Acessibilidade / Reportar erro

Distribution and abundance of zoeae I (Crustacea, Brachyura) on a coral reef in the southwest Gulf of Mexico

Abstract

In this study we analyze both seasonal and inter-annual variations in the community parameters of Brachyura zoea I in the Parque Nacional Sistema Arrecifal Veracruzano. Planktonic samples from four transects were collected during three weather conditions: cold fronts; rainy and dry conditions in 2011 and 2012; and cold fronts and dry conditions in 2013. We measured temperature, salinity, and dissolved oxygen, in situ, to determine whether these parameters could explain the observed variations in the community patterns of brachyuran zoea I. We collected zoeae I of 18 species of brachyurans. The dominant species were Libinia dubia H. Milne Edwards, 1834; Menippe nodifrons Stimpson, 1859; and Callinectes sapidus Rathbun, 1896. The temperature and dissolved oxygen were the highest during the rainy conditions and the salinity during the dry conditions in the southern transects. The highest species richness (14) and diversity (2.97 bits individual-1) were found in central transects during cold front conditions. However, we found the highest species richness and diversity during the dry conditions, in the southern transects. Libinia dubia presented the highest density during cold fronts with 1592 ± 127 zoeae 100 m−3 in the northern transect, followed by C. sapidus in the north-central transect, this was observed for both species in the offshore zone. In conclusion, the parameters of the community of zoea I were influenced by the physical parameters measured in each sampling zone.

Keywords:
Brachyura; coral reef; diversity; Gulf of Mexico; zoeae

INTRODUCTION

True crabs are common inhabitants of coastal waters of the Mexican state of Veracruz, southwest part of the Gulf of Mexico, where around 160 species have been found (Álvarez et al., 1999Álvarez, F.; Villalobos, J.L.; Rojas, Y. and Robles, R. 1999. Listas y comentarios sobre los crustáceos decápodos de Veracruz. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, 70: 1-27.; 2011Álvarez, F.; Villalobos, J.L. and Cházaro-Olvera, S. 2011. Camarones y cangrejos dulceacuícolas y marinos (Crustacea: Decapoda). p. 287-293. In: A. Cruz-Angón (ed), La biodiversidad en Veracruz, estudio de estado. Vol. 2. México, DF, CONABIO.), 89 of these species have been registered in the Parque Nacional Sistema Arrecifal Veracruzano (PNSAV) (Hermoso-Salazar and Arvizu-Coyotzi, 2015Hermoso-Salazar, M. and Arvizu-Coyotzi, K. 2015. Crustáceos del Sistema Arrecifal Veracruzano. p. 1-26. In: A. Granados-Barba, L.D. Ortiz-Lozano, D. Salas-Monreal and C. Gonzalez-Gandara (eds), Aportes al conocimiento del Sistema Arrecifal Veracruzano: hacia el corredor arrecifal del soroeste del Golfo de México. Xalapa, Veracriz, México, Universidad Veracuzana. ). The PNSAV is a highly productive ecosystem that was declared as a Marine Protected Area under the category of National Marine Park in 1992 (DOF, 1992DOF [Diario Oficial de la Federación]. 1992. Decreto por el que se declara área natural protegida con el carácter de Parque Marino Nacional, la zona conocida como Sistema Arrecifal Veracruzano, ubicada frente a las Costas de los municipios de Veracruz, Boca del Río y Alvarado del estado de Veracruz Llave, con superficie de 52,238 hectáreas. Comisión Nacional de Áreas Naturales Protegidas (CONANP). Available at Available at http://www.conanp.gob.mx/sig/decretos/parques/sav.pdf . Accessed on 01 May 2020.
http://www.conanp.gob.mx/sig/decretos/pa...
; 2012DOF [Diario Oficial de la Federación]. 2012. Decreto que modifica al diverso por el que se declara Área Natural Protegida, con el carácter de Parque Marino Nacional, la zona conocida como Sistema Arrecifal Veracruzano, ubicada frente a las costas de los municipios de Veracruz, Boca del Río y Alvarado del Estado de Veracruz Llave, con una superficie de 52,238-91-50 hectáreas, publicado los días 24 y 25 de agosto de 1992, 14p.) and as a Biosphere Reserve, within the Man and Biosphere Program, in 2006 (UNESCO, 2006UNESCO [Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura]. 2006. Declaración del Sistema Arrecifal Veracruzano como Reserva de la Biósfera del Programa Hombre y Biósfera de la UNESCO. Available at Available at https://en.unesco.org/biosphere/lac/sistema-arrecifal-veracruzano . Accessed on 01 May 2020.
https://en.unesco.org/biosphere/lac/sist...
). Furthermore, the park obtained a Ramsar number (1346) in 2004 (FIR, 2004FIR, 2004. Ficha Informativa de los Humedales de Ramsar. Sitio Ramsar No. 1346 a nivel internacional No. 33 a nivel nacional, 15p.). This reef system is comprised of several single coral reefs and is divided into northern and southern groups by the influence of the fluvial plume of the Jamapa River (Horta-Puga et al., 2016Horta-Puga, G.; Cházaro-Olvera, S.; Winfield, I.; Lozano-Aburto, M.A. and Arenas-Fuentes, V. 2016. Heavy metals in macroalgae from the Veracruz Reef System, Southern Gulf of Mexico. Revista Bio Ciencias, 3: 326-339. ). The importance of PNSAV relies on its great biodiversity, high productivity and the ecosystem services provided. PNSAV provides habitat, spawning and nursery grounds for many species, including many economically important fish species. Additionally, this reef system is the largest in the Gulf of Mexico and probably functions as a bridge for various species of marine invertebrates, including true crabs, to disperse between Caribbean and Florida reefs (Jordan-Dahlgren, 2002Jordán-Dahlgren, E. 2002. Gorgonian distribution patterns in coral reef environments of the Gulf of Mexico: evidence of sporadic ecological connectivity? Coral Reefs, 21: 205-215. ).

Having a pelagic larva is an important part of the life history of many benthic invertebrates. Most benthic animals maintain different populations interconnected by having planktonic larvae. The role of larvae in maintaining these connections has been discussed in many studies (Martin et al., 2014Martin, J.W.; Olesen, J. and Hoeg, T.J. 2014. Atlas of crustacean larvae. Baltimore, Maryland, The Johns Hopkins University Press, 370p.) but it is clear that larval dispersal helps to maintain genetic flow among different populations of a species and potentially increases the chances of colonization of new areas. Also, larval dispersal might reduce competition for space, as well as predation rates of juveniles in the adult habitat. One more advantage of larval dispersal is avoidance of physiological stress due to low salinity found in estuarine or coastal parental habitats (Koettker and Freire, 2006Koettker, A.G. and A. Freire. 2006. Spatial and temporal distribution of decapod larvae in the subtropical waters of the Arvoredo archipelago, SC, Brazil. Iheringia, Série Zoologia, 96: 31-39.).

