Acessibilidade / Reportar erro

Gerenciamento de resíduos sólidos urbanos de Feira de Santana: demanda energética e pegada de carbono

Management of solid urban waste in Feira de Santana: energy demand and carbon footprint

RESUMO

O gerenciamento de resíduos sólidos urbanos, com a disposição do material em aterro sanitário, é uma prática amplamente adotada no Brasil. A quantificação do desempenho ambiental do gerenciamento de resíduos sólidos urbanos apoia a proposição de práticas otimizadas. A avaliação do ciclo de vida foi aplicada para avaliar o gerenciamento de resíduos sólidos urbanos de 1 tonelada de material em Feira de Santana, estado da Bahia, Brasil. A fronteira do sistema do gerenciamento de resíduos sólidos urbanos deste estudo incluiu o material gerenciado nas etapas de coleta, transporte, tratamento, disposição e manejo do lixiviado. Foi avaliada a disposição do material em aterro sanitário no cenário base de gerenciamento de resíduos sólidos urbanos e opções de recuperação de recurso para o aproveitamento de material (reciclagem e compostagem) e energia (aterro sanitário e digestão anaeróbia com coleta de biogás) nos cenários propostos de gerenciamento de resíduos sólidos urbanos. O inventário de primeiro plano utilizou dados representativos para os cenários avaliados, enquanto o inventário de segundo plano utilizou a base de dados ecoinvent™ no software Simapro®, com os métodos de demanda de energia acumulada e Intergovernmental Panel On Climate Change 2013, com potencial de aquecimento global de cem anos. A demanda de energia acumulada foi 215 MJ·t-1 e as emissões de gases de efeito estufa foram 449 kg CO2eq·t-1 no cenário base. A maior contribuição da demanda de energia acumulada do cenário base foi oriunda da etapa de coleta e transporte, enquanto aquela de gases de efeito estufa foi oriunda do aterro sanitário. Os cenários propostos com a recuperação dos recursos apresentaram potenciais de redução da demanda de energia acumulada e das emissões de gases de efeito estufa do gerenciamento de resíduos sólidos urbanos, assim como apoiam a transição para uma economia circular.

Palavras-chave:
avaliação do ciclo de vida; resíduo zero; recuperação de recurso; logística reversa

ABSTRACT

Municipal Solid Waste Management with the material disposal in landfills is a widely adopted practice in Brazil. The environmental performance quantification in MSWM supports the proposition of optimized practices. The Life Cycle Assessment was applied to evaluate 1 ton of material in the Municipal Solid Waste Management of Feira de Santana, state of Bahia, Brazil. The system boundary of the Municipal Solid Waste Management in this study included the material managed in collection, transportation, treatment, disposal and leachate handling stages. The material disposal in sanitary landfill was evaluated in the base scenario of Municipal Solid Waste Management and the resource recovery options for material (recycling and composting) and energy (sanitary landfill and anaerobic digestion with biogas collection) in the proposed scenarios of Municipal Solid Waste Management. The foreground inventory used representative data for the evaluated scenarios, while the background inventory used the ecoinvent™ database in the Simapro® software with the Cumulative Energy Demand and Intergovernmental Panel on Climate Change 2013 with 100 years global warming potential methods. Cumulative Energy Demand was 215 MJ·t-1 and Greenhouse Gas emissions were 449 kg CO2eq·t-1 in the base scenario. The largest contribution in the base scenario was the collection and transportation stage in Cumulative Energy Demand and the sanitary landfill in Greenhouse Gas. The proposed scenarios with resource recovery showed a potential to reduce the Cumulative Energy Demand and Greenhouse Gas emissions in Municipal Solid Waste Management, along with supporting the transition to a circular economy.

Keywords:
life cycle assessment; zero waste; resource recovery; reverse logistics

INTRODUÇÃO

A geração anual de resíduos sólidos no mundo foi 2,0 Gt em 2016 e projeta-se 3,4 Gt em 2050 (KAZA et al., 2018KAZA, S.; YAO, L.; BHADA-TATA, P.; VAN WOERDEN, F. What a waste 2.0: a global snapshot of solid waste management to 2050. Washington: The World Bank, 2018. 132p.). No Brasil, a perda de materiais na forma de resíduos sólidos urbanos (RSU) aumentou 33% entre 2008 e 2017 (ABRELPE, 2009ASSOCIAÇÃO BRASILEIRA DAS EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS (ABRELPE). Panorama dos Resíduos Sólidos no Brasil 2009. São Paulo: ABRELPE, 2009., 2019ASSOCIAÇÃO BRASILEIRA DAS EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS (ABRELPE). Panorama dos Resíduos Sólidos no Brasil 2018/2019. São Paulo: ABRELPE, 2019.), enquanto a população aumentou 8% no mesmo período (IBGE, 2018INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). População estimada: para “dúvidas e contestações”. 2018. Disponível em: https://cidades.ibge.gov.br/brasil/panorama. Acesso em: 27 nov. 2019.
https://cidades.ibge.gov.br/brasil/panor...
).

As emissões de gases de efeito estufa (GEE) do Brasil em 2018 somaram 1,9 Gt de dióxido de carbono equivalente (CO2eq), 2,9% das emissões globais (SEEG, 2019SISTEMA DE ESTIMATIVAS DE EMISSÕES E REMOÇÕES DE GASES DE EFEITO ESTUFA (SEEG). Análise das emissões de gases de efeito estufa e suas implicações para as metas do Brasil – 1970-2018. 2019. Disponível em: https://energiaeambiente.org.br/produto/analise-das-emissoes-brasileiras-de-gases-de-efeito-estufa-2020. Acesso em: 14 out. 2019.
https://energiaeambiente.org.br/produto/...
). O setor de resíduos no Brasil foi a 4ᵃ maior fonte de emissão de GEE, com 91,9 MtCO2eq (5% do total do país), excluindo as mudanças de uso da terra, cuja principal emissão deve-se ao desmatamento (SEEG, 2019SISTEMA DE ESTIMATIVAS DE EMISSÕES E REMOÇÕES DE GASES DE EFEITO ESTUFA (SEEG). Análise das emissões de gases de efeito estufa e suas implicações para as metas do Brasil – 1970-2018. 2019. Disponível em: https://energiaeambiente.org.br/produto/analise-das-emissoes-brasileiras-de-gases-de-efeito-estufa-2020. Acesso em: 14 out. 2019.
https://energiaeambiente.org.br/produto/...
). Das emissões do setor de resíduos, 52% são atribuídas à disposição de resíduos sólidos urbanos.

Diante desse quadro, o desempenho ambiental do sistema predominante de gerenciamento de resíduos sólidos urbanos (GRSU) dos municípios brasileiros deve ser comparado às opções tecnológicas de recuperação de recurso para apoiar a transição em direção ao resíduo zero. Segundo Istrate et al. (2020)ISTRATE, I.R.; IRIBARREN, D.; GÁLVEZ-MATOS, J.L.; DUFOUR, J. Review of life-cycle environmental consequences of waste-to-energy solutions on the municipal solid waste management system. Resources, Conservation and Recycling, v. 157, n. 104778, 14 p., 2020. https://doi.org/10.1016/j.resconrec.2020.104778
https://doi.org/10.1016/j.resconrec.2020...
, a avaliação do ciclo de vida (ACV) é uma ferramenta utilizada na análise dos aspectos e impactos ambientais de diferentes atividades. O estudo de ACV do GRSU identifica as atividades mais relevantes de um sistema de produto nas categorias ambientais avaliadas e auxilia na proposição de rotas tecnológicas melhoradas.

A destinação de RSU em aterro sanitário foi identificada como a etapa de maior emissão de GEE em estudos de ACV (ISTRATE et al., 2020ISTRATE, I.R.; IRIBARREN, D.; GÁLVEZ-MATOS, J.L.; DUFOUR, J. Review of life-cycle environmental consequences of waste-to-energy solutions on the municipal solid waste management system. Resources, Conservation and Recycling, v. 157, n. 104778, 14 p., 2020. https://doi.org/10.1016/j.resconrec.2020.104778
https://doi.org/10.1016/j.resconrec.2020...
; WEN et al., 2019WEN, Z.; CHEN, C.; AI, N.; BAI, W.; ZHANG, W.; WANG, Y. Environmental impact of carbon cross-media metabolism in waste management: A case study of municipal solid waste treatment systems in China. Science of the Total Environment, v. 674, p. 512-523, 2019. https://doi.org/10.1016/j.scitotenv.2019.04.154
https://doi.org/10.1016/j.scitotenv.2019...
; IQBAL et al., 2019IQBAL, A.; ZAN, F.; LIU, X.; CHEN, GH. Integrated municipal solid waste management scheme of Hong Kong: A comprehensive analysis in terms of global warming potential and energy use. Journal of Cleaner Production, v. 225, p. 1079-1088, 2019. https://doi.org/10.1016/j.jclepro.2019.04.034
https://doi.org/10.1016/j.jclepro.2019.0...
; ZHOU et al., 2018ZHOU, Z.; TANG, Y., DONG, J.; CHI, Y.; NI, M.; LI, N.; ZHANG, Y. Environmental performance evolution of municipal solid waste management by life cycle assessment in Hangzhou, China. Journal of Environmental Management, v. 227, p. 23-33, 2018. https://doi.org/10.1016/j.jenvman.2018.08.083
https://doi.org/10.1016/j.jenvman.2018.0...
; RAJCOOMAR et al., 2017RAJCOOMAR, A.; RAMJEAWON, T. Life cycle assessment of municipal solid waste management scenarios on the small island of Mauritius. Waste management & research: the journal for a sustainable circular economy, v. 35, n.3, p. 313-324. 2017. https://doi.org/10.1177/0734242X16679883
https://doi.org/10.1177/0734242X16679883...
). Entretanto, a maior parte da literatura consultada desconsiderou as etapas de coleta e transporte, manejo de lixiviado e equipamentos da operação do aterro sanitário do GRSU, assim como a categoria de demanda energética.

A rota tecnológica de GRSU com reciclagem de materiais secos, recuperação da energia química e compostagem da fração orgânica biodegradável apresenta um potencial de economia de energia e redução das emissões de GEE comparado ao da disposição de RSU em aterro sanitário (PAES et al., 2019PAES, M.X.; MEDEIROS, G.A.; MANCINI, S.D.; BORTOLETO, A.P.; OLIVEIRA, J.A.P.; KULAYF, L.A. Municipal solid waste management: Integrated analysis of environmental and economic indicators based on life cycle assessment. Journal of Cleaner Production, v. 254, p. 119848, 2019. https://doi.org/10.1016/j.jclepro.2019.119848
https://doi.org/10.1016/j.jclepro.2019.1...
; COELHO et al., 2018COELHO, L.M.G.; LANGE, L.C. Applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. Resources, Conservation and Recycling, v. 128, p. 438-450, 2018. https://doi.org/10.1016/j.resconrec.2016.09.026
https://doi.org/10.1016/j.resconrec.2016...
; STAROSTINA et al., 2018STAROSTINA, V.; DAMGAARD, A.; ERIKSEN, M.K.; CHRISTENSEN, T.H. Waste management in the Irkutsk region, Siberia, Russia: an environmental assessment of alternative development scenarios. Waste Management & Research, v. 36, n. 4, p. 373-385, 2018. https://doi.org/10.1177/0734242X18757627
https://doi.org/10.1177/0734242X18757627...
; LIIKANEN et al., 2018LIIKANEN, M.; HAVUKAINEN, J; VIANA, E; HORTANAINEN, M. Steps towards more environmentally sustainable municipal solid waste management – a life cycle assessment study of São Paulo, Brazil. Journal of Cleaner Production, v. 196, p. 150-162, 2018. https://doi.org/10.1016/j.jclepro.2018.06.005
https://doi.org/10.1016/j.jclepro.2018.0...
; MERSONI et al., 2017MERSONI, C.; REICHERT, G. A. Comparação de cenários de tratamento de resíduos sólidos urbanos por meio da técnica da Avaliação do Ciclo de Vida: o caso do município de Garibaldi, RS. Engenharia Sanitária e Ambiental, v. 22, n. 5, 2017, p. 863-875. https://doi.org/10.1590/S1413-41522017150351
https://doi.org/10.1590/S1413-4152201715...
).

O tratamento de RSU por meio da digestão anaeróbia tem aumentado em vários países para reduzir a destinação de resíduos orgânicos biodegradáveis em aterros (WEC, 2016WORLD ENERGY RESOURCES (WEC). World Energy Resources: waste to energy 2016. London: World Energy Council, 2016. Disponível em: https://smartnet.niua.org/sites/default/files/resources/weresources_waste_to_energy_2016.pdf. Acesso em: 21 ago. 2020.
https://smartnet.niua.org/sites/default/...
). A digestão anaeróbia seguida da compostagem é utilizada para recuperar a energia da fração orgânica úmida do RSU na forma de biogás e aproveitar os nutrientes provenientes do composto orgânico produzido, como nitrogênio (N), fósforo (P) e potássio (K). Ademais, a reciclagem dos materiais secos reduz a disposição final do RSU em aterro sanitário (ISTRATE et al., 2020ISTRATE, I.R.; IRIBARREN, D.; GÁLVEZ-MATOS, J.L.; DUFOUR, J. Review of life-cycle environmental consequences of waste-to-energy solutions on the municipal solid waste management system. Resources, Conservation and Recycling, v. 157, n. 104778, 14 p., 2020. https://doi.org/10.1016/j.resconrec.2020.104778
https://doi.org/10.1016/j.resconrec.2020...
; MANCINI et al., 2019MANCINI, E.; ARZOUMANIDIS, I.; RAGGI, A. Evaluation of potential evironmental impacts related to two organic waste treatment options in Italy. Journal of Cleaner Production. 214 ed. 2019. p. 927-938.; COELHO et al. 2018COELHO, L.M.G.; LANGE, L.C. Applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. Resources, Conservation and Recycling, v. 128, p. 438-450, 2018. https://doi.org/10.1016/j.resconrec.2016.09.026
https://doi.org/10.1016/j.resconrec.2016...
; SOARES et al., 2017SOARES, F.R.; MIYAMARU, E.S.; MARTINS, G. Desempenho ambiental da destinação e do tratamento de resíduos sólidos urbanos com reaproveitamento energético por meio da avaliação do ciclo de vida na Central de Tratamento de Resíduos – Caieiras. Energy Recovery from Municipal Solid Wastes, v. 22, n. 5, p. 993-1003, 2017. https://doi.org/10.1590/s1413-41522017155522
https://doi.org/10.1590/s1413-4152201715...
).

