and lower values for the number of leaves (9.77%), plant diameter (7.99%), and SPAD index (6.24%).

The CVg is an important parameter that makes it possible to determine the magnitude of genetic variability in the population for all the characters being analyzed (Vencovsky & Barriga, 1992Vencovsky, R.; Barriga, P. Genética biométrica no fitomelhoramento. Ribeirão Preto: Sociedade Brasileira de Genética, 1992. 496p.). The CVg had values between 16.76% for the plant diameter and 23.33% for the chlorophyll index (Table 1), indicating that these traits had large amounts of genetic variability.

Souza et al. (2008Souza, M. C. M.; Resende, L. V.; Menezes, D.; Loges, V.; Soute, T. A.; Santos, V. F. Variabilidade genética para características agronômicas em progênies de alface tolerantes ao calor. Horicultura Brasileira, v.26, p.354-358, 2008. https://doi.org/10.1590/S0102-05362008000300012
https://doi.org/10.1590/S0102-0536200800...
) characterized heat-tolerant lettuce progenies and observed CVg values of 6.39% for plant diameter and 6.97% for the number of leaves. However, there were differences between the genotypes, which could account for the disparity in the results.

The variables for h² in the present study, with values in ascending order, were as follows: stem diameter (89.63%), number of leaves (92.23%), plant diameter (94.15%), and chlorophyll index (96.05%) (Table 1). These values show that the genotype has a greater effect on the evaluated trait, and the h2 is considered high for values greater than 0.7 (Baldissera et al., 2014Baldissera, J. N. da C.; Valentini, G.; Coan, M. M. D.; Guidolin, A. F.; Coimbra, J. L. M. Genetics factors related with the inheritance in autogamous plant populations. Journal of Agroveterinary Sciences, v.13, p.181-189, 2014.). Characters with a high h2 indicate a high component of the inheritable fraction of the variation (genetic component) in their phenotypic expressions, demonstrating that gains can be achieved through visual selection (Silva et al., 2019Silva, O. M. P.; Lopes, W. A. R.; Nunes, J. H. S.; Negreiros, M. Z.; Espínola Sobrinho, J. Adaptability and phenotypic stability of lettuce cultivars in a semiarid region. Revista Caatinga, v.32, p.552-558, 2019. https://doi.org/10.1590/1983-21252019v32n228rc
https://doi.org/10.1590/1983-21252019v32...
), as performed in the present study

Peixoto et al. (2020Peixoto, J. V. M.; Maciel, G. M.; Siquieroli, A. C. S.; Pereira, L. M.; Luz, J. M. Q.; Marques, D. J. Comparison between non-parametric indexes in the selection of biofortified curly lettuce. Comunicata Scientiae v.11, p.1-9, 2020. https://doi.org/10.14295/cs.v11i.3351
https://doi.org/10.14295/cs.v11i.3351...
) estimated the genetic parameters of eight variables analyzed in 25 lettuce genotypes from the same breeding program (generation F7) and also found high h2 values for the number of leaves (91.42%), SPAD index (95.96%), and plant diameter (72.77%), confirming the high magnitude of h2 for these traits. In contrast to this study, Oliveira et al. (2019Oliveira, A. H. G.; Maciel, G. M.; Jacinto, A. C. P.; Silveira, A. J.; Silva, E. C. Estimates of genetic parameters of pigments and agronomic traits in green and purple lettuce. Ciência e Agrotecnologia, v.43, p.1-8, 2019. https://doi.org/10.1590/1413-7054201943013219
https://doi.org/10.1590/1413-70542019430...
) found low heritability estimates of 6.94% for the chlorophyll index, which may be related to the fact that although it was carried out in the same experimental area with the same cultural practices, different parents were used. Thakur et al. (2016Thakur, M.; Kumar, R.; Kumar, S. Studies on genetic variability, correlation and path analysis in lettuce (Lactuca sativa L.) under protected conditions. Journal of Natural and Appled Science, v.8, p.1924-1930, 2016. https://doi.org/10.31018/jans.v8i4.1064
https://doi.org/10.31018/jans.v8i4.1064...
) found a heritability value of 58.10% for β-carotene in lettuce, which may have been influenced by the fact that the experiment was conducted under protected conditions.