As with many other benthic species, true crabs (Brachyura) rely on planktonic larvae to disperse. During larval development, most brachyuran species hatch as a zoea and pass through several zoeal stages, which are planktonic, until they reach the megalopa stage that usually is the settlement stage (Pessani et al., 2004Pessani, D.; Tirelli, T. and Flagella, S. 2004. Key for the identification of Mediterranean brachyuran megalopae. Mediterranean Marine Science, 5: 53-64. ; Cházaro-Olvera et al., 2014Cházaro-Olvera, S.; Windfield, I.; Ortiz-Touzet, M.; Jiménez-Badillo, M.L.; and Lozano-Aburto, M.A. 2014. Larvas zoeas de cangrejos (Crustacea, Decapoda, Brachyura) del estado de Veracruz, México. Claves de indentificación. Tlalnepantla, Estado de México, México, Facultad de Estudios Superiores Iztacala, 68p.). Most brachyuran zoea can be found as constituents of meroplankton in coastal zones, such as coral reefs, estuaries and rivers (Gore, 1985Gore, R.H. 1985. Molting and growth in decapod larvae. p. 1-65. In: A.M. Wenner (ed), Larval growth. Rotterdam/Boston, A.A. Balkema.; Álvarez et al., 1999Álvarez, F.; Villalobos, J.L.; Rojas, Y. and Robles, R. 1999. Listas y comentarios sobre los crustáceos decápodos de Veracruz. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, 70: 1-27.). Some zooplankton studies have shown that brachyuran zoea might have a clear association with estuarine inlets and vertical distribution, where first stages of the zoeae can be found in the upper part of the water column, while later larval stages, as well as megalopae, are found in the lower part of the water column (Queiroga, 1996Queiroga, H. 1996. Distribution and drift of the crab Carcinus maenas (L.) (Decapoda, Portunidae) larvae over the continental shelf off northern Portugal in April 1991. Journal of Plankton Research, 18: 1981-2000. ).

Both zoea and megalopa stages have specific characteristics, some being related to feeding habits, behavioral responses to environmental stimuli, and modes of locomotion (McConnaughey, 1974McConnaughey, H.B. 1974. Introducción a la biología marina. Acribia. Zaragoza, España. p. 7-8, 103-104, 132-136.). In particular, the Brachyura zoea I is characterized by sessile eyes, a carapace usually armed with lateral, dorsal or rostral spines, and a pair of antennae and antennules usually with endopod absent or not well-developed; the first two maxillipeds are swimming appendages with bisected exopods and four plumose setae distally, and the telson is attached to the sixth pleonite and presents a furcation on each side, between the furca which usually presents three pairs of setae on the posterior border (Martin et al., 2014Martin, J.W.; Olesen, J. and Hoeg, T.J. 2014. Atlas of crustacean larvae. Baltimore, Maryland, The Johns Hopkins University Press, 370p.).

Global larval ecology studies have been conducted primarily in estuarine and bay areas on commercially important species (Koettker and Freire, 2006Koettker, A.G. and A. Freire. 2006. Spatial and temporal distribution of decapod larvae in the subtropical waters of the Arvoredo archipelago, SC, Brazil. Iheringia, Série Zoologia, 96: 31-39.). Important contributions about the distribution of larvae in the Atlantic, were made in the 1980s and 1990s, especially about commercially important species such as Callinectes sapidusRathbun, 1896Rathbun, M.J. 1896. The genus Callinectes. Proceedings of the United States National Museum, 18: 349-375. (Polh et al., 1999Pohle, G.; Mantelatto, F.L.M.; Negreiros-Fransozo, M.L. and Fransozo, A. 1999. Larval Decapoda (Brachyura). p. 869-1706. In: D. Boltovskoy (ed), South Atlantic Zooplankton. Backhuys Publisher, Leiden, Netherlands. ). Since 2000, some studies about the distribution of other species have been carried out mainly in Brazil. In Mexico, there has only been one study about the distribution of larvae of Callinectes Stimpson, 1860 in an estuary of the Gulf of Mexico (Amador-del Ángel et al., 2004Amador-del Ángel, L.E.; Viveros-Trinidad, J.; Casanova-Broca, M.; Cabrera-Rodríguez, P.; and Reyes-Fernández, Z.E. 2004. Distribution and abundance of larvae Callinectes rathbunae in Atasta Lagoon, Terminos Lagoon, Campeche, Mexico. Proceedings of the Gulf and Caribbean Fisheries Institute, 55: 1010-1011.).

In particular, there has been only a few studies performing studies of the zooplankton distributed in the Parque Nacional Sistema Arrecifal Veracruzano (PNSAV) and only for a few taxa, such as appendicularians, chaetognaths, pteropods, copepods and fishes (Flores-Coto, 1965Flores-Coto, C. 1965. Notas preliminares sobre la identificación de las apendicularias de las aguas veracruzanas. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, 36: 293-296. ; 1974Flores-Coto, C. 1974. Contribución al conocimiento de las apendicularias del Arrecife “La Blanquilla” Veracruz, México con descripción de una nueva especie. Anales del Centro de Ciencias del Mar Limnología, Universidad Nacional Autónoma de México, 1: 41-60.; Leal-Rodríguez, 1965Leal-Rodríguez, D. 1965. Distribución de pterópodos de Veracruz. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, 36: 249-251.; Vega-Rodríguez, 1965Vega-Rodríguez, F. 1965. Distribución de Chaetognatha en Veracruz, Ver.Anales Instituto Biología Serie Zoología, Universidad Nacional Autónoma México, 36: 229-247.; Aguayo-Saviñón, 1966Aguayo-Saviñon, M.A. 1966. Contribución al conocimiento de los Copépodos de la zona arrecifal de Veracruz. Ver. Sistemática y distribución. [Tesis]. Facultad de Ciencias, Universidad Nacional Autónoma de México, México. 74p.; Campos, 1980Campos, A. 1980. Distribución y abundancia relativa de los copépodos planctónicos en el Golfo de México y el Mar Caribe. Ciencias Biológicas, 5: 57-74.; Suárez, 1992Suárez, M.E. 1992. Composición, distribución, abundancia y zoogeografía de los copépodos pelágicos (Crustacea) del Golfo de México y Mar Caribe mexicanos. Tesis de Doctorado. México, Universidad Nacional Autónoma de México, Facultad de Ciencias, 325p.; Campos-Hernández and Suárez-Morales, 1994Campos-Hernández, A. and Suárez-Morales, E. 1994. Copépodos pelágicos del Golfo de México y mar Caribe. I. Biología y Sistemática. México, Consejo Nacional de Ciencia y Tecnología/Centro de Investigaciones de Quintana Roo. 353 p.; Ayala-Rodríguez et al., 2016Ayala-Rodríguez, G.A.; Ordóñez- López, U.; Meiners, C. and Marín-Hernández, M. 2016. Listado taxonómico, aspectos ecológicos y biogeográficos de las larvas de peces del Sistema Arrecifal Veracruzano, Suroeste del Golfo de México (junio 2011-junio 2013). Revista de Biología Marina y Oceanografía, 51: 255-264. ). Okolodkov et al. (2011Okolodkov, Y.B.; Aké-Castillo, J.A.; Gutiérrez-Quevedo, M.G.; Pérez-España, H. and Salas-Monreal, D. 2011. Annual cycle of the plankton biomass in the National Park Sistema Arrecifal Veracruzano, southwestern Gulf of Mexico. p. 63-88. In: G. Kattel (ed), Zooplankton and phytoplankton. New York, Nova Science Publishers, Inc.) conducted a study on the biomass of plankton, mentioning that the invertebrates are the most abundant group of the zooplankton in this reef system. Cházaro-Olvera et al. (2019Cházaro-Olvera, S.; Montoya-Mendoza, J.; Rosales-Saldívar, S.; Vázquez-López, H. and Meiners-Mandujano, C. 2019. Planktonic copepod community of a reef zone in the southern Gulf of Mexico. Journal of Natural History, 53: 1187-1208. ) found that 13.77% of the community of zooplankton were decapods, including such commercial species as Callinectes, MenippeDe Haan, 1833De Haan, W. 1833. Crustacea. p. 1-243. In: P.F. von Siebold (ed), Fauna Japonica sive Descriptio Animalium, quae in Itinere per Japoniam, Jussu et Auspiciis Superiorum, qui Summum in India Batava Imperium Tenent, Suspecto, Annis 1823-1830 Collegit, Notis, Observationibus et Adumbrationibus Illustravit, Lugduni-Batavorum., and PenaeusFabricius, 1798Fabricius, J.C. 1798. Entomologia Systematica emendata et aucta, secundum classes, ordines, genera, species adjectis synonimis locis observationibus descriptionibus. Hafniae. I-IV. Supplementum Entomologiae Systematicae Copenhagen, 572p.. Furthermore, many of these larvae are an important food chain component of fish present in this system (Bedia-Sánchez and Franco-López, 2008Bedia-Sánchez, C. and Franco-López, J. 2008. Peces de los sistemas costeros del estado de Veracruz. México, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala. 508p.). Due to the ecological and economical importance of decapod crustaceans and because of the lack of specific studies on larval assemblages for brachyurans in any of the reef systems in Mexico, our objectives were to analyze the diversity, species richness, distribution and abundance of the community of Brachyura zoea I and to determine whether environmental factors affect these characteristics of the larval community in the PNSAV.