Nesse sentido, o objetivo deste trabalho foi avaliar a demanda energética e a pegada de carbono do ciclo de vida do GRSU de um município brasileiro. O estudo diferencia-se da literatura de ACV de GRSU graças aos cenários propostos, à análise de cenário da fronteira do sistema de produto e à análise de sensibilidade dos parâmetros relevantes.

METODOLOGIA

O estudo avaliou o sistema de GRSU de Feira de Santana, município localizado no estado da Bahia (BA), na região Nordeste do Brasil, com população de 610 mil habitantes (IBGE, 2018INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). População estimada: para “dúvidas e contestações”. 2018. Disponível em: https://cidades.ibge.gov.br/brasil/panorama. Acesso em: 27 nov. 2019.
https://cidades.ibge.gov.br/brasil/panor...
). Foram utilizados os dados de geração de RSU e operação do GRSU referentes a 2018, ano que registrou a geração média de 430 t de RSU por dia. O sistema de GRSU é administrado pela Prefeitura Municipal, composto de coleta e destinação em aterro sanitário e operado por duas empresas terceirizadas (SMSP-FSA, 2018SECRETARIA MUNICIPAL DE SERVIÇOS PÚBLICOS DE FEIRA DE SANTANA – BA (SMSP-FSA). Prefeitura Municipal de Feira de Santana. Relatório de Atividades Desenvolvidas pelo Departamento de Limpeza Pública 2018. 2018.).

A coleta do RSU ocorre de porta a porta nos domicílios e em áreas públicas, enquanto o transporte utiliza caminhões compactadores e basculante. No aterro sanitário, uma retroescavadeira distribui e uniformiza o material na superfície da célula e um trator de esteira compacta o material aterrado e espalha o material de cobertura. O aterro sanitário é equipado com uma estrutura de coleta e queima de biogás em flare. O lixiviado do aterro sanitário é encaminhado para a lagoa de armazenamento com coleta duas vezes por dia por caminhão-tanque e destinado para uma estação de tratamento de efluentes industriais situada no município de Camaçari/BA.

A Tabela 1 apresenta a quantidade, a composição gravimétrica e o poder calorífico inferior das frações do RSU, cuja maior fração é constituída de material orgânico biodegradável.

Tabela 1
Quantidade, composição gravimétrica e poder calorífico inferior dos resíduos sólidos urbanos de Feira de Santana em 2018.

O método utilizado para avaliar o desempenho ambiental do GRSU foi a ACV (ABNT, 2009aASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR ISO 14.040: Gestão ambiental: princípios e estruturas. Rio de Janeiro, 2009a., 2009bASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR ISO 14.044. Gestão ambiental: requisitos e orientações. Rio de Janeiro, 2009b.), composta de quatro fases: definição de objetivo e escopo, análise de inventário, avaliação de impactos e interpretação do estudo.

Foram avaliados quatro cenários. O primeiro representou a linha de base da situação predominante do município em estudo e os demais consideraram rotas tecnológicas de recuperação de recurso do RSU (Figura 1):

Figura 1
Cenários avaliados de gerenciamento de resíduos sólidos urbanos com os fluxos de materiais das diferentes rotas tecnológicas (t·dia-1).
  • cenário 1 (C1): cenário base, correspondente à situação predominante de Feira de Santana em 2018, considerando 100% do RSU destinado a aterro sanitário com coleta do biogás e queima em flare;

  • cenário 2 (C2): aprimoramento do C1, com a recuperação energética do biogás do aterro sanitário para a geração de eletricidade;

  • cenário 3 (C3): reciclagem da fração de material seco (papel, plástico, metal e vidro) em 41% da massa de RSU coletada e compostagem do material orgânico biodegradável em 49% da massa de RSU coletada;

  • cenário 4 (C4): reciclagem idêntica àquela do C3 e digestão anaeróbia do material orgânico biodegradável (49% da massa de RSU coletada) em digestor do tipo Kompogas®, tecnologia recomendada por Brasil (2015)BRASIL. O Estado da arte da tecnologia de metanização seca. Projeto Brasil – Alemanha de Fomento ao Aproveitamento Energético de Biogás no Brasil. Brasília: Ministério das Cidades, 2015. 97 p., seguida de compostagem.

A Figura 1 sumariza os quatro cenários avaliados neste estudo.

Os cenários avaliados neste estudo representam diferentes realidades de GRSU. A recuperação de materiais do RSU foi de 2,9% no município de Feira de Santana (PMGIRS-FSA, 2016PLANO MUNICIPAL DE GESTÃO INTEGRADA DE RESÍDUOS SÓLIDOS DE FEIRA DE SANTANA (PMGIRS-FSA). Bahia: Envex Engenharia e Consultoria, 2016. 426 p.) e de 4,0% na média nacional (ABRELPE, 2019ASSOCIAÇÃO BRASILEIRA DAS EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS (ABRELPE). Panorama dos Resíduos Sólidos no Brasil 2018/2019. São Paulo: ABRELPE, 2019.) em 2018, de modo que essas realidades são mais semelhantes ao C1 e ao C2. A média europeia de recuperação de materiais do RSU foi de 54% em 2018, entretanto países como Itália, Bélgica, Dinamarca e Eslovênia apresentaram taxas acima de 80% (EUROSTAT, 2020EUROSTAT. Waste treatment by type of recovery and disposal, 2018 (% of total treatment). 2020. Disponível em: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Waste_treatment_by_type_of_recovery_and_disposal,_2018_(%25_of_total_treatment).png. Acesso em: 26 jan. 2021.
https://ec.europa.eu/eurostat/statistics...
) e, portanto, são mais semelhantes ao C3 e ao C4.

Objetivo e Escopo

O objetivo deste trabalho foi avaliar a demanda energética e a pegada de carbono do ciclo de vida do GRSU do município de Feira de Santana (BA), abrangendo as seguintes etapas: coleta e transporte, triagem, tratamento e disposição, e pós-tratamento com o manejo do lixiviado. O público-alvo deste estudo são a comunidade acadêmica e os gestores e administradores de instituições e organizações públicas e privadas de GRSU. A unidade funcional do estudo foi 1 t de RSU gerenciado. O sistema de produto do GRSU do cenário base (C1) e cenários propostos (C2, C3 e C4) é apresentado na Figura 2.

Figura 2
Sistema de produto dos cenários avaliados de gerenciamento de resíduos sólidos urbanos de Feira de Santana.

Foi considerado o procedimento de alocação de subdivisão de processo com o critério de corte (ABNT, 2009bASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR ISO 14.044. Gestão ambiental: requisitos e orientações. Rio de Janeiro, 2009b.) para os coprodutos dos cenários propostos. No entanto, considerou-se adicionalmente o procedimento de alocação da expansão do sistema de produto (ABNT, 2009bASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR ISO 14.044. Gestão ambiental: requisitos e orientações. Rio de Janeiro, 2009b.) para contabilizar os insumos primários a serem substituídos (denominados de produtos evitados) pelos coprodutos dos cenários propostos de recuperação de recurso. A seguir, são descritos os processos de cada etapa que compõe as rotas tecnológicas dos cenários avaliados e os respectivos critérios de modelagem adotados neste estudo.

Coleta e transporte

A coleta e transporte do RSU utilizou 19 caminhões compactadores e um caminhão basculante que percorreram, em média, 2.500 km·mês−1 cada um. O caminhão compactador (tipo VW-17 230) e o caminhão basculante (tipo rollon-rolloff) são movidos a diesel, com desempenho médio de 1,34 km·L-1. Os caminhões operaram 8 horas por dia, em média, durante 312 dias·ano-1 e percorreram cerca de 30 mil km cada um em 2018. Foi considerado o mesmo sistema de coleta e transporte nos cenários avaliados.

Cenário 1 (C1) – Disposição em aterro sanitário

O C1 representa a situação predominante de Feira de Santana em 2018, na qual o RSU é destinado a aterro sanitário com queima do biogás em flare. A eficiência de coleta do biogás do aterro sanitário é de 65%, enquanto a eficiência da queima do metano contido no biogás é de 90% no flare (TAVARES et al., 2007TAVARES, L.F.; RATTON, M.A. Projeto de Gás de Aterro Sanitário Feira de Santana no Brasil. 1° Relatório, DNV Certification, International Climate Change Services. Feira de Santana: DNV, 2007. Disponível em: https://antigo.mctic.gov.br/mctic/export/sites/institucional/ciencia/SEPED/clima/mecanismo_de_desenvolvimento_limpo/submetidos/aprovados_termos_resolucao_1/publicacoes/202/Validacao-do-Projeto-de-Gas-de-Aterro-Sanitario-Feira-de-Santana.pdf. Acesso em: 13 de nov. 2019.
https://antigo.mctic.gov.br/mctic/export...
). As emissões de metano do aterro sanitário foram estimadas no software Biogás™, versão 1.0 (CETESB, 2006COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO (CETESB). Manual do usuário do programa de computador Biogás: geração e uso energético. São Paulo: CETESB, 2006.). Utilizaram-se a densidade de 0,717 kg·Nm-3 CH4 (FERRER et al., 2006FERRER, J.T.V.; ALVES, J.W.S. Biogás: projetos e pesquisas no Brasil. São Paulo: CETESB/SMA, 2006. 184 p.; TCHOBANOGLOUS et al., 1993TCHOBANOGLOUS, G.; THEISEN, H.; VINIL, S. Integrated solid waste management. Engineering principles and management issues. New York: McGraw-Hill, 1993. 978 p.) e a vazão anual, levando-se em conta as eficiências de coleta e queima do gás, para se obter a massa de metano emitida na atmosfera.

O trator de esteira (tipo CAT-D6) do aterro sanitário operou por 1.790 h·ano-1 e a retroescavadeira operou por 2.426 h·ano-1, com consumo de diesel de 22 L·h-1 e 10 L·h-1, respectivamente (SMSP-FSA, 2018SECRETARIA MUNICIPAL DE SERVIÇOS PÚBLICOS DE FEIRA DE SANTANA – BA (SMSP-FSA). Prefeitura Municipal de Feira de Santana. Relatório de Atividades Desenvolvidas pelo Departamento de Limpeza Pública 2018. 2018.). O consumo total do maquinário do aterro sanitário foi 63.640 L de diesel em 2018.

O lixiviado da lagoa de armazenamento foi retirado à taxa de 60 m³·dia-1 e transportado de caminhão, em duas viagens de ida e volta, até o local de tratamento a 97,8 km de distância do aterro sanitário (comunicação pessoal). Consideraram-se os consumos de diesel de 1,5 km·L-1 e 2,5 km·L-1 para o caminhão carregado de lixiviado e vazio, respectivamente, totalizando o consumo de 76.154 L de diesel em 2018.

Cenário 2 (C2) – Disposição em aterro sanitário com recuperação energética

O C2 é um aprimoramento do C1, com a utilização do biogás para gerar eletricidade. Admitiu-se a mesma eficiência de coleta de biogás do aterro sanitário do C1 com eficiência de queima de 99% do biogás no gerador (USEPA, 2011UNITED STATES ENVIRONMENTAL PROTECTION AGENCY (USEPA). Background Information Document for Life-cycle Inventory Landfill Process Model. 2011. Disponível em: http://www4.ncsu.edu/~jwlevis/Landfill-2011.pdf. Acesso em: 21 ago. 2020.
http://www4.ncsu.edu/~jwlevis/Landfill-2...
).