The values obtained for the CVg/CVe ratio were close to or greater than one for all the evaluated traits, which corroborates that genetic variation is the main factor responsible for the estimated variation of the character, as when the CVg/CVe ratio approaches a value of one or greater, the selection gain is increased (Vencovsky & Barriga, 1992Vencovsky, R.; Barriga, P. Genética biométrica no fitomelhoramento. Ribeirão Preto: Sociedade Brasileira de Genética, 1992. 496p.). Similar results were also observed by Souza et al. (2008Souza, M. C. M.; Resende, L. V.; Menezes, D.; Loges, V.; Soute, T. A.; Santos, V. F. Variabilidade genética para características agronômicas em progênies de alface tolerantes ao calor. Horicultura Brasileira, v.26, p.354-358, 2008. https://doi.org/10.1590/S0102-05362008000300012
https://doi.org/10.1590/S0102-0536200800...
) and Peixoto et al. (2020Peixoto, J. V. M.; Maciel, G. M.; Siquieroli, A. C. S.; Pereira, L. M.; Luz, J. M. Q.; Marques, D. J. Comparison between non-parametric indexes in the selection of biofortified curly lettuce. Comunicata Scientiae v.11, p.1-9, 2020. https://doi.org/10.14295/cs.v11i.3351
https://doi.org/10.14295/cs.v11i.3351...
), who evaluated lettuce genotypes and found CVg/CVe ratios close to or greater than one for the variables analyzed.

It is possible to determine the association between the characters using genotypic correlations (Table 2).

Table 2
Genotypic correlations between the variables evaluated in 91 lettuce genotypes

Positive correlations were found between most of the agronomic traits, which is favorable for the improvement of lettuce (Azevedo et al., 2014Azevedo, A. M.; Andrade Júnior, V. C.; Castro, B. M.; Oliveira, C. M.; Pedrosa, C. E.; Dornas, M. F.; Valadares, N. R. Parâmetros genéticos e análise de trilha para o florescimento precoce e características agronômicas da alface. Pesquisa Agropecuária Brasileira, v.49, p.118-124, 2014. https://doi.org/10.1590/S0100-204X2014000200006
https://doi.org/10.1590/S0100-204X201400...
). The stem diameter showed a significant positive correlation with the number of leaves (Table 2).

Peixoto et al. (2020Peixoto, J. V. M.; Maciel, G. M.; Siquieroli, A. C. S.; Pereira, L. M.; Luz, J. M. Q.; Marques, D. J. Comparison between non-parametric indexes in the selection of biofortified curly lettuce. Comunicata Scientiae v.11, p.1-9, 2020. https://doi.org/10.14295/cs.v11i.3351
https://doi.org/10.14295/cs.v11i.3351...
) correlated six variables of biofortified lettuce and observed that the stem diameter was positively correlated with the number of leaves and plant diameter. In addition, the plant diameter was negatively correlated with the SPAD index, similar to these results.

The direct selection gains obtained for the variables evaluated were, in decreasing order: 32.17% for the chlorophyll index, 27.20% for the number of leaves, 23.73% for the stem diameter, and 22.89% for the plant diameter (Table 3). In this study, direct selection provided individual gains greater than those of indirect selection, similar to the results found by Peixoto et al. (2020Peixoto, J. V. M.; Maciel, G. M.; Siquieroli, A. C. S.; Pereira, L. M.; Luz, J. M. Q.; Marques, D. J. Comparison between non-parametric indexes in the selection of biofortified curly lettuce. Comunicata Scientiae v.11, p.1-9, 2020. https://doi.org/10.14295/cs.v11i.3351
https://doi.org/10.14295/cs.v11i.3351...
).