MATERIAL AND METHODS

Study area

The PNSAV is located on the continental shelf off the coast of the Veracruz municipalities of Boca del Río and Alvarado, in the southern Gulf of Mexico (19°00’00” 19°16’00”N, 95°45’00” 96°12’00”W). The park consists of 23 reef banks divided by the mouth of the Jamapa River; 12 reefs are in front of the port of Veracruz (northern group) and 11 more are in front of the Municipality of Antón Lizardo (southern group). In total, they occupy an area of 52,283 hectares. The park presents islands and platform reefs (Granados-Barba et al., 2007Granados-Barba, A.; Abarca-Arenas, L.G. and Vargas-Hernández, J.M. 2007. Investigaciones Científicas en el Sistema Arrecifal Veracruzano. Campeche, México, Universidad Autónoma de Campeche. 304p.; Horta-Puga et al., 2007Horta-Puga, G. 2007. Environmental impacts. p. 126-141. In: J.W. Tunnell, E.A. Chávez and K. Withers (eds), Coral Reefs of the Southern Gulf of Mexico. Corpus Christi, Texas A & M University Press . ) (Fig. 1).

Figure 1.
Location of the study area showing transects and sampling stations. N, Northern; Nc, North central; Sc, South Central; S, Southern.

The Gulf of Mexico is in a transition area; therefore, seasonal variability is less pronounced in the southern tropical part. For that reason, the climate in the PNSAV cannot be divided seasonally; instead we used dry and rainy seasons and cold fronts (Carrillo et al., 2007Carrillo, L.; Horta-Puga, G. and Carricart-Ganivet, J.P. 2007. Climate and Oceanography. p. 34-41. In: J.W. Tunnell, Jr., E.A. Chavez and K. Withers (eds), Coral reefs of the Southern Gulf of Mexico. College Station, USA, Texas A & M University Press.). The cold fronts are anticyclonic cold wind currents that enter the Gulf of Mexico from North America, generating strong northern winds and therefore presenting ideal conditions for fetch, causing mature wind waves (Carrillo et al., 2007Carrillo, L.; Horta-Puga, G. and Carricart-Ganivet, J.P. 2007. Climate and Oceanography. p. 34-41. In: J.W. Tunnell, Jr., E.A. Chavez and K. Withers (eds), Coral reefs of the Southern Gulf of Mexico. College Station, USA, Texas A & M University Press.; Ojeda et al., 2017Ojeda, E.; Appendini, C.M. and Mendoza, E.T. 2017. Storm-wave trends in Mexican waters of the Gulf of Mexico and Caribbean Sea. Natural Hazards and Earth System Sciences, 17: 1305-1317. ) that occur from October to March, with occasional precipitation and temperature decrease. The ‘dry weather conditions’ occur from May to June, with scarce rainfall and higher temperatures. The ‘rainy weather conditions’ occur from July to September, when temperatures and precipitation increase and winds are weaker (Carrillo et al., 2007Carrillo, L.; Horta-Puga, G. and Carricart-Ganivet, J.P. 2007. Climate and Oceanography. p. 34-41. In: J.W. Tunnell, Jr., E.A. Chavez and K. Withers (eds), Coral reefs of the Southern Gulf of Mexico. College Station, USA, Texas A & M University Press.; Zavala-Hidalgo et al., 2014Zavala-Hidalgo, J.; Romero-Centeno, R. and Mateos-Jasso, A. 2014. The response of the Gulf of Mexico to wind and heat flux forcing: what has been learned in recent years. Atmósfera, 27: 317-334. ). The average annual temperature in the reef zone is 26 °C (Chávez et al., 2007Chávez, E.; Tunnell, J.W. and Withers, K. 2007. Reef zonation and ecology. p. 41-67. In: J.W. Tunnel, E.A. Chávez and K. Withers (eds), Coral reefs of the Southern Gulf of México. College Station, USA, Texas A & M University Press . ).

Field work

We collected samples during the three seasons to accomplish our objective of analyzing the diversity, species richness, distribution and abundance of the Brachyura zoea I community. Biological material was collected under cold front (Cf), rainy (Rn) and dry (Dr) weather conditions (Wc) in 2011 and 2012 and under Cf and Dr conditions in 2013. Collection in Rn conditions in 2013 was attempted but was not possible due to the weather conditions. A total of 26 sampling stations were established on four perpendicular transects to the coast: two transects to the north (northern, N; north-central Nc) and two transects to the south (south-central, Cs; southern, S) of the mouth of the Jamapa river. Each sampling station had three parallel zones based on its proximity to the coast: foreshore (Fs), nearshore (Ns) and offshore (Offs) (Chowdhury and Behera, 2019Chowdhury, P. and Behera, M.R. 2019. Nearshore Sediment Transport in a Changing Climate. p. 48-60. In: C. Venkataraman, T. Mishra, S. Ghosh and S. Karmakar (eds), Climate Change Signals and Response, Springer, Singapore, Harte Research Institute, Corpus Christi, USA, Texas A & M University. ) (Fig. 1).

Horizontal hauls at the surface were made on every station using a 1.5 m-long WP2 conical net with a 0.5 m mouth diameter (surface area = 0.196 m2) and 330 μm mesh opening, on which was placed a flow meter (General Oceanics) to determine the volume of filtered water. The hauls were conducted from a boat with an outboard motor and lasted for 5 min at an average speed of 3 knots (1.543 m s−1), equivalent to an approximate distance of 450 m and water volume of 350 m3 for each sampling site. Samples were concentrated and fixed in 500 ml flasks with 10 ml of 4% formaldehyde and neutralized with sodium borate. In-situ measurements included salinity, surface temperature of water (°C), and dissolved oxygen (mg l−1) which were measured using a multiparameter water quality portable meter (Hanna HI 9828).