O software Biogás™, versão 1.0 (CETESB, 2006COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO (CETESB). Manual do usuário do programa de computador Biogás: geração e uso energético. São Paulo: CETESB, 2006.), foi usado para converter a vazão de metano do biogás em potência disponível (Apêndices 1 Apêndice 1 Estimativa da produção de metano durante a vida útil do aterro sanitário de Feira de Santana (BA) no software Biogás™ 1.0 (CETESB, 2006). e 2 Apêndice 2 Estimativa da potência disponível com a geração de metano durante a vida útil do aterro sanitário de Feira de Santana/BA no software Biogás™ 1.0 (CETESB, 2006). ) na forma de combustível, com o poder calorífico inferior do metano de 35,8 MJ·m−3 (TCHOBANOGLOUS et al., 2002TCHOBANOGLOUS, G.; BURTON, F.L.; STENSEL, H.D.; METCALF & EDDY, INC.; BURTON, F. Wastewater Engineering: Treatment and Reuse. 4. ed. Nova York: McGraw-Hill, 2002. 1408 p.). Foi considerada a eficiência de 33% na conversão de energia térmica do biogás coletado em energia elétrica (CETESB, 2006COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO (CETESB). Manual do usuário do programa de computador Biogás: geração e uso energético. São Paulo: CETESB, 2006.). O C2 considerou o produto evitado da substituição da energia elétrica de baixa tensão da matriz brasileira (Apêndice 3 Apêndice 3 Inventário (primeiro plano) do gerenciamento de resíduos sólidos urbanos de Feira de Santana em 2018 no cenário base (C1) e cenários propostos (C2, C3, C4) referente a 1 t de resíduos sólidos urbanos. Parâmetro C1 C2 C3 C4 Unidade Fonte Coleta e Transporte Resíduo Sólido Urbano 1,0×103 1,0×103 1,0×103 1,0×103 kg OT* e SMSP-FSA (2018) Combustível (Diesel) 2,9×100 2,9×100 2,9×100 2,9×100 L OT* e calculado** Substituição de Caminhão 2,5×10-5 2,5×10-5 2,5×10-5 2,5×10-5 und. OT* e PMGIRS-FSA (2016) Aterro Sanitário e Aterro Sanitário com Recuperação Energética RSU aterrado 1,0×103 1,0×103 8,5×102 3,6×102 kg Calculado Energia Produzida com o Biogás n/a 2,6×102 n/a n/a MJ Calculado com base em CETESB (2006) Combustível (Diesel) 4,1×10-1 4,1×10-1 3,2×10-1 1,5×10-1 L OT*, SMSP-FSA (2018) e calculado** Substituição de Maquinário 1,3×10-6 1,3×10-6 1,3×10-7 1,3×10-7 und. OT* Emissão de CH4 8,9×100 8,6×100 3,4×10-1 3,4×10-1 kg Software Biogás™ 1.0 (CETESB, 2006) com base em Laudo Técnico Tavares et al. (2007) Emissão de CH4 da análise de sensibilidade (Cenários 1) 10,8×100 10,4×100 n/a n/a kg Software Biogás™ 1.0 (CETESB, 2006) com base em estimativa qualificada com parâmetros da literatura (Apêndice 3) Emissão de CH4 da análise de sensibilidade (Cenários 2) 2,7×101 2,3×101 n/a n/a kg Software Biogás™ 1.0 (CETESB, 2006) com base em estimativa qualificada com parâmetros da literatura (Apêndice 3) Manejo de Lixiviado Lixiviado 1,4×10-1 1,4×10-1 0,8×10-1 0,8×10-1 m³ Mc-Dougall (2001) e OT* Combustível (Diesel) 4,1×10-1 4,1×10-1 3,9×10-1 3,4×10-1 L OT* e calculado** Substituição de Maquinário 1,3×10-6 1,3×10-6 7,4×10-7 7,4×10-7 und. OT* Emissão de CH4 das lagoas 5,6×100 5,6×100 4,5×100 3,9×100 kg Estimado (WANG et al., 2017) Emissão N2O das lagoas 4,1×10-2 4,0×10-2 3,2×10-2 2,8×10-2 kg Estimado (WANG et al., 2017) Reciclagem da fração seca do material, 41% da massa de RSU RSU aproveitado n/a n/a 4,1×102 4,1×102 kg Tabela 1 Papel n/a n/a 2,0×102 2,0×102 kg Tabela 1 Plástico n/a n/a 1,9×102 1,9×102 kg Tabela 1 Metal n/a n/a 1,0×101 1,0×101 kg Tabela 1 Vidro n/a n/a 1,0×101 1,0×101 kg Tabela 1 Combustível (Diesel) n/a n/a 1,8×100 1,8×100 L Calculado** Compostagem da fração úmida do material, 49% da massa de RSU RSU aproveitado, orgânicos biodegradáveis n/a n/a 4,9×102 n/a kg Tabela 1 Composto orgânico produzido n/a n/a 2,9×102 n/a kg 60% de conversão de orgânicos biodegradáveis no composto orgânico (SILVA et al., 2002) Combustível (Diesel) n/a n/a 2,3×100 n/a L Calculado** Emissões de CO2 n/a n/a 2,8×101 n/a kg Calculado com base em fator de emissão da compostagem do ecoinvent™ 3.5 Emissões de N2O n/a n/a 3,3×10-1 n/a kg 0,24 kg N2O·t-1 de material tratado (IPCC, 2006) Emissões de CH4 n/a n/a 2,0×100 n/a kg 4 kg CH4·t-1 de material tratado (IPCC, 2006) Digestão Anaeróbia da fração úmida do material seguida de Compostagem, 49% da massa de RSU RSU aproveitado, orgânicos n/a n/a n/a 4,9×102 kg Tabela 1 Energia elétrica produzida com Biogás n/a n/a n/a 3,1×102 MJ Calculado com base em Gomes et al. (2012) e BRASIL (2015) Emissões Fugitivas de CH4 n/a n/a n/a 1,3×100 kg 2% do total de metano gerado, calculado com base em Fruergaard et al. (2011), Gomes et al. (2012) e BRASIL (2015) Material orgânico biodegradável retirado do digestor anaeróbio n/a n/a n/a 3,0×102 kg Calculado com base em Gomes et al. (2012) e BRASIL (2015) Composto orgânico produzido n/a n/a n/a 1,8×102 kg 60% de conversão de orgânicos biodegradáveis no composto orgânico (SILVA et al., 2002) Combustível (Diesel) n/a n/a n/a 1,4×100 L Calculado** Emissões de CO2 na Compostagem n/a n/a n/a 4,7×101 kg Calculado com base em ecoinvent™ 3.5 Emissões de N2O na Compostagem n/a n/a n/a 0,1×10−1 kg 0,24 kg N2O·t-1 de material tratado (IPCC, 2006) Emissões de CH4 na Compostagem n/a n/a n/a 1,2×100 kg 4 kg CH4·t-1 de material tratado (IPCC, 2006) C: cenário; n/a: Não se aplica. * OT: operadora terceirizada (comunicação pessoal). ** Considerou-se 1 litro de diesel com densidade de 0,853 kg·L-1 e poder calorífico inferior de 45,5 MJ·kg-1. Foi considerado o “Diesel, burned in building machine {GLO}|processing| Cut-off, U” (sem infraestrutura e sem óleo lubrificante) no ecoinvent™ 3.5 (MORENO et al., 2018). ) pela energia elétrica gerada no aterro sanitário.

Cenário 3 (C3) – Tratamento com reciclagem e compostagem

A reciclagem do C3 considerou a Central de Tratamento de Resíduos (CTR), com a triagem dos materiais secos de forma manual e mecanizada e o envio dos materiais triados para o processamento e a comercialização. O transporte dos materiais triados considerou a distância de 100 km, usando caminhões com capacidade de 24 t e movidos a diesel, com desempenho de 1,5 km·L-1 e 2,5 km·L-1 quando carregados e vazios, respectivamente.

A compostagem dos materiais orgânicos biodegradáveis do C3 (a exemplo de um pátio de compostagem com área de 8,4×104 m2) considerou uma retroescavadeira para revirar as 120 leiras, com consumo médio de diesel de 10 L·h-1 durante 1.190 h·ano-1, totalizando o consumo anual de 11.900 L de diesel. Adotou-se a geração de 0,15 m³ de lixiviado por tonelada de material orgânico biodegradável processado em área aberta (MCDOUGALL et al., 2001McDOUGALL, F.R.; WHITE, P.; FRANKE, M.; HINDLE, P. Integrated solid waste management. A Life Cycle Inventory. UK: Blackie Academic & Professional, 2001. 532 p.). O tipo de transporte e o destino desse lixiviado empregou as mesmas especificações daquele apresentado no C1. Considerou-se que o composto orgânico foi transportado à distância média de 100 km (GOMES et al., 2015GOMES, L.P.; KOHL, C.A.; SOUZA, C.L.L.; REMPEL, N.; MIRANDA, L.A.S.; MORAES, C.A.M. Avaliação ambiental de aterros sanitários de resíduos sólidos urbanos precedidos ou não por unidades de compostagem. Engenharia Sanitaria e Ambiental, v.20, n.3, p.449-462, 2015. https://doi.org/10.1590/S1413-41522015020000120751
https://doi.org/10.1590/S1413-4152201502...
; MCDOUGALL et al., 2001McDOUGALL, F.R.; WHITE, P.; FRANKE, M.; HINDLE, P. Integrated solid waste management. A Life Cycle Inventory. UK: Blackie Academic & Professional, 2001. 532 p.) por caminhões com as mesmas especificações de capacidade de carga e desempenho daqueles definidos para o material triado da reciclagem.

Os produtos evitados da substituição de insumos de origem primária (Apêndice 4 Apêndice 4 Demanda energética e pegada de carbono unitária da produção de insumo primário e da recuperação de recurso por componente do resíduo sólido urbano. Tipo de Insumo Componente no RSU (%) DEA dos Insumos Primários MJ DEA da Recuperação dos Recursos MJ GEE dos Insumos Primários kgCO2eq GEE da Recuperação dos Recursos kgCO2eq Fração seca Plástico (kg) 19 81 4,1 2,3 0,3 Papel (kg) 20 37 0,7 1,3 0,1 Vidro (kg) 1 17 0,1 1,0 0,0 Açoa (kg) 0,94 21 1,0 1,7 0,1 Alumínioa (kg) 0,06 197 0,0 18,2 0,0 Fração úmida Nitrogênio (N)b (kg) 0,81 61 *n/a 9,9 *n/a Fósforo (P)b (kg) 0,12 80 *n/a 4,2 *n/a Potássio (K)b (kg) 0,24 4,8 *n/a 0,4 *n/a Energia elétricac (MJ) n/a 1,7 *n/a 0,0736 *n/a RSU: Resíduo Sólido Urbano; DEA: demanda energética acumulada; GEE: gases de efeito estufa; * n/a: Não se aplica. A demanda energética acumulada e os gases de efeito estufa da recuperação de recurso do NPK na Compostagem e a energia elétrica do aterro sanitário e digestor anaeróbio foram consideradas nos cenários avaliados. a Considerou-se 94% de aço e 6% de alumínio dos metais (KING et. al., 2013). b 2,7% de Nitrogênio (N), 0,4% Fósforo (P) e 0,8% de Potássio (K) no composto orgânico (SILVA et al., 2002). c A geração e distribuição de energia elétrica consideraram a matriz elétrica do Brasil conforme ecoinvent™ 3.5 (MORENO et al., 2018), substituída pela energia elétrica do biogás. ) consideraram as massas dos recursos recuperados da reciclagem (papel, plástico, metal e vidro) e compostagem (composto orgânico com Nitrogênio, Fósforo e Potássio – NPK) com base na composição gravimétrica do RSU. Os inventários de segundo plano dos insumos primários considerados como produtos evitados são apresentados no Apêndice 5 Apêndice 5 Inventário (segundo plano) da base de dados ecoinvent™ 3.5 utilizada nos cenários avaliados. Tipo de Insumo Nome do conjunto de dados Plástico Primário Polyethylene, low density, granulate {GLO}|market for| Cut-off, S Plástico após Triagem Waste polyethylene, for recycling, sorted {RoW} | market for waste polyethylene, for recycling, sorted| Cut-off, S Papel Primário Paper, newsprint {RER}|market for| Cut-off, S Papel após Triagem Waste paper, sorted {RoW}|treatment of waste paper, unsorted, sorting | Cut-off, S Vidro Primário Packaging glass, brown {GLO}|market for| Cut-off, S Vidro após Triagem Glass cullet, sorted {RoW}| treatment of waste glass from unsorted public collection, sorting| Cut-off, S Aço Primário Steel, low-alloyed {GLO}|market for Cut-off, S Aço após Triagem Iron scrap, sorted, pressed {GLO}|market for| Cut-off, S Alumínio Primário Aluminium, primary, ingot {RoW}|market for| Cut-off, S Alumínio após Triagem Aluminium scrap, post-consumer {GLO}| aluminium scrap, post-consumer, Recycled Content cut-off| Cut-off, S Nitrogênio (N) Primário* Nitrogen fertiliser, as N {GLO}|market for| Cut-off, S Fósforo (P) Primário* Phosphate fertiliser, as P2O5 {GLO}|market for| Cut-off, S Potássio (K) Primário* Potassium fertiliser, as K2O {GLO}|market for| Cut-off, S Energia Elétrica Primária Eletricity, low voltage {BR}|eletricity voltage transformation from S Diesel Diesel, burned in building machine {GLO}|processing| Cut-off, U” (sem infraestrutura e sem óleo lubrificante) Infraestrutura caminhão** Lorry, 40 metric ton {RoW}|production| Cut-off, U GLO: global; RoW: rest-of- the-world; RER: rest-of-Europe; BR: Brazil. * P2O5 e K2O foram convertidos para P e K com a multiplicação pelos fatores 2,29 e 1,20, respectivamente, obtidos de Primavesi et al. (2000). ** Considerou-se a mesma infraestrutura do caminhão para o maquinário. .

Cenário 4 (C4) – Tratamento com reciclagem, digestão anaeróbia e compostagem

O C4 considerou a reciclagem idêntica àquela do C3. A digestão anaeróbia do material orgânico biodegradável, 49% do RSU (Tabela 1), considerou uma planta de biometanização do tipo Kompogas®. O volume de biogás produzido no digestor anaeróbio foi 125 Nm³·t-1 de material orgânico biodegradável (BRASIL, 2015BRASIL. O Estado da arte da tecnologia de metanização seca. Projeto Brasil – Alemanha de Fomento ao Aproveitamento Energético de Biogás no Brasil. Brasília: Ministério das Cidades, 2015. 97 p.). Adotou-se a concentração volumétrica de metano de 58% do biogás produzido, valor este intermediário na faixa de 40 a 75% determinada por Salomon et al. (2009)SALOMON, K.R.; LORA, E.E.S. Estimate of The Electric Energy Generating Potential for Different Sources of Biogas in Brazil. Biomass and Bioenergy, v. 33, n.9, p. 1101-1107, 2009. https://doi.org/10.1016/j.biombioe.2009.03.001
https://doi.org/10.1016/j.biombioe.2009....
. O poder calorífico inferior adotado para o metano e a eficiência de conversão de energia térmica do biogás coletado em energia elétrica foram iguais àqueles apresentados no C2. O digestor anaeróbio do tipo Kompogas® demandou 25% da energia elétrica total produzida em sua operação (BRASIL, 2015BRASIL. O Estado da arte da tecnologia de metanização seca. Projeto Brasil – Alemanha de Fomento ao Aproveitamento Energético de Biogás no Brasil. Brasília: Ministério das Cidades, 2015. 97 p.). Consideraram-se 2% de perda da vazão total de biogás produzido no digestor anaeróbio com a emissão direta do CH4 na atmosfera (FRUERGAARD et al., 2011FRUERGAARD, T.; ASTRUP, T. Optimal utilization of waste-to-energy in an LCA perspective. Waste Management, v. 31, n. 3, p.572-582, 2011. https://doi.org/10.1016/j.wasman.2010.09.009
https://doi.org/10.1016/j.wasman.2010.09...
; IPCC, 2006INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). Chapter 4: Biological Treatment of Solid Waste. 2006. Disponível em:www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_4_Ch4_Bio_Treat.pdf. Acesso em: 16 jun. 2020.
www.ipcc-nggip.iges.or.jp/public/2006gl/...
).