Table 3
Selection gain estimates (20% of the selection intensity) obtained by direct selection and indirect selection for four evaluated variables in 91 lettuce genotypes

Direct selection of the number of leaves promoted indirect expected gains for the chlorophyll index, plant diameter, and stem diameter (Table 3). This was the best indirect selection strategy, as it enabled positive gains for all characters evaluated, in addition to promoting the greatest total selection gain. Peixoto et al. (2020Peixoto, J. V. M.; Maciel, G. M.; Siquieroli, A. C. S.; Pereira, L. M.; Luz, J. M. Q.; Marques, D. J. Comparison between non-parametric indexes in the selection of biofortified curly lettuce. Comunicata Scientiae v.11, p.1-9, 2020. https://doi.org/10.14295/cs.v11i.3351
https://doi.org/10.14295/cs.v11i.3351...
) also concluded that direct selection of the number of leaves was the best indirect selection strategy for biofortified lettuce germplasm.

Diamante et al. (2013Diamante, M. S.; Seabra Júnior, S.; Inagaki, A. M.; Silva, M. B.; Dallacort, R. Production and resistance to bolting of loose-leaf lettuce grown in different environments. Revista Ciência Agronômica, v.4, p.133-140, 2013. https://doi.org/10.1590/S1806-66902013000100017
https://doi.org/10.1590/S1806-6690201300...
) reported the importance of the characteristic number of leaves in growing lettuce as being relevant for the producer, both for indicating adaptation of the genetic material to the environment, and for the commercialization of lettuce. Higher concentrations of chlorophyll enhance photosynthetic activity and may lead to agronomic trait increments (Silva et al., 2014Silva, M. A.; Santos, C. M.; Vitorino, H. S.; Rhein, A. F. L. Pigmentos fotossintéticos e índice SPAD como descritores de intensidade do estresse por deficiência hídrica em cana-de-açúcar. Bioscience Journal, v.1, p.173-181, 2014.).

Selection indices, unlike direct selection, make it possible to carry out simultaneous selection of several characteristics of economic importance, increasing the chance of success in genetic breeding (Tassone et al., 2019Tassone, G. A. T.; Nadaleti, D. H. S.; Carvalho, G. R.; Pereira, F. A. C.; Andrade, V. T.; Botelho, C. E. Simultaneous selection in coffee progenies of Mundo novo by selection indices. Coffee Science, v.14, p.83-92, 2019. https://doi.org/10.25186/cs.v14i1.1531
https://doi.org/10.25186/cs.v14i1.1531...
).

The selection indices of Smith-Hazel, Williams, and Mulamba & Mock enabled good direct gains for all evaluated characters, showing comparable results and promoting balanced gain distribution (Table 4).

Table 4
Selection gain estimates (%) (20% of the selection intensity) obtained by the classical index proposed by Smith-Hazel (SH), Mulamba & Mock (MM) ranks sum index, and Williams base index (WI) for four variables evaluated in 91 lettuce genotypes

Candido et al. (2017Candido, W. S.; Tobar-Tosse, D. E.; Soares, R. S.; Santos, L. S.; Franco, C. A.; Braz, L. T. Selection of loose-leaf lettuce breeding lines based on non-parametric indexes. African Journal of Biotechnology, v.16, p.1984-1989, 2017. https://doi.org/10.5897/AJB2017.16176
https://doi.org/10.5897/AJB2017.16176...
), when evaluating strains of loose-leaf lettuce in different locations, found that the Mulamba & Mock index enabled better direct gains for the traits evaluated, with total gains ranging from 24.56-46.85%. On the other hand, in this study the indices struck a balance in the distribution of the selection gains for most of the lettuce genotypes assessed.

Peixoto et al. (2020Peixoto, J. V. M.; Maciel, G. M.; Siquieroli, A. C. S.; Pereira, L. M.; Luz, J. M. Q.; Marques, D. J. Comparison between non-parametric indexes in the selection of biofortified curly lettuce. Comunicata Scientiae v.11, p.1-9, 2020. https://doi.org/10.14295/cs.v11i.3351
https://doi.org/10.14295/cs.v11i.3351...
) compared nonparametric indices in the selection of biofortified curly lettuce, and the Mulamba & Mock index also resulted in the highest total gain value (30.42%). In contrast to this study, we found superior selection gains for all indices of all the analyzed variables, probably due to the greater number of genotypes evaluated and higher values of heritability, since it is directly related to the genetic gain and greater genetic variability of the germplasm.