Laboratory work

The biological material was transferred to the Crustacean Laboratory at the Facultad de Estudios Superiores Iztacala of the Universidad Nacional Autónoma de México. Samples were transferred to 70% alcohol 24 h after fixation. We focused our efforts on identifying only brachyuran zoea I because a) we noticed that 98% of our preliminary samples collected were composed of zoeae I; b) our keys of larval identification were biased towards zoeae I; and since we wanted to compare variations in the community of larvae throughout the year in multiple seasons, we needed some degree of consistency. However, we acknowledge that including other larval stages would be a more complete study. For species identification, we used a Motic SMZ-168 stereoscopic microscope and a Leica DM750 microscope with the aid of the most current literature (Boltovskoy, 1999Boltovskoy, D. 1999. South Atlantic Zooplankton. Leiden, Backhuys Publishers, 1706p.; Pessani et al., 2004Pessani, D.; Tirelli, T. and Flagella, S. 2004. Key for the identification of Mediterranean brachyuran megalopae. Mediterranean Marine Science, 5: 53-64. ; Johnson and Allen, 2012Johnson, W.S. and Allen, D. M. 2012. Zooplankton of the Atlantic and the Gulf Coasts. A guide to their identification and ecology. Baltimore, Maryland, The Johns Hopkins University Press, 452p.; Koettker et al., 2012Koettker, A.G.; Sumida, P.Y.G.; Lopes, R.M. and Freire, A.S. 2012. Illustrated key for the identification of the known zoeal stages of brachyuran crabs (Crustacea: Decapoda) from tropical and subtropical Brazil, southwestern Atlantic. Zootaxa, 3204: 1-19. ; Cházaro-Olvera et al., 2014Cházaro-Olvera, S.; Windfield, I.; Ortiz-Touzet, M.; Jiménez-Badillo, M.L.; and Lozano-Aburto, M.A. 2014. Larvas zoeas de cangrejos (Crustacea, Decapoda, Brachyura) del estado de Veracruz, México. Claves de indentificación. Tlalnepantla, Estado de México, México, Facultad de Estudios Superiores Iztacala, 68p.; Martin et al., 2014Martin, J.W.; Olesen, J. and Hoeg, T.J. 2014. Atlas of crustacean larvae. Baltimore, Maryland, The Johns Hopkins University Press, 370p.). Once we identified our specimens, we corroborated geographic distribution, habitat of adults and bathymetric distribution for each species either with the use of proper literature (Felder and Camp, 2009Felder, D.L. and Camp, D.K. 2009. Gulf of Mexico: Origins, Waters, and Biota. Corpus Christi, Texas A & M University Press, 1393p.) or by consulting the World Register of Marine Species (WoRMS, 2020WoRMS. 2020. World Register of Marine Species. Available at Available at http://www.marinespecies.org . Accessed on 15 Apr 2020.
http://www.marinespecies.org...
). To obtain the density of zoeae, the total number of individuals per species was counted and standardized to the number of zoea per 100 m3 (Suárez-Morales and Gasca, 2000Suárez-Morales, E. and Gasca, R. 2000. The planktonic copepod community at Mahahual reef, Western Caribbean. Biology of Marine Science, 66: 255-267. ).

Statistical analysis

The generalized least squares (GLS) model was used to compare temperature (°C), salinity, and dissolved oxygen (mg L-1) under cold front, rainy and dry weather conditions during three sampling years (2011, 2012 and 2013) (Zuur et al., 2007Zuur, A.F.; Ieno, E.N. and Smith, G.M. 2007. Analysing Ecological Data. New York, USA, Springer, 700p.). GLS was performed using SPSS v25.

To test whether the density of the species changed as a function of weather conditions and sampling zones, a two-way factorial design was performed, with four transects (N, Nc, Sc, S), three years (2011, 2012, 2013) and three weather conditions (Cf, Rn, Dr) as the fixed orthogonal factors. The covariates temperature, salinity and dissolved oxygen were represented using the average value (± standard deviation) of each zone where the samples were taken. This design was applied to analyze the density of zoeae using a permutational multivariate analysis of variance (PERMANOVA) test. The values of environmental parameters were arcsine transformed and normalized. The values of the density of the species were transformed into the fourth root. The resemblance matrix for the density of species was achieved using the Bray-Curtis similarity (Clarke and Gorley, 2015Clarke, K.R. and Gorley, R.N. 2015. PRIMER V7: User Manual/Tutorial. PRIMER-E, Plymouth . 296 p.). The analysis was computed with 999 permutations of residuals in a reduced model. Pairwise tests using a t-statistic were used to identify differences between weather conditions. A Bray-Curtis resemblance matrix on the values of the density of zoeae was used to attain the grouping of the weather conditions and transects through a canonical analysis of principal coordinates (CAP). The CAP was also performed to show the relationship with the environmental characteristics, transformed to arcsine and normalized (Paz-Ríos et al., 2020Paz-Ríos, C.E.; Pech, D.; Mariño-Tapia, I. and Simões, N. 2020. Influence of bottom environment conditions and hydrographic variability on spatiotemporal trends of macrofaunal amphipods on the Yucatan continental shelf. Continental Research Self, 104098.). A similarity percentage (SIMPER) analysis was carried out to determine the set of species characterizing the assemblage of zoeae formed according to the transects and weather conditions using a cumulative contribution of 75% (Clarke, 1993Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal Ecology, 18: 117-143. ). PERMANOVA and SIMPER were performed as implemented in the PRIMER V7 and PERMANOVA add-ons (Anderson et al., 2008Anderson, M.J.; Gorley, R.N. and Clarke, K. R. 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth. 214p.; Clarke and Gorley, 2015Clarke, K.R. and Gorley, R.N. 2015. PRIMER V7: User Manual/Tutorial. PRIMER-E, Plymouth . 296 p.).

The potential relationship between the species matrix of the average densities of zoeae and the averages of the temperature, salinity and dissolved oxygen environmental variables was explored using canonical correlation analysis (CCA). We applied the Wilks lambda test (Peres-Neto et al., 2006Peres-Neto, P.R.; Legendre, P.; Dray, S. and Borcard, D. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology. 87: 2614-2625. ) with the null hypothesis that the regression coefficients would all be equal to zero. The CCA was performed as implemented in XLstat-2009.

The Olmstead-Tukey test was used to classify each species into one of four categories, (dominant, common, occasional and rare) according to its abundance (log number of zoeae + 1), and frequency of occurrence (%) for each sampled year (Fig. 2) (Olmstead and Tukey, 1947; Sokal and Rohlf, 2012Sokal, R.R. and Rohlf, F.J. 2012. Biometry: the Principles and Practice of Statistics in Biological Research. New York, W. H. Freeman, 937p.). Dominant species have higher abundance and frequency. Common species have lower densities and higher frequencies than the average. Occasional species have higher densities and lower frequencies than the average. Rare species have both densities and frequencies below average values (Steel and Torrie, 1988Steel, R. and Torrie, J. 1988. Bioestadística. México, McGraw-Hill, 622p.). We mentioned in the results the names of the dominant species, with the purpose of observing if these species are maintained over time.