Após a digestão anaeróbia, o material digerido seguiu para a compostagem, e o composto orgânico foi transportado para o aproveitamento como fertilizante agrícola. Os produtos evitados da substituição de insumos de origem primária (Apêndice 3 Apêndice 3 Inventário (primeiro plano) do gerenciamento de resíduos sólidos urbanos de Feira de Santana em 2018 no cenário base (C1) e cenários propostos (C2, C3, C4) referente a 1 t de resíduos sólidos urbanos. Parâmetro C1 C2 C3 C4 Unidade Fonte Coleta e Transporte Resíduo Sólido Urbano 1,0×103 1,0×103 1,0×103 1,0×103 kg OT* e SMSP-FSA (2018) Combustível (Diesel) 2,9×100 2,9×100 2,9×100 2,9×100 L OT* e calculado** Substituição de Caminhão 2,5×10-5 2,5×10-5 2,5×10-5 2,5×10-5 und. OT* e PMGIRS-FSA (2016) Aterro Sanitário e Aterro Sanitário com Recuperação Energética RSU aterrado 1,0×103 1,0×103 8,5×102 3,6×102 kg Calculado Energia Produzida com o Biogás n/a 2,6×102 n/a n/a MJ Calculado com base em CETESB (2006) Combustível (Diesel) 4,1×10-1 4,1×10-1 3,2×10-1 1,5×10-1 L OT*, SMSP-FSA (2018) e calculado** Substituição de Maquinário 1,3×10-6 1,3×10-6 1,3×10-7 1,3×10-7 und. OT* Emissão de CH4 8,9×100 8,6×100 3,4×10-1 3,4×10-1 kg Software Biogás™ 1.0 (CETESB, 2006) com base em Laudo Técnico Tavares et al. (2007) Emissão de CH4 da análise de sensibilidade (Cenários 1) 10,8×100 10,4×100 n/a n/a kg Software Biogás™ 1.0 (CETESB, 2006) com base em estimativa qualificada com parâmetros da literatura (Apêndice 3) Emissão de CH4 da análise de sensibilidade (Cenários 2) 2,7×101 2,3×101 n/a n/a kg Software Biogás™ 1.0 (CETESB, 2006) com base em estimativa qualificada com parâmetros da literatura (Apêndice 3) Manejo de Lixiviado Lixiviado 1,4×10-1 1,4×10-1 0,8×10-1 0,8×10-1 m³ Mc-Dougall (2001) e OT* Combustível (Diesel) 4,1×10-1 4,1×10-1 3,9×10-1 3,4×10-1 L OT* e calculado** Substituição de Maquinário 1,3×10-6 1,3×10-6 7,4×10-7 7,4×10-7 und. OT* Emissão de CH4 das lagoas 5,6×100 5,6×100 4,5×100 3,9×100 kg Estimado (WANG et al., 2017) Emissão N2O das lagoas 4,1×10-2 4,0×10-2 3,2×10-2 2,8×10-2 kg Estimado (WANG et al., 2017) Reciclagem da fração seca do material, 41% da massa de RSU RSU aproveitado n/a n/a 4,1×102 4,1×102 kg Tabela 1 Papel n/a n/a 2,0×102 2,0×102 kg Tabela 1 Plástico n/a n/a 1,9×102 1,9×102 kg Tabela 1 Metal n/a n/a 1,0×101 1,0×101 kg Tabela 1 Vidro n/a n/a 1,0×101 1,0×101 kg Tabela 1 Combustível (Diesel) n/a n/a 1,8×100 1,8×100 L Calculado** Compostagem da fração úmida do material, 49% da massa de RSU RSU aproveitado, orgânicos biodegradáveis n/a n/a 4,9×102 n/a kg Tabela 1 Composto orgânico produzido n/a n/a 2,9×102 n/a kg 60% de conversão de orgânicos biodegradáveis no composto orgânico (SILVA et al., 2002) Combustível (Diesel) n/a n/a 2,3×100 n/a L Calculado** Emissões de CO2 n/a n/a 2,8×101 n/a kg Calculado com base em fator de emissão da compostagem do ecoinvent™ 3.5 Emissões de N2O n/a n/a 3,3×10-1 n/a kg 0,24 kg N2O·t-1 de material tratado (IPCC, 2006) Emissões de CH4 n/a n/a 2,0×100 n/a kg 4 kg CH4·t-1 de material tratado (IPCC, 2006) Digestão Anaeróbia da fração úmida do material seguida de Compostagem, 49% da massa de RSU RSU aproveitado, orgânicos n/a n/a n/a 4,9×102 kg Tabela 1 Energia elétrica produzida com Biogás n/a n/a n/a 3,1×102 MJ Calculado com base em Gomes et al. (2012) e BRASIL (2015) Emissões Fugitivas de CH4 n/a n/a n/a 1,3×100 kg 2% do total de metano gerado, calculado com base em Fruergaard et al. (2011), Gomes et al. (2012) e BRASIL (2015) Material orgânico biodegradável retirado do digestor anaeróbio n/a n/a n/a 3,0×102 kg Calculado com base em Gomes et al. (2012) e BRASIL (2015) Composto orgânico produzido n/a n/a n/a 1,8×102 kg 60% de conversão de orgânicos biodegradáveis no composto orgânico (SILVA et al., 2002) Combustível (Diesel) n/a n/a n/a 1,4×100 L Calculado** Emissões de CO2 na Compostagem n/a n/a n/a 4,7×101 kg Calculado com base em ecoinvent™ 3.5 Emissões de N2O na Compostagem n/a n/a n/a 0,1×10−1 kg 0,24 kg N2O·t-1 de material tratado (IPCC, 2006) Emissões de CH4 na Compostagem n/a n/a n/a 1,2×100 kg 4 kg CH4·t-1 de material tratado (IPCC, 2006) C: cenário; n/a: Não se aplica. * OT: operadora terceirizada (comunicação pessoal). ** Considerou-se 1 litro de diesel com densidade de 0,853 kg·L-1 e poder calorífico inferior de 45,5 MJ·kg-1. Foi considerado o “Diesel, burned in building machine {GLO}|processing| Cut-off, U” (sem infraestrutura e sem óleo lubrificante) no ecoinvent™ 3.5 (MORENO et al., 2018). ) consideraram as quantidades dos materiais recuperados com a reciclagem e a compostagem com base na composição gravimétrica do RSU e energia recuperada com a digestão anaeróbia conforme a modelagem da energia elétrica produzida.

Inventário de ciclo de vida, avaliação de impacto e interpretação

O inventário de primeiro plano do cenário base foi elaborado com os dados do GRSU e modelagem com parâmetros do local. Nos cenários propostos, foram considerados dados obtidos da literatura e de comunicação pessoal com operadores do sistema e fabricantes dos equipamentos estudados (Apêndice 3 Apêndice 3 Inventário (primeiro plano) do gerenciamento de resíduos sólidos urbanos de Feira de Santana em 2018 no cenário base (C1) e cenários propostos (C2, C3, C4) referente a 1 t de resíduos sólidos urbanos. Parâmetro C1 C2 C3 C4 Unidade Fonte Coleta e Transporte Resíduo Sólido Urbano 1,0×103 1,0×103 1,0×103 1,0×103 kg OT* e SMSP-FSA (2018) Combustível (Diesel) 2,9×100 2,9×100 2,9×100 2,9×100 L OT* e calculado** Substituição de Caminhão 2,5×10-5 2,5×10-5 2,5×10-5 2,5×10-5 und. OT* e PMGIRS-FSA (2016) Aterro Sanitário e Aterro Sanitário com Recuperação Energética RSU aterrado 1,0×103 1,0×103 8,5×102 3,6×102 kg Calculado Energia Produzida com o Biogás n/a 2,6×102 n/a n/a MJ Calculado com base em CETESB (2006) Combustível (Diesel) 4,1×10-1 4,1×10-1 3,2×10-1 1,5×10-1 L OT*, SMSP-FSA (2018) e calculado** Substituição de Maquinário 1,3×10-6 1,3×10-6 1,3×10-7 1,3×10-7 und. OT* Emissão de CH4 8,9×100 8,6×100 3,4×10-1 3,4×10-1 kg Software Biogás™ 1.0 (CETESB, 2006) com base em Laudo Técnico Tavares et al. (2007) Emissão de CH4 da análise de sensibilidade (Cenários 1) 10,8×100 10,4×100 n/a n/a kg Software Biogás™ 1.0 (CETESB, 2006) com base em estimativa qualificada com parâmetros da literatura (Apêndice 3) Emissão de CH4 da análise de sensibilidade (Cenários 2) 2,7×101 2,3×101 n/a n/a kg Software Biogás™ 1.0 (CETESB, 2006) com base em estimativa qualificada com parâmetros da literatura (Apêndice 3) Manejo de Lixiviado Lixiviado 1,4×10-1 1,4×10-1 0,8×10-1 0,8×10-1 m³ Mc-Dougall (2001) e OT* Combustível (Diesel) 4,1×10-1 4,1×10-1 3,9×10-1 3,4×10-1 L OT* e calculado** Substituição de Maquinário 1,3×10-6 1,3×10-6 7,4×10-7 7,4×10-7 und. OT* Emissão de CH4 das lagoas 5,6×100 5,6×100 4,5×100 3,9×100 kg Estimado (WANG et al., 2017) Emissão N2O das lagoas 4,1×10-2 4,0×10-2 3,2×10-2 2,8×10-2 kg Estimado (WANG et al., 2017) Reciclagem da fração seca do material, 41% da massa de RSU RSU aproveitado n/a n/a 4,1×102 4,1×102 kg Tabela 1 Papel n/a n/a 2,0×102 2,0×102 kg Tabela 1 Plástico n/a n/a 1,9×102 1,9×102 kg Tabela 1 Metal n/a n/a 1,0×101 1,0×101 kg Tabela 1 Vidro n/a n/a 1,0×101 1,0×101 kg Tabela 1 Combustível (Diesel) n/a n/a 1,8×100 1,8×100 L Calculado** Compostagem da fração úmida do material, 49% da massa de RSU RSU aproveitado, orgânicos biodegradáveis n/a n/a 4,9×102 n/a kg Tabela 1 Composto orgânico produzido n/a n/a 2,9×102 n/a kg 60% de conversão de orgânicos biodegradáveis no composto orgânico (SILVA et al., 2002) Combustível (Diesel) n/a n/a 2,3×100 n/a L Calculado** Emissões de CO2 n/a n/a 2,8×101 n/a kg Calculado com base em fator de emissão da compostagem do ecoinvent™ 3.5 Emissões de N2O n/a n/a 3,3×10-1 n/a kg 0,24 kg N2O·t-1 de material tratado (IPCC, 2006) Emissões de CH4 n/a n/a 2,0×100 n/a kg 4 kg CH4·t-1 de material tratado (IPCC, 2006) Digestão Anaeróbia da fração úmida do material seguida de Compostagem, 49% da massa de RSU RSU aproveitado, orgânicos n/a n/a n/a 4,9×102 kg Tabela 1 Energia elétrica produzida com Biogás n/a n/a n/a 3,1×102 MJ Calculado com base em Gomes et al. (2012) e BRASIL (2015) Emissões Fugitivas de CH4 n/a n/a n/a 1,3×100 kg 2% do total de metano gerado, calculado com base em Fruergaard et al. (2011), Gomes et al. (2012) e BRASIL (2015) Material orgânico biodegradável retirado do digestor anaeróbio n/a n/a n/a 3,0×102 kg Calculado com base em Gomes et al. (2012) e BRASIL (2015) Composto orgânico produzido n/a n/a n/a 1,8×102 kg 60% de conversão de orgânicos biodegradáveis no composto orgânico (SILVA et al., 2002) Combustível (Diesel) n/a n/a n/a 1,4×100 L Calculado** Emissões de CO2 na Compostagem n/a n/a n/a 4,7×101 kg Calculado com base em ecoinvent™ 3.5 Emissões de N2O na Compostagem n/a n/a n/a 0,1×10−1 kg 0,24 kg N2O·t-1 de material tratado (IPCC, 2006) Emissões de CH4 na Compostagem n/a n/a n/a 1,2×100 kg 4 kg CH4·t-1 de material tratado (IPCC, 2006) C: cenário; n/a: Não se aplica. * OT: operadora terceirizada (comunicação pessoal). ** Considerou-se 1 litro de diesel com densidade de 0,853 kg·L-1 e poder calorífico inferior de 45,5 MJ·kg-1. Foi considerado o “Diesel, burned in building machine {GLO}|processing| Cut-off, U” (sem infraestrutura e sem óleo lubrificante) no ecoinvent™ 3.5 (MORENO et al., 2018). ). Ademais, foi utilizada a base de dados ecoinvent™, versão 3.5, no software Simapro®, versão 9.0.0.49, para compor o inventário de segundo plano (Apêndice 5 Apêndice 5 Inventário (segundo plano) da base de dados ecoinvent™ 3.5 utilizada nos cenários avaliados. Tipo de Insumo Nome do conjunto de dados Plástico Primário Polyethylene, low density, granulate {GLO}|market for| Cut-off, S Plástico após Triagem Waste polyethylene, for recycling, sorted {RoW} | market for waste polyethylene, for recycling, sorted| Cut-off, S Papel Primário Paper, newsprint {RER}|market for| Cut-off, S Papel após Triagem Waste paper, sorted {RoW}|treatment of waste paper, unsorted, sorting | Cut-off, S Vidro Primário Packaging glass, brown {GLO}|market for| Cut-off, S Vidro após Triagem Glass cullet, sorted {RoW}| treatment of waste glass from unsorted public collection, sorting| Cut-off, S Aço Primário Steel, low-alloyed {GLO}|market for Cut-off, S Aço após Triagem Iron scrap, sorted, pressed {GLO}|market for| Cut-off, S Alumínio Primário Aluminium, primary, ingot {RoW}|market for| Cut-off, S Alumínio após Triagem Aluminium scrap, post-consumer {GLO}| aluminium scrap, post-consumer, Recycled Content cut-off| Cut-off, S Nitrogênio (N) Primário* Nitrogen fertiliser, as N {GLO}|market for| Cut-off, S Fósforo (P) Primário* Phosphate fertiliser, as P2O5 {GLO}|market for| Cut-off, S Potássio (K) Primário* Potassium fertiliser, as K2O {GLO}|market for| Cut-off, S Energia Elétrica Primária Eletricity, low voltage {BR}|eletricity voltage transformation from S Diesel Diesel, burned in building machine {GLO}|processing| Cut-off, U” (sem infraestrutura e sem óleo lubrificante) Infraestrutura caminhão** Lorry, 40 metric ton {RoW}|production| Cut-off, U GLO: global; RoW: rest-of- the-world; RER: rest-of-Europe; BR: Brazil. * P2O5 e K2O foram convertidos para P e K com a multiplicação pelos fatores 2,29 e 1,20, respectivamente, obtidos de Primavesi et al. (2000). ** Considerou-se a mesma infraestrutura do caminhão para o maquinário. ).