For the estimation of the selection gains, 17 individuals were selected using the Smith-Hazel, Mulamba & Mock, and Williams index (Table 5).

Table 5
Indication of the top 17 lettuce genotypes, selected by the classic indexes proposed by Smith (1936Smith, H. F. A discriminant function for plant selection. Annals of Eugenics, v.7, p.240-250, 1936. https://doi.org/10.1111/j.1469-1809.1936.tb02143.x
https://doi.org/10.1111/j.1469-1809.1936...
) and Hazel (1943Hazel, L. N. The genetic basis for constructing selection indexes. Genetics, v.28, p.476-490, 1943. https://doi.org/10.1093/genetics/28.6.476
https://doi.org/10.1093/genetics/28.6.47...
) (SH), Mulamba & Mock (1978Mulamba, N. N.; Mock, J. J. Improvement of yield potential of the Eto Blanco maize (Zea may L.) population by breeding for plant traits. Egyptian Journal of Genetic Cytology, v.7, p.40-51, 1978.) sum of ranks index (MM), and Williams base index (1962Williams, J. S. The evaluation of a selection index. Biometrics, v.18, p.375-393, 1962. https://doi.org/10.2307/2527479
https://doi.org/10.2307/2527479...
) (WI)

The same 17 genotypes were selected using the Smith (1936Smith, H. F. A discriminant function for plant selection. Annals of Eugenics, v.7, p.240-250, 1936. https://doi.org/10.1111/j.1469-1809.1936.tb02143.x
https://doi.org/10.1111/j.1469-1809.1936...
) and Hazel (1943Hazel, L. N. The genetic basis for constructing selection indexes. Genetics, v.28, p.476-490, 1943. https://doi.org/10.1093/genetics/28.6.476
https://doi.org/10.1093/genetics/28.6.47...
) and Williams indices, and 13 genotypes (76.47%) also stood out for Mulamba & Mock index (Table 5). The Williams index is similar to the index proposed by Smith-Hazel, when the phenotypic variances and covariance are defined predominantly by genetic factors (Cruz et al., 2014Cruz, C. D.; Carneiro, P. C. S.; Regazzi, A. J. Modelos biométricos aplicados ao melhoramento genético. 3.ed. Viçosa: UFV, 2014. 668p. ). Supporting this fact, Cruz et al. (2012Cruz, C. D. Simultaneous selection in progenies of yellow passion fruit using selection indices. Revista Ceres, v.59, p.95-101, 2012. https://doi.org/10.1590/S0034-737X2012000100014
https://doi.org/10.1590/S0034-737X201200...
) highlighted that estimates of gains by the same indices do not always show similar results because of the genotype-environment interaction and the accuracy of the matrices of variances and covariances.

Dealing with lettuce lines, Peixoto et al. (2020Peixoto, J. V. M.; Maciel, G. M.; Siquieroli, A. C. S.; Pereira, L. M.; Luz, J. M. Q.; Marques, D. J. Comparison between non-parametric indexes in the selection of biofortified curly lettuce. Comunicata Scientiae v.11, p.1-9, 2020. https://doi.org/10.14295/cs.v11i.3351
https://doi.org/10.14295/cs.v11i.3351...
) found similarities in the genotypes selected by the Mulamba & Mock index and the Smith-Hazel index. The same fact was observed by Vieira et al. (2017Vieira, S. D.; Souza, D. C.; Martins, I. A.; Ribeiro, G. H. M. R.; Resende, L. V.; Ferraz, A. K. L.; Galvão, A. G.; Resende, J. T. V. Selection of experimental strawberry (Fragaria x ananassa) hybrids based on selection índices. Genetics and Molecular Research, v.16, p.1-11, 2017. https://doi.org/10.4238/gmr16019052
https://doi.org/10.4238/gmr16019052...
) working with strawberry hybrids.