Figure 2.
Relation between the frequency of occurrence and density of brachyuran zoea I per year. Species name abbreviations are shown in Table 3.

Shannon diversity indices (H) and species richness (S) were obtained both temporally and spatially (Magurran, 1988Magurran, A. 1988. Ecological Diversity and its Measurement. London, Chapman and Hall, 179p.). Diversity values were compared with the Hutcheson test (1970Hutcheson, K. 1970. A test for comparing diversities based on the Shannon formula. Journal of Theoretical Biology, 29: 151-154.). All community parameters were obtained with the PAST software (Harmer et al., 2001Harmer, Ø.; Harper, D.A.T. and Ryan, P.D. 2001. PAST: Paleontological statistics software for education and data analysis. Palaeontologia Electrononica, 4: 9.).

RESULTS

Environmental conditions

Our results show that the highest temperature was recorded during the rainy weather conditions in 2011 with 29.3 ± 0.56 °C on the south central transect, while the lowest temperature was registered in a cold front in 2013 with 23.07 ± 0.56 °C on the northern transect. Temperatures differed depending on weather conditions (F 2,27 = 42.923, p < 0.001) and year of sampling (F 2,27 = 16.221, p < 0.001). Such differences were found between the three weather conditions and between the three years (Tukey p < 0.05). The highest salinity was found during dry weather conditions in 2012 with 35.91 ± 0.09 on the southern transect, and the lowest salinity was registered in rainy weather conditions in 2011 with 33.15 ± 0.18 on the south central transect. Salinity differed depending on weather conditions (F 2,27 = 67.212, p < 0.001) and year of sampling (F 2,27 = 16.293, p < 0.001). Similar differences were found between the three weather conditions and years (Tukey p < 0.05). The highest dissolved oxygen concentration was found in rainy weather in 2011 on the southern transect with 6.56 ± 0.08 mg L-1, while the lowest dissolved oxygen was registered in dry weather conditions in 2011 with 2.92 ± 0.08 mg L-1 on the northern transect. The dissolved oxygen differed depending on weather conditions (F 2,27 = 16.821, p < 0.001), being higher during rainy weather conditions than during cold front weather conditions (Tukey p < 0.05) (Tabs. 1, 2).

Table 1.
Seasonal temperature (ºC), salinity and dissolved oxygen (mgl−l) in three weather conditions and four transects during the years 2011, 2012 and 2013. Northern, N; North central Nc; South central, Sc; Southern, S. (± SD).

Table 2.
The model Generalized Least Squares was applied to compare the temperature (°C), salinity and dissolved oxygen (mgl-1) from zones (Z) of sampling, under weather conditions (Wc) for each sampling year (Y). *, significant differences.

Dominance, distribution and density

We found an average of 1731 ± 1631 Brachyura zoea I larvae per climatic season belonging to 18 species, in 16 genera and 14 families. Over the three years, we found more species during cold front weather conditions (17 spp.), followed by dry and rainy weather conditions (ten and eight spp., respectively) (Tab. 3).

Table 3.
List and density species of Brachyura zoea I per weather conditions, sampling year, adult’s habitat, bathymetric distribution and spawning zone. Cf, Cold fronts; Dr, Dry; E, estuarine; Fs, foreshore; Inf, infralittoral; Itd, intertidal; M. marine; Ns, nearshore; Offs, offshore; Ra, Rainy; ST, semiterrestrial; Spl, supralittoral; Sym, symbiotic; Year, 2011, 2012 and 2013. Bold, highest density.

In 2011, four species were dominant (40%): Menippe nodifronsStimpson, 1859Stimpson, W. 1859. Notes on North American Crustacea. Annals of the Lyceum of Natural History of New York, 7: 49-93., Libinia dubia H. Milne Edwards, 1834Milne Edwards, H. 1834-1837. Histoire naturelle des Crustacés, comprenanl l’anatomie, la physiologie et la classification de ces animaux. vol. 1, 1934, 468p; vol. 2, 1937, 531p. Paris, Librairie encyclopédique de Roret., C. sapidus and Pachygrapsus gracilis (de Saussure, 1857de Saussure, H. 1857. Diagnoses de quelques Crustacés nouveaux de l’Amérique tropicale. Revue et Magasin de Zoologie, 9: 501-505. ); one species (10%) was occasional, four species (40%) were rare and one species (10%) was common. In 2012, five species were dominant (45.45%): M. nodifrons, L. dubia, C. sapidus, Geograpsus lividus (H. Milne Edwards, 1837) and Armases ricordi (H. Milne Edwards, 1853); one species (9.09%) was occasional, five species (45.45%) were rare and none were common. In 2013, four species were dominant (23.53%): L. dubia, M. nodifrons, C. sapidus and A. ricordi; three species (17.64%) were occasional, nine species (52.94%) were rare and one species (5.88%) was common (Fig. 2).

The highest average density, 4768 ± 556 zoeae 100 m−3, was found during cold fronts in 2013, followed by 3568 ± 566 zoeae 100 m−3 during dry weather conditions in 2011. Libinia dubia was the species with the highest density during cold fronts in 2013, with 1592 ± 127 zoeae 100 m−3, followed by C. sapidus (1248 ± 215 zoeae 100 m−3) and M. nodifrons (1232 ± 95 zoeae 100 m−3) (Tab. 3).

The highest average density of zoeae I with respect to the proximity to the coast, was found nearshore in 2011 with 3120 ± 545 zoeae 100 m−3 followed by offshore in 2013 with 2448 ± 718 zoeae 100 m−3. Menippe nodifrons was the species with the highest average density with 1032 ± 142 zoeae 100 m−3 in the nearshore zone in 2011, followed by C. sapidus with 968 ± 352 zoeae 100 m−3 in the offshore zone in 2013 and L. dubia with 888 ± 139 zoeae 100 m−3 in the offshore zone in 2011 (Tab. 4).

Table 4.
List and density of species of Brachyura zoea I per sampling zone. Fs, foreshore, Ns, nearshore; Offs, offshore. Bold, highest density.

Regarding the zoeal density between the transects, the highest average density was found in the north-central zone in 2013 with 2,272.391 ± 391 zoeae 100 m−3, followed by the south-central zone in 2011 with 1,984 ± 300 zoeae 100 m−3. Libinia dubia was the species with the highest average density, with 1,016 ± 102 zoeae 100 m−3 in the northern zone in 2013, followed by C. sapidus with 944 ± 182 zoeae 100 m−3 in the north-central zone, also in 2013 (Tab. 5).

Table 5.
List and density of species of Brachyura zoea I per transect. North central zone, Nc; Northern zone, N; South central zone, Sc; Southern zone, S. Bold, highest density.

According to the PERMANOVA, the species density changed as a function of weather conditions, year, and transects with temperature, salinity and dissolved oxygen as covariants (p < 0.05). The pairwise revealed that differences in the density of the zoeae were found among: a) cold fronts with respect to dry and rainy weather conditions (cold fronts had the highest density); b) the three years of sampling (2013 had the highest density); and c) the north-central zone with respect to the northern zone, and the southern zone with respect to the northern zone (the north central zone had the highest density) (p < 0.05) (Tab. 6). With the CAP ordination, too, we observed distinctions between the three weather conditions and the formation of three groups with respect to the transects - one from the northern zone, a second from the southern zone, and both integrated by the south-central and north-central transects (Fig. 3).