A categoria de aspecto ambiental de demanda de energia acumulada (DEA) foi utilizada para avaliar a demanda energética do GRSU, enquanto a categoria de impacto ambiental do Intergovernmental Panel On Climate Change 2013 (IPCC, 2013) com o potencial de aquecimento global de cem anos foi utilizada para avaliar as emissões de GEE. A interpretação do estudo incluiu análise comparativa, análise de contribuição, análise de cenário e análise de sensibilidade.

Análise de sensibilidade

A destinação de RSU a aterro apresentou a maior contribuição para a emissão de GEE em sistemas de GRSU (ISTRATE et al., 2020ISTRATE, I.R.; IRIBARREN, D.; GÁLVEZ-MATOS, J.L.; DUFOUR, J. Review of life-cycle environmental consequences of waste-to-energy solutions on the municipal solid waste management system. Resources, Conservation and Recycling, v. 157, n. 104778, 14 p., 2020. https://doi.org/10.1016/j.resconrec.2020.104778
https://doi.org/10.1016/j.resconrec.2020...
; IQBAL et al., 2019IQBAL, A.; ZAN, F.; LIU, X.; CHEN, GH. Integrated municipal solid waste management scheme of Hong Kong: A comprehensive analysis in terms of global warming potential and energy use. Journal of Cleaner Production, v. 225, p. 1079-1088, 2019. https://doi.org/10.1016/j.jclepro.2019.04.034
https://doi.org/10.1016/j.jclepro.2019.0...
). Assim, foi analisada a sensibilidade de parâmetros associados à estimativa do metano produzido no aterro sanitário. O modelo de decaimento de primeira ordem (Equação 1) apresenta as variáveis que influenciam na geração de metano em um aterro sanitário. A Equação 1 foi modelada no software Biogás™, versão 1.0 (CETESB, 2006COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO (CETESB). Manual do usuário do programa de computador Biogás: geração e uso energético. São Paulo: CETESB, 2006.), que utiliza o modelo matemático da United States Environmental Protection Agency (USEPA, 2005UNITED STATES ENVIRONMENTAL PROTECTION AGENCY (USEPA). Landfill gas emissions model (LandGEM) Version 3.02 User's Guide. 2005. Disponível em: http://www.epa.gov/ttn/catc/products.html. Acesso em: 25 fev. 2020.
http://www.epa.gov/ttn/catc/products.htm...
).

(1) Q x = k   ×   R x    ×   L 0    ×   e k × (x t) ,

Em que:

Qx = representa a geração de metano do aterro no ano x (m³CH4·ano-1);

k = representa a constante de decaimento (ano-1);

Rx = representa o fluxo de RSU no ano x (kg);

L0 = representa o potencial de geração de metano (m³CH4·kg−1);

x = representa o ano de referência do estudo (ano); e

t = representa o ano de deposição do resíduo no aterro (ano).

Os parâmetros de k (0,08 ano-1) e L0 (87 m³CH4·t-1) em C1 e C2 foram obtidos localmente e validados por uma empresa que operou o aterro sanitário (TAVARES et al., 2007TAVARES, L.F.; RATTON, M.A. Projeto de Gás de Aterro Sanitário Feira de Santana no Brasil. 1° Relatório, DNV Certification, International Climate Change Services. Feira de Santana: DNV, 2007. Disponível em: https://antigo.mctic.gov.br/mctic/export/sites/institucional/ciencia/SEPED/clima/mecanismo_de_desenvolvimento_limpo/submetidos/aprovados_termos_resolucao_1/publicacoes/202/Validacao-do-Projeto-de-Gas-de-Aterro-Sanitario-Feira-de-Santana.pdf. Acesso em: 13 de nov. 2019.
https://antigo.mctic.gov.br/mctic/export...
). A primeira análise de sensibilidade considerou a produção de gás metano com base em diferentes parâmetros de k (0,13 ano-1) e L0 (45 m³ CH4·t-1) em C1-s1 e C2-s1 e k (0,05 ano-1) e L0 (170 m³ CH4·t-1) em C1-s2 e C2-s2 encontrados na literatura (Apêndice 6 Apêndice 6 Parâmetros de constante de decaimento e potencial de geração de metano da literatura consultada de modelos de geração de metano de aterro sanitário por localidade. Constante de Decaimento (k).ano−1 Potencial de Geração de Metano (L0).m³ CH4·t−1 Local Fonte 0,05 134,12 – 170,00 Guarapuava (PR) Bianek et al. (2018) 0,06 n/a João Pessoa (PB) Carvalho Júnior et al. (2018) 0,24 61,30 Salvador (BA) Santos, A. (2017) 0,08 – 0,17 65,67 – 140,00 Rio de Janeiro (RJ), Paulínea (SP) e Caieiras (SP) Santos et al. (2017) 0,05 170,00 Três Corações (MG) Piñas et al. (2016) 0,08 87,43 Feira de Santana (BA) Empresa Qualix, auditado por Tavares et al. (2007) 0,08 120,00 Brasil CETESB (2006) 0,065 *n/a Recomendado para a América do Sul IPCC (2006) 0,05 170,00 Estados Unidos LandGEM, EPA (2005) IPCC: Intergovernmental Panel on Climate Change. Não se aplica (n/a). * O Intergovernmental Panel On Climate Change utiliza o parâmetro da fração orgânica biodegradável (dissolved organic carbon) do resíduo sólido urbano. ). A pegada de carbono referente à análise de sensibilidade dos parâmetros de k e L0 do aterro sanitário foi somada às contribuições das demais etapas do GRSU do C1 e do C2.

A segunda análise de sensibilidade considerou as emissões anuais de metano do aterro sanitário ao longo da sua vida útil, desde a abertura em 2002 até o encerramento projetado para 2032 e o monitoramento até 2062. A pegada de carbono referente à projeção das emissões de metano por ano do aterro sanitário foi somada às contribuições das demais etapas do GRSU do C1 e do C2.

RESULTADOS

A DEA do C1 e do C2 foi 215 MJ·t-1, enquanto a do C3 e do C4 foi 180 MJ·t-1, com o critério de corte. A expansão do sistema de produto para incluir o transporte e o processamento dos materiais recuperados do RSU aumentou a DEA para 1.137 MJ·t−1 em C3 e 1.092 MJ·t−1 em C4. A recuperação de recursos energéticos na forma de energia elétrica gerou 264 MJ·t−1 do aterro sanitário que representou – 449 MJ·t−1 de DEA do produto evitado no C2 e 308 MJ·t−1 do digestor anaeróbio que representou – 524 MJ·t−1 de DEA do produto evitado no C4. A recuperação de recursos materiais da reciclagem e da compostagem resultou em – 23 857 MJ·t−1 no C3 e – 23 637 MJ·t−1 no C4 de DEA dos produtos evitados. Logo, a DEA líquida foi – 234 MJ·t−1 no C2, – 22 550 MJ·t−1 no C3 e – 22 578 MJ·t−1 no C4 com a expansão do sistema de produto (Figura 3).

Figura 3
Demanda de energia acumulada no gerenciamento de resíduos sólidos urbanos dos cenários avaliados (em MJ·t−1).

A pegada de carbono foi 449 kg CO2eq·t−1 no C1 e 412 kg CO2eq·t−1 no C2, enquanto esses valores diminuíram para 92 kg CO2 eq·t−1 no C3 e C4 com o critério de corte. A expansão do sistema de produto para incluir o transporte e o processamento dos materiais recuperados do RSU aumentou a pegada de carbono para 172 kg CO2eq·t−1 no C3 e para 169 kg CO2eq·t−1 no C4. A recuperação de recursos energéticos na forma de energia elétrica do aterro sanitário resultou em – 19 kg CO2eq·t−1 de pegada de carbono do produto evitado no C2 e do digestor anaeróbio resultou em – 23 kg CO2eq·t−1 de pegada de carbono do produto evitado no C4. A recuperação de recursos materiais da reciclagem e da compostagem resultou em – 817 kg CO2eq·t−1 no C3 e – 786 kg CO2eq·t−1 no C4 de pegada de carbono dos produtos evitados. Sendo assim, a pegada de carbono líquida foi 393 kg CO2eq·t−1 no C2, – 645 kg CO2eq·t−1 no C3 e – 622 kg CO2eq·t−1 em C4 com a expansão do sistema de produto (Figura 4).

Figura 4
Pegada de Carbono no gerenciamento de resíduos sólidos urbanos dos cenários avaliados (gases de efeito estufa dos resíduos sólidos urbanos em kg CO2eq·t-1).

A maior quantidade de RSU encaminhada para o aterro sanitário do C1 e do C2 reduziu a produção de eletricidade e o potencial de créditos de carbono do GRSU comparado ao digestor anaeróbio do C4 em virtude das maiores taxas de emissões fugitivas do aterro sanitário. Dessa forma, C3 e C4 apresentaram redução na emissão de GEE graças à redução da quantidade de RSU encaminhada para o aterro sanitário. Ademais, a recuperação de recurso com a reciclagem do material seco e o aproveitamento dos nutrientes do composto orgânico contribuíram para a redução das emissões de GEE líquidas do GRSU com valores negativos em consequência dos produtos evitados. Desse modo, C3 e C4 apresentam mais benefícios ambientais comparados a C1 e C2 nas categorias analisadas com diferentes fronteiras do sistema de produto.

Cenário 1 (C1) – Destinação a aterro sanitário

A etapa de coleta e transporte contribuiu com 78% da DEA do C1 em razão do consumo de diesel dos caminhões, seguida do manejo de lixiviado com 12% e aterro sanitário com 10%. A etapa de tratamento e disposição do RSU no aterro sanitário contribuiu com 59% da pegada de carbono, seguida do manejo de lixiviado com 39% e da coleta e transporte com 2%. A geração de metano no aterro sanitário no software Biogás™ foi 4,5×106 Nm³ CH4·ano−1, a qual foi multiplicada pela taxa de emissões fugitivas e pela densidade do metano, o que resultou em 1,4×106 kg CH4·ano−1 emitidos para a atmosfera em 2018. A literatura de revisão sistemática de ACV em sistemas de GRSU, a exemplo de Istrate et al. (2020)ISTRATE, I.R.; IRIBARREN, D.; GÁLVEZ-MATOS, J.L.; DUFOUR, J. Review of life-cycle environmental consequences of waste-to-energy solutions on the municipal solid waste management system. Resources, Conservation and Recycling, v. 157, n. 104778, 14 p., 2020. https://doi.org/10.1016/j.resconrec.2020.104778
https://doi.org/10.1016/j.resconrec.2020...
e Dai-Prá et al. (2018)DAI-PRÁ, L.B.; MORAES, C.A.M.; GOMES, L.P.; MARQUES, V.M. Avaliação de ciclo de vida (ACV) aplicada à gestão de resíduos sólidos urbanos (RSU) em aterros: uma revisão. Revista brasileira de planejamento e desenvolvimento, v. 7, n. 3, p.353-364, 2018. https://doi.org/10.3895/rbpd.v7n3.8640
https://doi.org/10.3895/rbpd.v7n3.8640...
, apresentou as emissões fugitivas de metano do aterro sanitário como a maior contribuição da pegada de carbono do GRSU. A maior contribuição da pegada de carbono do manejo de lixiviado foi a emissão de metano (99%) oriunda das lagoas de armazenamento de lixiviado (WANG et al., 2017WANG, X.; JIA M.; ZHANG C.; CHEN S.; CAI Z. Leachate treatment is a significant N2O source. Science of the Total Environment, v.10, p.596-597, 2017. https://doi.org/10.1016/j.scitotenv.2017.04.029
https://doi.org/10.1016/j.scitotenv.2017...
).