Sousa et al. (2020Sousa, L. A.; Maciel, G. M.; Juliatti, F. C.; Beloti, I. F.; Siquieroli, A. C. S.; Clemente, A. A. Genetic dissimilarity between biofortified lettuce genotypes for leaf carotenoid levels. Comunicata Scientiae , v.11, p.1-10, 2020. https://doi.org/10.14295/cs.v11i.3348
https://doi.org/10.14295/cs.v11i.3348...
) evaluated the genetic dissimilarity of the same germplasm bank of the biofortified lettuce samples examined in the present study, and showed that seven genotypes stood out, revealing excellent agronomic traits and high levels of carotenoids. Five of these were also among those selected in the present study, confirming the potential of the biofortified lettuce genotypes in this breeding program.

Conclusions

  1. There is a considerable genetic component in the phenotypic expression of all traits studied, with a high probability of genetic gains in additional selection cycles based on the phenotype in the breeding program.

  2. The selection indices of Smith-Hazel, Williams, and Mulamba & Mock are efficient in showing good direct gains for the evaluated traits in biofortified lettuce.

  3. Thirteen genotypes were selected by all indices, thus presenting suitable agronomic traits that are promising for advancing generations within the breeding program aimed at obtaining biofortified lettuce strains.

Acknowledgments

The authors gratefully acknowledge financial support by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Literature Cited