Table 6.
Permutational multivariate analysis of variance on the density of the Brachyura zoea I community, based on an orthogonal three-factors model, with environmental parameters as covariates. Pairwise tests between weather conditions (Wc), Years (Y) and Zones (Z) from the standard model of the PERMANOVA. Cold fronts, Cf; Dry, Dr; Transect, Tr; Northern, N; North central, Nc; Rainy, Ra; Southern, S; South central, Sc. *, significant differences p < 0.05.

Figure 3.
Canonical analysis of principal coordinates (CAP) was used to examine how density of brachyuran zoeae I varied in a multivariate space. Vectors Salinity, Temperature, and Dissolved Oxygen change as a function of weather conditions (a) and sampling zones (b).

According to the analysis of density with SIMPER, the species that defined the 75% cumulative dissimilarity between the transects were: C. sapidus, L. dubia, M. nodifrons, Ovalipes sp., G. lividus, M. mercenaria, and P. gracilis, particularly, in the northern zone; A. ricordi in the north central zone; P. gracilis, P. aquilonaris and Z. ostreus in the south central zone and P. transversus in the southern zone. The species that defined the 75% cumulative of dissimilarity with the analysis SIMPER considering the weather conditions were: C. sapidus, L. dubia, M. nodifrons and Ovalipes sp., particularly, in cold fronts weather; M. mercenaria, P. transversus and P. aquilonaris in rainy weather and A. ricordi, G. lividus and P. gracilis in dry weather. The average dissimilarity between the transects and between weather conditions was 38.95 and 38.86%, respectively.

Using the canonical correlation analysis, we found that the first eigenvalue explained 41.48% of the variance and the second eigenvalue explained 40.47%. The correlation coefficients between the input variables and the canonical variables (Y1) were 0.759 between temperature and F1, and 0.55 between salinity and F2 (p < 0.05). From the correlations between the input variables and the canonical variables (Y2), we obtained the structure of four groups. The first group of species with the highest density was present mainly in the north central and south central transects with a temperature of 24.2 ± 0.20 °C, dissolved oxygen of 4.23 ± 0.11 mg L-1 and salinity of 35.31 ± 0.16. These species were Achelous sp., A. ricordi, Austinixa cristata (Rathbun, 1900Rathbun, M.J. 1900. Results of the Branner- Agassiz Expedition to Brazil. 1. The Decapod and Stomatopod Crustacea. Proceedings of the Washington Academy of Sciences, 2: 133-156. ), C. sapidus, Ebalia sp., Ethusa sp., Minuca sp., P. aquilonaris, and Raninoides sp. The second group, which included T. corallicola and Ovalipes sp., were collected in the southern zone, with a temperature of 29.29 ± 0.27 °C, dissolved oxygen of 6.56 ± 0.08 mg L-1 and salinity of 33.99 ± 0.17. The third group, which included L. dubia, M. nodifrons, and Z. ostreum, was collected in all three years, along the four transects of sampling, with a temperature of 23.07 ± 0.53 °C, dissolved oxygen of 2.96 ± 0.05 mg L-1 and salinity of 35.89 ± 0.04. The fourth group was formed by G. lividus, M. mercenaria, P.gracilis, and P. transversus, and these species were collected mainly in the central transects with intermediate values of temperature 26.53 ± 0.41 °C, dissolved oxygen 5.63 ± 0.08 mg L-1 and salinity 34 ± 0.13 (Fig. 4).

Figure 4.
Canonical Correlation Analysis (CCA) between the density of brachyuran zoea I and temperature, salinity and dissolved oxygen (F = 3.811, p < 0.001). Abbreviation of species names as per Table 3.

Species richness and diversity

In 2011, the species richness was 7 for the dry weather conditions, and 8 for rainy and cold front weather conditions. Diversity was between 2.04 bits individual−1 for rainy weather conditions and 2.20 bits individual−1 for cold front weather conditions. During 2012, the species richness was 10 for cold front and dry weather conditions, and 5 for rainy conditions with diversity between 1.97 bits individual−1 for cold front weather conditions and 2.40 bits individual−1 in dry weather conditions. During 2013, the species richness was 16 for cold front weather conditions and 6 for dry weather conditions with diversity at 2.31 bits individual−1 for cold fronts and 2.35 bits individual−1 for dry weather conditions (Tab. 7).

Table 7.
Specific richness (Sr), diversity (H) and evenness of Brachyura zoea I community per weather condition (Wc), transects (Tr) and shore zone (Sh-Z). Cold fronts, Cf; Dry, Dr; Foreshore, Fs; North central zone, Nc; Nearshore, Ns; northern zone, N; Offshore, Offs; Rainy, Ra; Southern zone S; South central zone, Sc.

The highest diversity was found in the nearshore zone, with 2.56 bits individual−1, species richness of 10 and evenness of 0.77 in 2012 while the lowest diversity was present in the foreshore zone with 1.52 bits individual−1, species richness of 8 and the lowest value of evenness of 0.51 in 2012. When considering distribution with respect to the mouth of the Jamapa river, the highest diversity was found in the south central transect in 2013, with 2.97 bits individual−1, species richness of 14 and evenness of 0.78 and the lowest diversity was located in the northern transect in 2012, with 0.45 bits individual−1, species richness of 3 and evenness of 0.28 (Tab. 7).

When comparing the diversity values, significant differences between dry and cold front weather conditions were found in 2011 (p = 0.037) and 2012 (p < 0.027). For the different shore zones, most of the comparisons present significant differences (p< 0.001). When comparing distribution in the transects, differences between the northern zone and central and southern transects were found in 2012 (p < 0.001) but differences between the four transects were found in 2013 (p< 0.001) (Tab. 8).

Table 8.
Comparison of the values of diversity Shannon with Hutcheson (1970Hutcheson, K. 1970. A test for comparing diversities based on the Shannon formula. Journal of Theoretical Biology, 29: 151-154.) test. * significant difference.

DISCUSSION

We observed that densities of brachyuran zoea I were dependent on changes in temperature, salinity, and dissolved oxygen, which were, in turn, dependent on the weather conditions. Our use of weather conditions, instead of normal seasonal sampling, was thus justified.

We also found that densities of brachyuran zoea I increased with proximity to the estuarine plume of the Jamapa River. Zoeae of some estuarine brachyuran species have been found to progressively decrease as a result of the decreasing estuarine plume at offshore stations; often presenting very low densities (Koettker and Freire, 2006Koettker, A.G. and A. Freire. 2006. Spatial and temporal distribution of decapod larvae in the subtropical waters of the Arvoredo archipelago, SC, Brazil. Iheringia, Série Zoologia, 96: 31-39.). This is a combination of where the adults are distributed, where the ovigerous females migrate to their respective spawning zone and the vertical migration behavior of larvae, resulting in retention of the zoeae in areas nearest the coast (Sastry, 1983Sastry, A.N. 1983. Ecological aspects of reproduction. p. 179-270. In: F.J. Vernberg and W.B. Vernberg (eds), Environmental Adaptations. The Biology of Crustacea, vol. 8. New York, Academic Press.; Anger, 2001Anger, K. 2001. The Biology of Decapod Crustacean Larvae. Crustacean Issues, 14. Lisse, A.A. Balkema Publishers, 419 p.; Queiroga and Blanton, 2004Queiroga, H. and Blanton, J. 2004. Interactions between behaviour and physical forcing in the control of horizontal transport of decapod crustacean larvae. Advances in Marine Biology, 47: 107-214. ).