Cenário 2 (C2) – Disposição em aterro sanitário com recuperação energética

As contribuições da DEA do C2 mantiveram-se igual àquela do C1, na qual a maior contribuição foi a etapa de coleta e transporte. A pegada de carbono do C2 foi 8% menor comparada àquela do C1 em função da queima mais eficiente do metano contido no biogás coletado para a produção de energia elétrica. Ademais, a expansão do sistema de produto do C2 incluiu o produto evitado da recuperação energética do biogás do aterro sanitário.

Cenário 3 (C3) – Tratamento com reciclagem e compostagem

A DEA do aterro sanitário e o manejo de lixiviado do C3 diminuíram 91 e 58%, respectivamente, comparados aos do C1 em razão da menor quantidade de RSU destinada a aterro sanitário do C3. As maiores contribuições da DEA com a expansão do sistema de produto no C3 foram da etapa de reciclagem, com 1.020 MJ·t−1, em que a maior contribuição foi oriunda da triagem mecanizada dos materiais e da compostagem, com 117 MJ·t-1. A DEA dos produtos evitados do C3 da reciclagem foi −23 276 MJ·t-1, enquanto a da compostagem foi – 582 MJ·t-1. O plástico e o papel recuperados do RSU representaram 96% da DEA dos produtos evitados do C3. O plástico e o papel representaram a maior quantidade de material seco na composição gravimétrica do RSU e valores altos de DEA na produção dos insumos primários (Apêndice 4 Apêndice 4 Demanda energética e pegada de carbono unitária da produção de insumo primário e da recuperação de recurso por componente do resíduo sólido urbano. Tipo de Insumo Componente no RSU (%) DEA dos Insumos Primários MJ DEA da Recuperação dos Recursos MJ GEE dos Insumos Primários kgCO2eq GEE da Recuperação dos Recursos kgCO2eq Fração seca Plástico (kg) 19 81 4,1 2,3 0,3 Papel (kg) 20 37 0,7 1,3 0,1 Vidro (kg) 1 17 0,1 1,0 0,0 Açoa (kg) 0,94 21 1,0 1,7 0,1 Alumínioa (kg) 0,06 197 0,0 18,2 0,0 Fração úmida Nitrogênio (N)b (kg) 0,81 61 *n/a 9,9 *n/a Fósforo (P)b (kg) 0,12 80 *n/a 4,2 *n/a Potássio (K)b (kg) 0,24 4,8 *n/a 0,4 *n/a Energia elétricac (MJ) n/a 1,7 *n/a 0,0736 *n/a RSU: Resíduo Sólido Urbano; DEA: demanda energética acumulada; GEE: gases de efeito estufa; * n/a: Não se aplica. A demanda energética acumulada e os gases de efeito estufa da recuperação de recurso do NPK na Compostagem e a energia elétrica do aterro sanitário e digestor anaeróbio foram consideradas nos cenários avaliados. a Considerou-se 94% de aço e 6% de alumínio dos metais (KING et. al., 2013). b 2,7% de Nitrogênio (N), 0,4% Fósforo (P) e 0,8% de Potássio (K) no composto orgânico (SILVA et al., 2002). c A geração e distribuição de energia elétrica consideraram a matriz elétrica do Brasil conforme ecoinvent™ 3.5 (MORENO et al., 2018), substituída pela energia elétrica do biogás. ).

A contribuição absoluta de coleta e transporte na pegada de carbono do C3 manteve-se igual àquela do C1. A pegada de carbono do aterro sanitário do C3 diminuiu 96% e a do manejo de lixiviado diminuiu 40% comparada àquela do C1. As reduções das emissões de GEE do aterramento de RSU e do manejo de lixiviado do C3 foram oriundas da diminuição da quantidade de material encaminhado para o aterro sanitário, o que por consequência diminuiu a operação das máquinas, as emissões fugitivas e a geração de lixiviado do aterro sanitário. As maiores contribuições da pegada de carbono, com a expansão do sistema de produto no C3, foram da etapa de reciclagem com 72 kg CO2eq·t−1, seguida de manejo de lixiviado com 70 kg CO2eq·t−1, coleta e transporte com 11 kg CO2eq·t−1, aterro sanitário com 11 kg CO2eq·t−1 e compostagem com 8 kg CO2eq·t−1. A pegada de carbono da reciclagem foi – 734 kg CO2eq·t−1, enquanto a da compostagem foi – 83 kg CO2eq·t−1 por causa da substituição de materiais primários por materiais reciclados e composto orgânico.

Cenário 4 (C4) – Tratamento com reciclagem, digestão anaeróbia e compostagem

A geração de metano no digestor anaeróbio foi calculada em 5,6×106 Nm³ CH4·ano−1, o que representou a geração de energia do biogás de 2,0×104 MWh·ano−1 e a potência bruta de 2,3 MW. As contribuições absolutas de DEA da reciclagem, do aterro sanitário e do manejo de lixiviado do C4 foram iguais àquelas do C3, enquanto a da digestão anaeróbia foi 312 MJ·t−1 e a da compostagem foi 72 MJ·t−1. A DEA do produto evitado do C4 apresentou a maior contribuição oriunda dos materiais recuperados da reciclagem. A DEA do produto evitado da compostagem da fração orgânica do RSU do C4 foi – 361 MJ·t−1, apresentando benefício 39% menor comparado ao do C3 por conta da menor quantidade de material compostado. A geração de energia elétrica do digestor anaeróbio foi 308 MJ·t−1, contribuindo com – 524 MJ·t−1 para a DEA do produto evitado do C4.

As contribuições absolutas da pegada de carbono da reciclagem, do aterro sanitário e do manejo de lixiviado do C4 foram iguais as do C3, enquanto a da digestão anaeróbia foi 18 kg CO2eq·t−1 e a da compostagem foi 5 kg CO2eq·t−1. A pegada de carbono dos produtos evitados do C4 foi oriunda da reciclagem, com – 734 kg CO2eq·t−1, da compostagem com – 52 kgCO2eq·t−1 e da digestão anaeróbia com – 23 kg CO2eq·t−1.

Análise de sensibilidade

A análise de sensibilidade dos cenários do aterro sanitário com diferentes parâmetros de k e L0 no software Biogás™ resultou em 208 a 811 kg CO2eq·t−1 (Apêndice 7 Apêndice 7 Pegada de carbono no gerenciamento de resíduos sólidos urbanos do cenário 1 e 2 com a análise de sensibilidade das emissões de gases de efeito estufa em kg CO2eq·t-1 de resíduo sólido urbano. ), com geração de energia elétrica de 264 a 395 MJ·t−1 (Apêndice 8 Apêndice 8 Energia elétrica gerada no aterro sanitário do cenário 2 com a análise de sensibilidade do aproveitamento do biogás em MJ·t-1 de resíduo sólido urbano. ).

A pegada de carbono de C1 e C2 no ano base de 2018 foi menor que aquela com o valor médio estimado com base na vida útil do aterro sanitário (Figura 5). Desse modo, a análise das emissões de GEE ao longo da vida útil do aterro sanitário apresentou-se relevante para a estimativa da pegada de carbono do GRSU.

Figura 5
Pegada de carbono no gerenciamento de resíduos sólidos urbanos ao longo da vida útil do aterro sanitário de Feira de Santana no Cenário 1 e no 2 (gases de efeito estufa dos resíduos sólidos urbanos em kgCO2eq·t-1).

DISCUSSÃO

Comparação dos resultados obtidos com a literatura

Foram encontrados valores referentes à demanda energética e à pegada de carbono na literatura consultada de ACV do GRSU. A DEA variou de – 4.695 a 2.754 MJ·t−1, enquanto as emissões de GEE variaram de 48 a 1.620 kg CO2eq·t-1 (Tabela 2).

Tabela 2
Demanda de energia acumulada e pegada de carbono (emissões de gases de efeito estufa) da literatura consultada de avaliação do ciclo de vida de gerenciamento de resíduos sólidos urbanos.

Os maiores valores de DEA e emissão de GEE deste estudo foram do C1 e do C2, enquanto os menores foram do C3 e do C4, o que foi confirmado nos trabalhos de Iqbal et al. (2019)IQBAL, A.; ZAN, F.; LIU, X.; CHEN, GH. Integrated municipal solid waste management scheme of Hong Kong: A comprehensive analysis in terms of global warming potential and energy use. Journal of Cleaner Production, v. 225, p. 1079-1088, 2019. https://doi.org/10.1016/j.jclepro.2019.04.034
https://doi.org/10.1016/j.jclepro.2019.0...
e Turner et al. (2016)TURNER, D.A.; WILLIAMS, I.D., KEMP, S. Combined material flow analysis and life cycle assessment as a support tool for solid waste management decision making. Journal of Cleaner Production, v. 129, p. 234-248, 2016., que incluíram reciclagem, compostagem e digestão anaeróbia no GRSU (Tabela 2). A maior DEA da recuperação de recurso na forma de produtos evitados deste estudo foi do C4, seguido do C3 (Figura 3).

O C3 e o C4 apresentaram alto potencial de DEA evitada pela substituição de insumos primários. No entanto, a taxa de recuperação de recurso adotada em C3 e C4 é encontrada em países europeus (EUROSTAT, 2020EUROSTAT. Waste treatment by type of recovery and disposal, 2018 (% of total treatment). 2020. Disponível em: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Waste_treatment_by_type_of_recovery_and_disposal,_2018_(%25_of_total_treatment).png. Acesso em: 26 jan. 2021.
https://ec.europa.eu/eurostat/statistics...
), devendo o Brasil avançar para alcançar esse patamar mais próximo do resíduo zero. A meta de recuperação de recurso do RSU de Feira de Santana foi 22% dos materiais secos (11% do RSU) e 7% dos materiais orgânicos biodegradáveis (3% do RSU) até 2019, totalizando 14% de recuperação do RSU. No entanto, a recuperação total do RSU de Feira de Santana em 2018 foi 2,9% (PMGIRS-FSA, 2016PLANO MUNICIPAL DE GESTÃO INTEGRADA DE RESÍDUOS SÓLIDOS DE FEIRA DE SANTANA (PMGIRS-FSA). Bahia: Envex Engenharia e Consultoria, 2016. 426 p.), o que demonstra a necessidade de governança e cumprimento de metas de recuperação de recurso do RSU, haja vista os benefícios de redução da demanda energética e das emissões de GEE no GRSU.

As emissões de GEE per capita no mundo foram 9,7 t CO2eq·ano-1 em média e devem ser reduzidas para 1,5 t CO2eq·ano-1 de modo a estabilizar a temperatura média global até 2050 (IPCC, 2019INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). Special report: global warming of 1.5 °C. 2019. Disponível em: https://www.ipcc.ch/sr15/. Acesso em: 14 out. 2019.
https://www.ipcc.ch/sr15/...
). O setor de resíduos emitiu 5% do GEE no Brasil, dos quais 52% foram oriundos da disposição de RSU (SEEG, 2019SISTEMA DE ESTIMATIVAS DE EMISSÕES E REMOÇÕES DE GASES DE EFEITO ESTUFA (SEEG). Análise das emissões de gases de efeito estufa e suas implicações para as metas do Brasil – 1970-2018. 2019. Disponível em: https://energiaeambiente.org.br/produto/analise-das-emissoes-brasileiras-de-gases-de-efeito-estufa-2020. Acesso em: 14 out. 2019.
https://energiaeambiente.org.br/produto/...
), o que representa o limite de 38 kg CO2eq·ano-1 per capita referente ao GRSU até 2050, de acordo com IPCC (2019)INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). Special report: global warming of 1.5 °C. 2019. Disponível em: https://www.ipcc.ch/sr15/. Acesso em: 14 out. 2019.
https://www.ipcc.ch/sr15/...
.

A taxa de atendimento da coleta de RSU no Brasil foi 91% em 2017 (ABRELPE, 2017ASSOCIAÇÃO BRASILEIRA DAS EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS (ABRELPE). Panorama dos Resíduos Sólidos no Brasil 2017. São Paulo: ABRELPE, 2017.), com emissão de 47 Mt CO2eq no setor de GRSU em 2018 (SEEG, 2019SISTEMA DE ESTIMATIVAS DE EMISSÕES E REMOÇÕES DE GASES DE EFEITO ESTUFA (SEEG). Análise das emissões de gases de efeito estufa e suas implicações para as metas do Brasil – 1970-2018. 2019. Disponível em: https://energiaeambiente.org.br/produto/analise-das-emissoes-brasileiras-de-gases-de-efeito-estufa-2020. Acesso em: 14 out. 2019.
https://energiaeambiente.org.br/produto/...
), resultando na emissão per capita de 235 kg CO2eq·ano-1. As emissões de GEE per capita em Feira de Santana, estimadas com base no C1, com geração de RSU per capita média de 0,26 t·ano-1, resultaram em 116 kg CO2eq·ano-1, valor menor que o do Brasil mas acima do limite das emissões de GEE até 2050. O limite per capita de 38 kg CO2eq·ano-1 é atendido com a redução de 67 e 64% da massa de RSU per capita no C1 e no C2, respectivamente, e de 59% no C3 e no C4 considerando-se o critério de corte. No entanto, com a expansão da fronteira do sistema de produto, apenas o C3 e o C4 atendem ao limite das emissões de GEE per capita até 2050 com – 167 kg CO2eq·ano-1 e – 161 kgCO2eq·ano-1, respectivamente, valores estes que atendem a metas mais ambiciosas de neutralidade das emissões de GEE até 2050. Sendo assim, os planos municipais de GRSU devem considerar estratégias de redução da geração de RSU per capita e de recuperação de recurso do RSU para atender ao limite das emissões de GEE até 2050 e alcançar o cenário de resíduo zero.