  • Azevedo, A. M.; Andrade Júnior, V. C.; Castro, B. M.; Oliveira, C. M.; Pedrosa, C. E.; Dornas, M. F.; Valadares, N. R. Parâmetros genéticos e análise de trilha para o florescimento precoce e características agronômicas da alface. Pesquisa Agropecuária Brasileira, v.49, p.118-124, 2014. https://doi.org/10.1590/S0100-204X2014000200006
    » https://doi.org/10.1590/S0100-204X2014000200006
  • Baldissera, J. N. da C.; Valentini, G.; Coan, M. M. D.; Guidolin, A. F.; Coimbra, J. L. M. Genetics factors related with the inheritance in autogamous plant populations. Journal of Agroveterinary Sciences, v.13, p.181-189, 2014.
  • Candido, W. S.; Tobar-Tosse, D. E.; Soares, R. S.; Santos, L. S.; Franco, C. A.; Braz, L. T. Selection of loose-leaf lettuce breeding lines based on non-parametric indexes. African Journal of Biotechnology, v.16, p.1984-1989, 2017. https://doi.org/10.5897/AJB2017.16176
    » https://doi.org/10.5897/AJB2017.16176
  • Cassetari, L. S.; Gomes, M. S.; Santos, D. C.; Santiago, W. D.; Andrade, J.; Guimarães, A. C.; Souza, J. A.; Cardoso, M. G.; Maluf, W. R.; Gomes, L. A. β-Carotene and chlorophyll levels in cultivars and breeding lines of lettuce. Acta Horticulturae, v.1083, p.469-474, 2015. https://doi.org/10.17660/ActaHortic.2015.1083.60
    » https://doi.org/10.17660/ActaHortic.2015.1083.60
  • Cruz, C. D. Simultaneous selection in progenies of yellow passion fruit using selection indices. Revista Ceres, v.59, p.95-101, 2012. https://doi.org/10.1590/S0034-737X2012000100014
    » https://doi.org/10.1590/S0034-737X2012000100014
  • Cruz, C. D. GENES: A software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy, v.35, p.271-276, 2013.
  • Cruz, C. D.; Carneiro, P. C. S.; Regazzi, A. J. Modelos biométricos aplicados ao melhoramento genético. 3.ed. Viçosa: UFV, 2014. 668p.
  • Diamante, M. S.; Seabra Júnior, S.; Inagaki, A. M.; Silva, M. B.; Dallacort, R. Production and resistance to bolting of loose-leaf lettuce grown in different environments. Revista Ciência Agronômica, v.4, p.133-140, 2013. https://doi.org/10.1590/S1806-66902013000100017
    » https://doi.org/10.1590/S1806-66902013000100017
  • Filgueira, F. A. R. Novo manual de olericultura: Agrotecnologia moderna na produção e comercialização de hortaliças. 3.ed. Viçosa: UFV , 2013. 412p.
  • Hazel, L. N. The genetic basis for constructing selection indexes. Genetics, v.28, p.476-490, 1943. https://doi.org/10.1093/genetics/28.6.476
    » https://doi.org/10.1093/genetics/28.6.476
  • Kumar, R.; Kumar, M.; Dogra, R. K.; Bharat, N. K. Variability and character association studies in garden pea (Pisum sativum var. hortense L.) during winter season at mid hills of Himachal Pradesh. Legume Research, v.38, p.164-168, 2015. https://doi.org/10.5958/0976-0571.2015.00051.X
    » https://doi.org/10.5958/0976-0571.2015.00051.X
  • Machada Junior, R.; Gomes, R. S.; Almeida, C. F.; Alves, F. M.; Delazari, F. T.; Laurindo, R. D. F.; Fernandes, R. H.; Silva, D. J. H. Vegetable breeding as a strategy of biofortification in carotenoids and prevention of vitamin A deficiency. African Journal of Agricultural Research, v.12, p.1059-1066, 2017. https://doi.org/10.5897/AJAR2016.11895
    » https://doi.org/10.5897/AJAR2016.11895
  • Maciel, G. M.; Siquieroli, A. C. S.; Gallis, R. B. A.; Pereira, L. M.; Sales, V. F. BG a BIOFORT. 2019. Patent: Computer program. Registration number: BR512019002403-6, registration date: 10/29/2019, title: “BG a BIOFORT”, Registration institution: Universidade Federal de Uberlândia-UFU, 2019.
  • Mulamba, N. N.; Mock, J. J. Improvement of yield potential of the Eto Blanco maize (Zea may L.) population by breeding for plant traits. Egyptian Journal of Genetic Cytology, v.7, p.40-51, 1978.
  • Oliveira, A. H. G.; Maciel, G. M.; Jacinto, A. C. P.; Silveira, A. J.; Silva, E. C. Estimates of genetic parameters of pigments and agronomic traits in green and purple lettuce. Ciência e Agrotecnologia, v.43, p.1-8, 2019. https://doi.org/10.1590/1413-7054201943013219
    » https://doi.org/10.1590/1413-7054201943013219
  • Oliveira, V. C.; Faquin, V.; Guimarães, K. C.; Andrade, F. B.; Pereira, J.; Guilherme, L. R. G. Agronomic biofortification of carrot with selenium. Ciência e Agrotecnologia , v.42, p.138-147, 2018. https://doi.org/10.1590/1413-70542018422031217