The changes in environmental factors in the region of the PNSAV during cold front and rainy weather conditions, including tropical storms and hurricanes, cause mixing and incorporate nutrients into the photic zone (Zavala-Hidalgo et al., 2006Zavala-Hidalgo, J.; Salmerón, O.; Aguilar, V.; Cerdeira, S. and Kolb, M. 2006. Caracterización y regionalización de los procesos oceanográficos de los mares mexicanos. México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO - 2016-09-02). Available at Available at http://www.conabio.gob.mx/gap/index.php/Procesos_oceanogr%C3%A1ficos . Accessed on 01 May 2020.
http://www.conabio.gob.mx/gap/index.php/...
; 2014Zavala-Hidalgo, J.; Romero-Centeno, R. and Mateos-Jasso, A. 2014. The response of the Gulf of Mexico to wind and heat flux forcing: what has been learned in recent years. Atmósfera, 27: 317-334. ). This increase of nutrients can cause a phytoplankton bloom which could promote an increase in zooplankton feeding on this algae (Schwamborn et al., 2001Schwamborn, R.; Neumann-Leitão, S.; Almeida e Silva, T.A.; Pinto-Silva, W.E. and Saint-Paul, U. 2001. Distribution and dispersal of decapod crustacean larvae and other zooplankton in the Itamaracá estuarine system, Brazil. Tropical Oceanography, 29: 1-18. ). Winds under cold front weather conditions form currents along the Tamaulipas and Veracruz coasts, which take a southward direction and cause cyclonic currents, while those winds in the states of Campeche Bank and Yucatán form anticyclonic currents. These currents converge at the southern end of the Gulf of Mexico, producing flows perpendicular to the coast, from the neritic-oceanic zone to the oceanic zone (Zavala-Hidalgo et al., 2006Zavala-Hidalgo, J.; Salmerón, O.; Aguilar, V.; Cerdeira, S. and Kolb, M. 2006. Caracterización y regionalización de los procesos oceanográficos de los mares mexicanos. México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO - 2016-09-02). Available at Available at http://www.conabio.gob.mx/gap/index.php/Procesos_oceanogr%C3%A1ficos . Accessed on 01 May 2020.
http://www.conabio.gob.mx/gap/index.php/...
). Furthermore, the subtropical water underlying the Campeche Bank favors resuspension of the nutrient-rich sediment in the southern part of the PNSAV. Rodríguez-Gómez et al. (2015Rodríguez-Gómez, C.F.; Aké-Castillo, J.A.; Campos-Bautista, G. and Okolodkov, Y.B. 2015. Revisión del estudio del fitoplancton en el Parque Nacional Sistema Arrecifal Veracruzano. E-Bios, 2: 178-191.) found that the highest levels of chlorophyll and, consequently, of gross primary productivity in the PNSAV, begin to appear in September, and last from October until April. Thus, the highest density of zoeae obtained in this study under cold front weather conditions could be related to the increase in dissolved oxygen, due to the increase in chlorophyll, as well as the transport of neritic-oceanic species by surface currents generated by the winds characteristic of this time (Álvarez-Cadena et al., 2007Álvarez-Cadena, J.N.; Ordóñez-López, U.; Valdés-Lozano, D.; Almaral, A.R. and Uicab-Sabido, A. 2007. Estudio anual del zooplancton: composición, abundancia, biomasa e hidrología del norte de Quintana Roo, Mar Caribe de México. Revista Mexicana de Biodiversidad, 78: 421-430.).

Our results have shown that the zoeae I community from the PNSAV is structured into four main species assemblages, distributed along a latitudinal gradient. The community responds to the environmental changes from changing weather conditions and, according to the review of literature, to the reproductive zone of the adults.

The species in the first group (Achelous sp., A. ricordi, A. cristata, C. sapidus, Ebalia sp., Ethusa sp., Minuca sp., P. aquilonaris, and Raninoides sp.) were found to exhibit an infralittoral, intertidal and estuarine affinity during cold front weather conditions. Their life cycle includes planktotrophic development, which takes place in lower estuaries or offshore seas (Fransozo and Negreiros-Fransozo, 1986Fransozo, A. and Negreiros-Fransozo, M.L. 1986. Influencia da salinidade no desenvolvimento larval de Eriphia gonagra (Fabricius, 1781) e Sesarma (Holometopus) rectum Randall, 1840 (Crustacea, Decapoda), em laboratorio. Revista Brasileira de Biologia, 46: 439-446. ; Alvarez and Ewald, 1990Álvarez, Z., and Ewald, J. 1990. Efectos de la salinidad y la dieta sobre el desarrollo larvario de Sesarma ricordi (Milne Edwards, 1853) (Decapoda, Grapsidae). Scientia Marina, 54: 55-60.). This group includes semi-terrestrial species that live in the supralittoral fringe up to several hundred meters inland (Diesel and Schuh, 1998Diesel, R. and Schuh, M. 1998. Effects of salinity and starvation on larval development of the crabs Armases ricordi and A. roberti (Decapoda: Grapsidae) from Jamaica, with notes on the biology and ecology of adults. Journal of Crustacean Biology, 18: 423-436.), inhabit infralittoral zones among rocks and debris, and burrow in the sediments of beaches, lagoons, estuaries, mouths of rivers, freshwater bottoms, areas near reefs, mangroves, seagrass and algae (Coelho and Ramos, 1972Coelho, P.A. and Ramos, M.D.A. 1972. A constituição e a distribuição da fauna de decápodos do litoral leste da América do Sul entre as latitudes de 5ºN e 39ºS. Tropical Oceanography, 13: 133-236. ; Franks et al., 1972Franks, J.S.; Christmas, J.Y.; Siler, W.L.; Combs, R.; Waller, R. and Bums, C. 1972. A study of nektonic and benthic faunas of the shallow Gulf of Mexico off the state of Mississippi as related to some physical, chemical and geological factors. Gulf Research Reports, 4: 1-148. ; Williams, 1982Williams, M.J. 1982. Natural foods and feeding in the commercial sand crab Portunus pelagicus Linnaeus 1758 (Crustacea, Decapoda, Portunidae) in Moreton Bay, Queensland. Journal of experimental Marine Biology and Ecology, 59: 165-176. ; Barnwell and Thurman, 1984Barnwell, F.H. and Thurman, C.L. 1984. Taxonomy and biogeography of fiddler crabs of the Atlantic and Gulf coasts of Eastern North America. Zoological Journal of the Linnean Society, 81: 23-87.; Manning and Felder, 1989Manning, R.B. and Felder, D.L. 1989. The Pinnixa cristata complex in the western Atlantic, with a description of two new species (Crustacea: Decapoda: Pinnotheridae). Smithsonian Contributions to Zoology, 473: 1-26. ; Melo, 1996Melo, G.A.S. 1996. Manual de Identificação dos Brachyura (Caranguejos e Siris) do Litoral Brasileiro. São Paulo, Plêiade, 604p.; Rosenberg, 2001Rosenberg, M.S. 2001. The systematics and taxonomy of fiddler crabs: a phylogeny of the genus Uca. Journal of Crustacean Biology, 21: 839-869. ; Hirose, 2009Hirose, G.L. 2009. Distribuição larval planctônica de Brachyura (Crustacea,Decapoda) na região de Ubatuba com novas descrições larvais para gênero Persephona Leach,1817. Tese de Doutorado, Universidade Estadual Paulista Júlio de Mesquita Filho, 116p.; WoRMS, 2020WoRMS. 2020. World Register of Marine Species. Available at Available at http://www.marinespecies.org . Accessed on 15 Apr 2020.
http://www.marinespecies.org...
). Some species are symbionts of ghost shrimp (axiidean crustaceans or ecologically equivalent species) and are found on sandy beaches (Peiró and Mantelatto, 2011Peiro, D.F.; Pezuto, P.R. and Mantelatto, F.L. 2011. Relative growth and sexual dimorphism of Austinixa aidae (Brachyura: Pinnotheridae): a symbiont of the ghost shrimp Callichirus major from the southwestern Atlantic. Latin American Journal Aquatic Research, 39: 261-270. ). The ovigerous females of this group are found from October to March (Rouse, 1970Rouse, W.L. 1970. Littoral Crustacea from southwest Florida. Quarterly Journal of the Florida Academy of Science, 32: 127-152. ; Williams, 1984Williams, A.B. 1984. Shrimps, lobsters, and crabs of the Atlantic coast of the Eastern United States, Maine to Florida. Washington, Smithsonian Institution Press, 550p.; García-Montes et al., 1988García-Montes, J.F.; Soto, L.A. and Gracia, A. 1988. Cangrejos portúnidos del suroeste del Golfo de México: Aspectos pesqueros y ecológicos. Anales del Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 15: 135-150. ; Benneti et al., 2007Benetti, A.S.; Negreiros-Fransozo, M.L. and Costa, T.M. 2007. Population and reproductive biology of the crab Uca burgersi (Crustacea: Ocypodidae) in three subtropical mangrove forests. Revista de Biología Tropical, 55: 55-70.). The ovigerous females migrate to release their larvae in foreshore and nearshore zones (Williams, 1984Williams, A.B. 1984. Shrimps, lobsters, and crabs of the Atlantic coast of the Eastern United States, Maine to Florida. Washington, Smithsonian Institution Press, 550p.), consistent with the zoeae found in this study belonging to the same group.