Recuperação energética em aterro sanitário

O aterro sanitário no C2, C2-s1 e C2-s2 apresentou potencial de recuperação energética (Tabela 3) maior que a demanda energética do GRSU nesses cenários. Os parâmetros das principais usinas de recuperação energética de aterros sanitários no Brasil foram comparados (Tabela 3).

Tabela 3
Parâmetros de diferentes aterros sanitários com recuperação energética no Brasil.

A usina Termoverde apresentou o maior valor de energia elétrica gerada por tonelada de RSU, em estimativa que considerou os parâmetros de k e L0 medidos em campo e laboratório. A energia elétrica gerada por tonelada de RSU no aterro sanitário do C2 aproximou-se daqueles valores da literatura consultada, apesar da diferença entre os parâmetros de precipitação, temperatura e fração orgânica biodegradável do RSU (Tabela 2). De acordo com Santos, A. (2017)SANTOS, A.C. Produção de metano em aterro sanitário: influência das técnicas operacionais no aterro metropolitano em Salvador – BA. Salvador, 2017. 263 p., Bianek et al. (2018)BIANEK, J.; SCHIRMER, W.; CABRAL, A.; MAYER, C.; EURICH, P.; MARTINS, E. Comparação entre metodologias USEPA e IPCC para estimativa teórica de produção de biogás em aterro municipal. BIOFIX Scientific Journal, v. 3, n. 1, p. 34-40, 2018. https://doi.org/10.5380/biofix.v3i1.56038
https://doi.org/10.5380/biofix.v3i1.5603...
e Piñas et al. (2016)PIÑAS, J.A.V.; VENTURINI, O.J., LORA, E.E.S.; OLIVEIRA, M.A.; ROALCABA, O.D.C. Aterros sanitários para geração de energia elétrica a partir da produção de biogás no Brasil: comparação dos modelos LandGEM (EPA) e Biogás (Cetesb)*. Revista Brasileira de Estudos de População, v.33, n.1, p.175-188, 2016. https://doi.org/10.20947/S0102-309820160009
https://doi.org/10.20947/S0102-309820160...
, os parâmetros de precipitação, temperatura e fração orgânica biodegradável do RSU estão diretamente relacionados com as variáveis k e L0. Nesse sentido, os resultados de C2-s1 e C2-s2, utilizando k e L0 com valores da literatura, representam valores majorados de energia elétrica gerada e acima daqueles encontrados nos aterros sanitários em locais de maior pluviosidade e com maior fração orgânica biodegradável de RSU (Tabela 2). Sendo assim, recomenda-se a atualização da composição gravimétrica do RSU e dos parâmetros k e L0 do aterro sanitário com análises em campo e laboratório.

CONCLUSÃO

A ACV foi utilizada neste estudo para identificar a DEA e a pegada de carbono do GRSU de Feira de Santana. As maiores contribuições da demanda energética no cenário base foram da coleta e transporte, seguida do maquinário do aterro sanitário. As maiores contribuições das emissões de GEE no cenário base foram das emissões fugitivas do aterro sanitário, seguidas das emissões da lagoa de armazenamento do lixiviado. Os cenários propostos de recuperação de recurso do RSU apresentaram vantagens de redução da demanda energética e da pegada de carbono. Os cenários propostos mais vantajosos na demanda energética e na pegada de carbono foram aqueles com a recuperação de materiais e energia por meio da reciclagem, da compostagem e da digestão anaeróbia dos RSU.

Recomenda-se o uso de parâmetros representativos do local para avaliar o desempenho ambiental do GRSU em trabalhos futuros. Por exemplo, as emissões fugitivas do aterro sanitário devem considerar os dados oriundos de medições periódicas em campo e ensaios laboratoriais para a obtenção dos parâmetros de k e L0. Ademais, deve-se atualizar a composição gravimétrica do RSU, que representa o potencial dos recursos a serem recuperados no GRSU.