    » https://doi.org/10.1590/1413-70542018422031217
  • Peixoto, J. V. M.; Maciel, G. M.; Siquieroli, A. C. S.; Pereira, L. M.; Luz, J. M. Q.; Marques, D. J. Comparison between non-parametric indexes in the selection of biofortified curly lettuce. Comunicata Scientiae v.11, p.1-9, 2020. https://doi.org/10.14295/cs.v11i.3351
    » https://doi.org/10.14295/cs.v11i.3351
  • Pimentel-Gomes, F. Curso de estatística experimental. 15.ed. Piracicaba: FEALQ, 2009. 451p.
  • Samnotra, R. K.; Gupta, A.; Gupta, R. K.; Sharma, R.; Verma, V. S. Character association and path co-efficient studies in lettuce (Lactuca sativa L.) under temperate conditions of Jammu & Kashmir. Vegetos, v.25, p.308-312, 2012.
  • Silva, M. A.; Santos, C. M.; Vitorino, H. S.; Rhein, A. F. L. Pigmentos fotossintéticos e índice SPAD como descritores de intensidade do estresse por deficiência hídrica em cana-de-açúcar. Bioscience Journal, v.1, p.173-181, 2014.
  • Silva, O. M. P.; Lopes, W. A. R.; Nunes, J. H. S.; Negreiros, M. Z.; Espínola Sobrinho, J. Adaptability and phenotypic stability of lettuce cultivars in a semiarid region. Revista Caatinga, v.32, p.552-558, 2019. https://doi.org/10.1590/1983-21252019v32n228rc
    » https://doi.org/10.1590/1983-21252019v32n228rc
  • Smith, H. F. A discriminant function for plant selection. Annals of Eugenics, v.7, p.240-250, 1936. https://doi.org/10.1111/j.1469-1809.1936.tb02143.x
    » https://doi.org/10.1111/j.1469-1809.1936.tb02143.x
  • Sousa, C. S.; Bonetti, A. M.; Goulart Filho, L. R.; Machado, J. R. A.; Londe, L. N.; Baffi, M. A.; Ramos, R. G.; Vieira, C. U.; Kerr, W. E. Divergência genética entre genótipos de alface por meio de marcadores AFLP. Bragantia, v.66, p.11-16, 2007.https://doi.org/10.1590/S0006-87052007000100002
    » https://doi.org/10.1590/S0006-87052007000100002
  • Sousa, L. A.; Maciel, G. M.; Juliatti, F. C.; Beloti, I. F.; Siquieroli, A. C. S.; Clemente, A. A. Genetic dissimilarity between biofortified lettuce genotypes for leaf carotenoid levels. Comunicata Scientiae , v.11, p.1-10, 2020. https://doi.org/10.14295/cs.v11i.3348
    » https://doi.org/10.14295/cs.v11i.3348
  • Souza, M. C. M.; Resende, L. V.; Menezes, D.; Loges, V.; Soute, T. A.; Santos, V. F. Variabilidade genética para características agronômicas em progênies de alface tolerantes ao calor. Horicultura Brasileira, v.26, p.354-358, 2008. https://doi.org/10.1590/S0102-05362008000300012
    » https://doi.org/10.1590/S0102-05362008000300012
  • Tassone, G. A. T.; Nadaleti, D. H. S.; Carvalho, G. R.; Pereira, F. A. C.; Andrade, V. T.; Botelho, C. E. Simultaneous selection in coffee progenies of Mundo novo by selection indices. Coffee Science, v.14, p.83-92, 2019. https://doi.org/10.25186/cs.v14i1.1531
    » https://doi.org/10.25186/cs.v14i1.1531
  • Thakur, M.; Kumar, R.; Kumar, S. Studies on genetic variability, correlation and path analysis in lettuce (Lactuca sativa L.) under protected conditions. Journal of Natural and Appled Science, v.8, p.1924-1930, 2016. https://doi.org/10.31018/jans.v8i4.1064
    » https://doi.org/10.31018/jans.v8i4.1064
  • Vencovsky, R.; Barriga, P. Genética biométrica no fitomelhoramento. Ribeirão Preto: Sociedade Brasileira de Genética, 1992. 496p.
  • Vieira, S. D.; Souza, D. C.; Martins, I. A.; Ribeiro, G. H. M. R.; Resende, L. V.; Ferraz, A. K. L.; Galvão, A. G.; Resende, J. T. V. Selection of experimental strawberry (Fragaria x ananassa) hybrids based on selection índices. Genetics and Molecular Research, v.16, p.1-11, 2017. https://doi.org/10.4238/gmr16019052
    » https://doi.org/10.4238/gmr16019052
  • Williams, J. S. The evaluation of a selection index. Biometrics, v.18, p.375-393, 1962. https://doi.org/10.2307/2527479
    » https://doi.org/10.2307/2527479
  • 1 Research developed at Monte Carmelo, MG, Brazil

Edited by

Edited by: Walter Esfrain Pereira

Publication Dates

  • Publication in this collection
    23 Aug 2021
  • Date of issue
    Nov 2021

History

  • Received
    07 Dec 2020
  • Accepted
    01 May 2021
  • Published
    30 May 2021
Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com