  • Financiamento: nenhum.
  • Reg. ABES: 20200358

REFERÊNCIAS

  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR ISO 14.040: Gestão ambiental: princípios e estruturas. Rio de Janeiro, 2009a.
  • ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR ISO 14.044 Gestão ambiental: requisitos e orientações. Rio de Janeiro, 2009b.
  • ASSOCIAÇÃO BRASILEIRA DAS EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS (ABRELPE). Panorama dos Resíduos Sólidos no Brasil 2009. São Paulo: ABRELPE, 2009.
  • ASSOCIAÇÃO BRASILEIRA DAS EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS (ABRELPE). Panorama dos Resíduos Sólidos no Brasil 2017. São Paulo: ABRELPE, 2017.
  • ASSOCIAÇÃO BRASILEIRA DAS EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS (ABRELPE). Panorama dos Resíduos Sólidos no Brasil 2018/2019 São Paulo: ABRELPE, 2019.
  • AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (ANEEL). Matriz de energia elétrica, Banco de Informações de Geração (BIG) da Agência Nacional de Energia Elétrica (ANEEL) 2014. Disponível em: http://www.aneel.gov.br/aplicacoes/capacidadebrasil/OperacaoCapacidadeBrasil.cfm Acesso em: 06 mar. 2020.
    » http://www.aneel.gov.br/aplicacoes/capacidadebrasil/OperacaoCapacidadeBrasil.cfm
  • BIANEK, J.; SCHIRMER, W.; CABRAL, A.; MAYER, C.; EURICH, P.; MARTINS, E. Comparação entre metodologias USEPA e IPCC para estimativa teórica de produção de biogás em aterro municipal. BIOFIX Scientific Journal, v. 3, n. 1, p. 34-40, 2018. https://doi.org/10.5380/biofix.v3i1.56038
    » https://doi.org/10.5380/biofix.v3i1.56038
  • BRASIL. O Estado da arte da tecnologia de metanização seca. Projeto Brasil – Alemanha de Fomento ao Aproveitamento Energético de Biogás no Brasil. Brasília: Ministério das Cidades, 2015. 97 p.
  • CARVALHO JÚNIOR, F.H.C.; LOPES, C.Y.; SOUZA NETO, J.M. Estudo comparativo de métodos quantitativos para a produção de biogás com aplicação no aterro de João Pessoa – PB. Revista Técnico-Científica do Crea-P, 2018. Disponível em: http://creaprw16.crea-pr.org.br/revista/Sistema/index.php/revista/article/view/450 Acesso em: 13 dez. 2019.
    » http://creaprw16.crea-pr.org.br/revista/Sistema/index.php/revista/article/view/450
  • COELHO, L.M.G.; LANGE, L.C. Applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. Resources, Conservation and Recycling, v. 128, p. 438-450, 2018. https://doi.org/10.1016/j.resconrec.2016.09.026
    » https://doi.org/10.1016/j.resconrec.2016.09.026
  • COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO (CETESB). Manual do usuário do programa de computador Biogás: geração e uso energético. São Paulo: CETESB, 2006.
  • COVENTRY, Z.A.; TIZE, R.; KARUNANITHI, A.T. Comparative life cycle assessment of solid waste management strategies. Clean Technologies and Environmental Policy, v.18, p. 1515-1524, 2016. https://doi.org/10.1007/s10098-015-1086-7
    » https://doi.org/10.1007/s10098-015-1086-7
  • DAI-PRÁ, L.B.; MORAES, C.A.M.; GOMES, L.P.; MARQUES, V.M. Avaliação de ciclo de vida (ACV) aplicada à gestão de resíduos sólidos urbanos (RSU) em aterros: uma revisão. Revista brasileira de planejamento e desenvolvimento, v. 7, n. 3, p.353-364, 2018. https://doi.org/10.3895/rbpd.v7n3.8640
    » https://doi.org/10.3895/rbpd.v7n3.8640
  • TAVARES, L.F.; RATTON, M.A. Projeto de Gás de Aterro Sanitário Feira de Santana no Brasil. 1° Relatório, DNV Certification, International Climate Change Services Feira de Santana: DNV, 2007. Disponível em: https://antigo.mctic.gov.br/mctic/export/sites/institucional/ciencia/SEPED/clima/mecanismo_de_desenvolvimento_limpo/submetidos/aprovados_termos_resolucao_1/publicacoes/202/Validacao-do-Projeto-de-Gas-de-Aterro-Sanitario-Feira-de-Santana.pdf Acesso em: 13 de nov. 2019.
    » https://antigo.mctic.gov.br/mctic/export/sites/institucional/ciencia/SEPED/clima/mecanismo_de_desenvolvimento_limpo/submetidos/aprovados_termos_resolucao_1/publicacoes/202/Validacao-do-Projeto-de-Gas-de-Aterro-Sanitario-Feira-de-Santana.pdf
  • EUROSTAT. Waste treatment by type of recovery and disposal, 2018 (% of total treatment). 2020. Disponível em: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Waste_treatment_by_type_of_recovery_and_disposal,_2018_(%25_of_total_treatment).png Acesso em: 26 jan. 2021.
    » https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Waste_treatment_by_type_of_recovery_and_disposal,_2018_(%25_of_total_treatment).png
  • FUNDAÇÃO ESTADUAL DE MEIO AMBIENTE (FEAM). Relatório Técnico 002/2010 Belo Horizonte: FEAM, 2010.
  • FERRER, J.T.V.; ALVES, J.W.S. Biogás: projetos e pesquisas no Brasil. São Paulo: CETESB/SMA, 2006. 184 p.
  • FRIEDRICH, E.; TROIS, C. Current and future greenhouse gas (GHG) emissions from the management of municipal solid waste in the eThekwini Municipality – South Africa. Journal of Cleaner Production, v. 112, 4071-4083, 2016. https://doi.org/10.1016/j.jclepro.2015.05.118
    » https://doi.org/10.1016/j.jclepro.2015.05.118
  • FRUERGAARD, T.; ASTRUP, T. Optimal utilization of waste-to-energy in an LCA perspective. Waste Management, v. 31, n. 3, p.572-582, 2011. https://doi.org/10.1016/j.wasman.2010.09.009
    » https://doi.org/10.1016/j.wasman.2010.09.009
  • GOMES, F.C.S.P.; AQUINOS, S.F.; COLTURATO, L.F.D.B. Biometanização seca de resíduos sólidos urbanos: estado da arte e análise crítica das principais tecnologias. Engenharia Sanitaria e Ambiental, v. 17, n. 3, p. 295-304, 2012. https://doi.org/10.1590/S1413-41522012000300006
    » https://doi.org/10.1590/S1413-41522012000300006
  • GOMES, L.P.; KOHL, C.A.; SOUZA, C.L.L.; REMPEL, N.; MIRANDA, L.A.S.; MORAES, C.A.M. Avaliação ambiental de aterros sanitários de resíduos sólidos urbanos precedidos ou não por unidades de compostagem. Engenharia Sanitaria e Ambiental, v.20, n.3, p.449-462, 2015. https://doi.org/10.1590/S1413-41522015020000120751
    » https://doi.org/10.1590/S1413-41522015020000120751
  • INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). População estimada: para “dúvidas e contestações”. 2018. Disponível em: https://cidades.ibge.gov.br/brasil/panorama Acesso em: 27 nov. 2019.
    » https://cidades.ibge.gov.br/brasil/panorama
  • INSTITUTO NACIONAL DE METEOROLOGIA (INMET). Mapa das estações “precipitação” e “temperatura” 2020. Disponível em: https://portal.inmet.gov.br/ Acesso em: 21 set. 2020.
    » https://portal.inmet.gov.br/
  • INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). Chapter 4: Biological Treatment of Solid Waste. 2006. Disponível em:www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_4_Ch4_Bio_Treat.pdf Acesso em: 16 jun. 2020.
    » www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_4_Ch4_Bio_Treat.pdf
  • INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). Special report: global warming of 1.5 °C. 2019. Disponível em: https://www.ipcc.ch/sr15/ Acesso em: 14 out. 2019.
    » https://www.ipcc.ch/sr15/
  • IQBAL, A.; ZAN, F.; LIU, X.; CHEN, GH. Integrated municipal solid waste management scheme of Hong Kong: A comprehensive analysis in terms of global warming potential and energy use. Journal of Cleaner Production, v. 225, p. 1079-1088, 2019. https://doi.org/10.1016/j.jclepro.2019.04.034
    » https://doi.org/10.1016/j.jclepro.2019.04.034
  • ISTRATE, I.R.; IRIBARREN, D.; GÁLVEZ-MATOS, J.L.; DUFOUR, J. Review of life-cycle environmental consequences of waste-to-energy solutions on the municipal solid waste management system. Resources, Conservation and Recycling, v. 157, n. 104778, 14 p., 2020. https://doi.org/10.1016/j.resconrec.2020.104778
    » https://doi.org/10.1016/j.resconrec.2020.104778
  • KAZA, S.; YAO, L.; BHADA-TATA, P.; VAN WOERDEN, F. What a waste 2.0: a global snapshot of solid waste management to 2050. Washington: The World Bank, 2018. 132p.
  • KING, M.F.; GUTBERLET, J. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: a case study of Ribeirão Pires, Brazil. Waste Management, v. 33, n. 12, p. 2771-2780, 2013. https://doi.org/10.1016/j.wasman.2013.07.031
    » https://doi.org/10.1016/j.wasman.2013.07.031
  • LIIKANEN, M.; HAVUKAINEN, J; VIANA, E; HORTANAINEN, M. Steps towards more environmentally sustainable municipal solid waste management – a life cycle assessment study of São Paulo, Brazil. Journal of Cleaner Production, v. 196, p. 150-162, 2018. https://doi.org/10.1016/j.jclepro.2018.06.005
    » https://doi.org/10.1016/j.jclepro.2018.06.005
  • MANCINI, E.; ARZOUMANIDIS, I.; RAGGI, A. Evaluation of potential evironmental impacts related to two organic waste treatment options in Italy. Journal of Cleaner Production. 214 ed. 2019. p. 927-938.
  • McDOUGALL, F.R.; WHITE, P.; FRANKE, M.; HINDLE, P. Integrated solid waste management. A Life Cycle Inventory. UK: Blackie Academic & Professional, 2001. 532 p.
  • MANGUE, D. M.; TRENTIN, A. W.S.; RODRIGUEZ, A. L.; LOPEZ, D. A. R.; WERMUTH, T. B. Diagnóstico e avaliação do ciclo de vida do gerenciamento integrado de resíduos sólidos urbanos do município de Três Cachoeiras – RS. Tecno-Lógica, v. 19, n. 2, p. 69-77, 2015. https://doi.org/10.17058/tecnolog.v19i2.5815
    » https://doi.org/10.17058/tecnolog.v19i2.5815
  • MERSONI, C.; REICHERT, G. A. Comparação de cenários de tratamento de resíduos sólidos urbanos por meio da técnica da Avaliação do Ciclo de Vida: o caso do município de Garibaldi, RS. Engenharia Sanitária e Ambiental, v. 22, n. 5, 2017, p. 863-875. https://doi.org/10.1590/S1413-41522017150351
    » https://doi.org/10.1590/S1413-41522017150351
  • MEYSTRE, A J. Análise do coprocessamento de resíduo sólido urbano na indústria de cimento portland no Brasil. 215 f. Tese (Doutorado em Engenharia Mecânica), Universidade Federal de Itajubá, Minas Gerais, 2016.
  • MORENO, E.R.; VALSASINA, L.; BRUNNER, F.; SYMEONIDIS, A.; FIRTZGERALD, D.; TREYER, K.; BOURGAULT, G.; WERNET, G. Documentation of changes implemented in the ecoinvent database v3.5 (2018.08.23). Zürich: Ecoinvent, 2018. 97 p.
  • NASCIMENTO, M. C. B.; FREIRE, E. P.; DANTAS, F. A. S.; GIANSANTE, M. B. Estado da arte dos aterros de resíduos sólidos urbanos que aproveitam o biogás para geração de energia elétrica e biometano no Brasil. Engenharia Sanitaria e Ambiental. 2019, v. 24, n. 1, 2019, p. 143-155. https://doi.org/10.1590/S1413-41522019171125
    » https://doi.org/10.1590/S1413-41522019171125
  • PAES, M.X.; MEDEIROS, G.A.; MANCINI, S.D.; BORTOLETO, A.P.; OLIVEIRA, J.A.P.; KULAYF, L.A. Municipal solid waste management: Integrated analysis of environmental and economic indicators based on life cycle assessment. Journal of Cleaner Production, v. 254, p. 119848, 2019. https://doi.org/10.1016/j.jclepro.2019.119848
    » https://doi.org/10.1016/j.jclepro.2019.119848
  • PIÑAS, J.A.V.; VENTURINI, O.J., LORA, E.E.S.; OLIVEIRA, M.A.; ROALCABA, O.D.C. Aterros sanitários para geração de energia elétrica a partir da produção de biogás no Brasil: comparação dos modelos LandGEM (EPA) e Biogás (Cetesb)*. Revista Brasileira de Estudos de População, v.33, n.1, p.175-188, 2016. https://doi.org/10.20947/S0102-309820160009
    » https://doi.org/10.20947/S0102-309820160009
  • PLANO MUNICIPAL DE GESTÃO INTEGRADA DE RESÍDUOS SÓLIDOS DE FEIRA DE SANTANA (PMGIRS-FSA). Bahia: Envex Engenharia e Consultoria, 2016. 426 p.
  • PRIMAVESI, A.C.; PRIMAVESI, O. Transformação de unidades de representação de resultados de análise de solo. Circular Técnica n° 28. Embrapa Pecuária Sudeste: São Carlos, 2000. 22p.
  • RAJAEIFAR, M.A.; TABATABAEI, M.; GHANAVATI, H.; KHOSHNEVISAN, B.; RAFIEE, S. Comparative life cycle assessment of different municipal solid waste management scenarios in Iran. Renewable and Sustainable Energy Reviews, v. 51, p. 886-898, 2015. https://doi.org/10.1016/j.rser.2015.06.037
    » https://doi.org/10.1016/j.rser.2015.06.037
  • RAJCOOMAR, A.; RAMJEAWON, T. Life cycle assessment of municipal solid waste management scenarios on the small island of Mauritius. Waste management & research: the journal for a sustainable circular economy, v. 35, n.3, p. 313-324. 2017. https://doi.org/10.1177/0734242X16679883
    » https://doi.org/10.1177/0734242X16679883
  • SALOMON, K.R.; LORA, E.E.S. Estimate of The Electric Energy Generating Potential for Different Sources of Biogas in Brazil. Biomass and Bioenergy, v. 33, n.9, p. 1101-1107, 2009. https://doi.org/10.1016/j.biombioe.2009.03.001
    » https://doi.org/10.1016/j.biombioe.2009.03.001
  • SANTOS, A.C. Geração de metano devido à digestão anaeróbia de resíduos sólidos urbanos: estudo de caso do aterro sanitário metropolitano centro. 2011. 154 f. Dissertação (Mestrado em Engenharia Ambiental Urbana), Universidade Federal da Bahia, Salvador, 2011.
  • SANTOS, A.C. Produção de metano em aterro sanitário: influência das técnicas operacionais no aterro metropolitano em Salvador – BA. Salvador, 2017. 263 p.
  • SANTOS, J.J.; ROCHA,W.J.S.F.; BAPTISTA, G.M.M.; SOUZA, D.T.M.; SILVA, B. A.; SANTOS, S.M.B. Modelagem geoestatística de elementos maiores dos solos de Feira de Santana – Ba, Brasil. Revista Ibero-Afro-Americana de Geografia Física e Ambiente Iberian-African-American Journal of Physical Geography and Environment, v. 2, n. 1, p. 63-86, 2019. https://doi.org/10.21814/physisterrae.2573
    » https://doi.org/10.21814/physisterrae.2573
  • SANTOS, M.M.; ROMANEL, C.; VAN ELK, A.G.H.P. Análise da eficiência de modelos de decaimento de primeira ordem na previsão da emissão de gás de efeito estufa em aterros sanitários brasileiros. Engenharia Sanitaria e Ambiental, v. 22, n. 6, p. 1151-1162, 2017. https://doi.org/10.1590/S1413-41522017156311
    » https://doi.org/10.1590/S1413-41522017156311
  • SISTEMA DE ESTIMATIVAS DE EMISSÕES E REMOÇÕES DE GASES DE EFEITO ESTUFA (SEEG). Análise das emissões de gases de efeito estufa e suas implicações para as metas do Brasil – 1970-2018. 2019. Disponível em: https://energiaeambiente.org.br/produto/analise-das-emissoes-brasileiras-de-gases-de-efeito-estufa-2020 Acesso em: 14 out. 2019.
    » https://energiaeambiente.org.br/produto/analise-das-emissoes-brasileiras-de-gases-de-efeito-estufa-2020
  • SHARMA, B.K.; CHANDEL, M.K. Life cycle assessment of potential municipal solid waste management strategies for Mumbai, India. Waste Management & Research: The Journal for a Sustainable Circular Economy, v. 35, n. 1, p. 79-91, 2017. https://doi.org/10.1177/0734242X16675683
    » https://doi.org/10.1177/0734242X16675683
  • SILVA, C. F.; BERTON S. R.; CHITOLINA C. J.; BALLESTERO D. S. Recomendações técnicas para o uso agrícola do composto de lixo urbano no Estado de São Paulo. Circular Técnica n° 3. Embrapa Informática Agropecuária: Campinas, 2002. 17p.
  • SECRETARIA MUNICIPAL DE SERVIÇOS PÚBLICOS DE FEIRA DE SANTANA – BA (SMSP-FSA). Prefeitura Municipal de Feira de Santana. Relatório de Atividades Desenvolvidas pelo Departamento de Limpeza Pública 2018. 2018.
  • SOARES, F.R.; MIYAMARU, E.S.; MARTINS, G. Desempenho ambiental da destinação e do tratamento de resíduos sólidos urbanos com reaproveitamento energético por meio da avaliação do ciclo de vida na Central de Tratamento de Resíduos – Caieiras. Energy Recovery from Municipal Solid Wastes, v. 22, n. 5, p. 993-1003, 2017. https://doi.org/10.1590/s1413-41522017155522
    » https://doi.org/10.1590/s1413-41522017155522
  • STAROSTINA, V.; DAMGAARD, A.; ERIKSEN, M.K.; CHRISTENSEN, T.H. Waste management in the Irkutsk region, Siberia, Russia: an environmental assessment of alternative development scenarios. Waste Management & Research, v. 36, n. 4, p. 373-385, 2018. https://doi.org/10.1177/0734242X18757627
    » https://doi.org/10.1177/0734242X18757627
  • TCHOBANOGLOUS, G.; BURTON, F.L.; STENSEL, H.D.; METCALF & EDDY, INC.; BURTON, F. Wastewater Engineering: Treatment and Reuse. 4. ed. Nova York: McGraw-Hill, 2002. 1408 p.
  • TCHOBANOGLOUS, G.; THEISEN, H.; VINIL, S. Integrated solid waste management. Engineering principles and management issues. New York: McGraw-Hill, 1993. 978 p.
  • TURNER, D.A.; WILLIAMS, I.D., KEMP, S. Combined material flow analysis and life cycle assessment as a support tool for solid waste management decision making. Journal of Cleaner Production, v. 129, p. 234-248, 2016.
  • UNITED STATES ENVIRONMENTAL PROTECTION AGENCY (USEPA). Background Information Document for Life-cycle Inventory Landfill Process Model. 2011. Disponível em: http://www4.ncsu.edu/~jwlevis/Landfill-2011.pdf Acesso em: 21 ago. 2020.
    » http://www4.ncsu.edu/~jwlevis/Landfill-2011.pdf
  • UNITED STATES ENVIRONMENTAL PROTECTION AGENCY (USEPA). Landfill gas emissions model (LandGEM) Version 3.02 User's Guide. 2005. Disponível em: http://www.epa.gov/ttn/catc/products.html Acesso em: 25 fev. 2020.
    » http://www.epa.gov/ttn/catc/products.html
  • WANG, X.; JIA M.; ZHANG C.; CHEN S.; CAI Z. Leachate treatment is a significant N2O source. Science of the Total Environment, v.10, p.596-597, 2017. https://doi.org/10.1016/j.scitotenv.2017.04.029
    » https://doi.org/10.1016/j.scitotenv.2017.04.029
  • WORLD ENERGY RESOURCES (WEC). World Energy Resources: waste to energy 2016. London: World Energy Council, 2016. Disponível em: https://smartnet.niua.org/sites/default/files/resources/weresources_waste_to_energy_2016.pdf Acesso em: 21 ago. 2020.
    » https://smartnet.niua.org/sites/default/files/resources/weresources_waste_to_energy_2016.pdf
  • WEN, Z.; CHEN, C.; AI, N.; BAI, W.; ZHANG, W.; WANG, Y. Environmental impact of carbon cross-media metabolism in waste management: A case study of municipal solid waste treatment systems in China. Science of the Total Environment, v. 674, p. 512-523, 2019. https://doi.org/10.1016/j.scitotenv.2019.04.154
    » https://doi.org/10.1016/j.scitotenv.2019.04.154
  • ZHOU, Z.; TANG, Y., DONG, J.; CHI, Y.; NI, M.; LI, N.; ZHANG, Y. Environmental performance evolution of municipal solid waste management by life cycle assessment in Hangzhou, China. Journal of Environmental Management, v. 227, p. 23-33, 2018. https://doi.org/10.1016/j.jenvman.2018.08.083
    » https://doi.org/10.1016/j.jenvman.2018.08.083

Apêndice 1


Estimativa da produção de metano durante a vida útil do aterro sanitário de Feira de Santana (BA) no software Biogás™ 1.0 (CETESB, 2006COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO (CETESB). Manual do usuário do programa de computador Biogás: geração e uso energético. São Paulo: CETESB, 2006.).

Apêndice 2


Estimativa da potência disponível com a geração de metano durante a vida útil do aterro sanitário de Feira de Santana/BA no software Biogás™ 1.0 (CETESB, 2006COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO (CETESB). Manual do usuário do programa de computador Biogás: geração e uso energético. São Paulo: CETESB, 2006.).

Apêndice 3


Inventário (primeiro plano) do gerenciamento de resíduos sólidos urbanos de Feira de Santana em 2018 no cenário base (C1) e cenários propostos (C2, C3, C4) referente a 1 t de resíduos sólidos urbanos.

Apêndice 4


Demanda energética e pegada de carbono unitária da produção de insumo primário e da recuperação de recurso por componente do resíduo sólido urbano.

Apêndice 5


Inventário (segundo plano) da base de dados ecoinvent™ 3.5 utilizada nos cenários avaliados.

Apêndice 6


Parâmetros de constante de decaimento e potencial de geração de metano da literatura consultada de modelos de geração de metano de aterro sanitário por localidade.

Apêndice 7


Pegada de carbono no gerenciamento de resíduos sólidos urbanos do cenário 1 e 2 com a análise de sensibilidade das emissões de gases de efeito estufa em kg CO2eq·t-1 de resíduo sólido urbano.

Apêndice 8


Energia elétrica gerada no aterro sanitário do cenário 2 com a análise de sensibilidade do aproveitamento do biogás em MJ·t-1 de resíduo sólido urbano.

Datas de Publicação

  • Publicação nesta coleção
    25 Mar 2022
  • Data do Fascículo
    Jan-Feb 2022

Histórico

  • Recebido
    13 Out 2020
  • Aceito
    10 Mar 2021
Associação Brasileira de Engenharia Sanitária e Ambiental - ABES Av. Beira Mar, 216 - 13º Andar - Castelo, 20021-060 Rio de Janeiro - RJ - Brasil - Rio de Janeiro - RJ - Brazil
E-mail: esa@abes-dn.org.br