The second group comprises the species T. corallicola and Ovalipes sp., which exhibit an oceanic affinity and were collected during dry and cold front conditions. Troglocarcinus corallicolaVerrill, 1908Verrill, A.E. 1908. Brachyura and Anomura: their distribution, variations, and habits: Decapod Crustacea of Bermuda. I. Transactions of the Connecticut Arts and Sciences, 13: 299-474. is the most widely distributed of the Atlantic cryptochirids and has been recorded as a symbiont of several species of stony corals, including Manicina areolata (Linnaeus, 1758Linnaeus, C. 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata, Laurentius Salvius: Holmiae. 824p. ) (Kropp and Manning, 1987Kropp, R.K. and Manning, R.B. 1987. The Atlantic Gall Crabs, Family Cryptochiridae (Crustacea: Decapoda: Brachyura) Smithsonian Contributions to Zoology, 462: 1-21.). Ovigerous females have been collected year-round from Florida to the Mexican Caribbean (Carricart-Gavinet et al., 2004Carricart-Ganivet, J.P.; Carrera-Parra, L.F.; Quan-Young, L.I.; García-Madrigal, M.S. 2004. Ecological note on Troglocarcinus corallicola (Brachyura: Cryptochiridae) living in symbiosis with Manicina areolata (Cnidaria: Scleractinia) in the Mexican Caribbean. Coral Reefs, 23: 215-217. ). Ovalipes sp. is common on a variety of oceanic bottoms, especially sand (Williams and Wigley, 1977Williams, A.B. and Wigley, R.L. 1977. Distribution of decapod Crustacea off northeastern United States based on specimens at the Northeast Fisheries Center, Woods Hole, Massachusetts. NOAA Technical Report NMFS Circular 407, 44p.). Ovigerous females have been found from October to February (Dudley and Judy, 1971Dudley, D.L. and Judy, M.H. 1971. Occurrence of larval, juvenile, and mature crabs in the vicinity of Beaufort Inlet, North Carolina. NOAA Technical Report, NMFS Special Scientific Report-Fisheries 637, 10p.). These species have a close relationship with other species present in nearshore coral reefs, where they release their larvae.

Species in the third group (L. dubia, M. nodifrons and Z. ostreum) have a marine infralittoral affinity and were collected in rainy weather conditions. The adults can be found on almost all types of benthic habitat in the shallow ocean and are associated with sponges, hydroids, ascidians, barnacles or worm tubes; all common on coral reefs. They can also be found in biogenic substrates such as coral-associated colonies of Phragmatopoma caudata Krøyer in Mörch, 1863Mörch, O.A.L. 1863. Revisio critica Serpulidarum. Et Bidrag til Rørormenes Naturhistorie. Naturhistorisk Tidsskrift København, 1: 347-470. and Schizoporella unicornis (Johnston, 1847Johnston, G. 1847. A history of the British zoophytes. 2nded. London, John Van Voorst. 451 p.) but also in algal banks of Sargassum cymosumAgardh, 1820Agardh, C.A. 1820-1821. Species algarum rite cognitae, cum synonymis, differentiis specificis et descriptionibus succinctis. Volumen primum. Pars prima. pp. [i-iv], [1] 168. Lundae[Lund ]: ex officina Berlingiana.-1821 (Williams, 1984Williams, A.B. 1984. Shrimps, lobsters, and crabs of the Atlantic coast of the Eastern United States, Maine to Florida. Washington, Smithsonian Institution Press, 550p.; Oshiro, 1999Oshiro, L.M. 1999. Aspectos reprodutivos do caranguejo guaia, Menippe nodifrons Stimpson (Crustacea, Decapoda, Xanthidae) da Baía de Sepetiba, Rio de Janeiro, Brasil. Revista brasileira de Zoologia, 16: 827-834. ; Rodrigues-Alves et al., 2013Rodrigues-Alves, D.F.; Barros-Alves S.P.; Fransozo, V.; Bertini, G. and Cobo, V.J. 2013. Importance of biogenic substrates for the stone crab Menippe nodifrons Stimpson, 1859 (Brachyura: Eriphioidea). Latin American Journal of Aquatic Research, 41: 459-467. ). The ovigerous females can be found from January to September (Williams, 1984Williams, A.B. 1984. Shrimps, lobsters, and crabs of the Atlantic coast of the Eastern United States, Maine to Florida. Washington, Smithsonian Institution Press, 550p.; Oliveira et al., 2005Oliveira, D.A.F.; Hattori, G.Y. and Pinheiro M.A.A. 2005. Fecundity of Menippe nodifrons Stimpson, 1859 (Brachyura, Menippidae) in the Parnapuã, Beach, SP, Brazil. Nauplius, 3: 167-174.). In particular, the adults of Z. ostreus are found where their hosts live (Cheng, 1973Cheng, T. 1973. General Parasitology. New York and London, Academic Press. 965 p.; Kaplan, 1988Kaplan, E. 1988. A Feld Guide to Southeastern and Caribbean Seashores. Boston. Houghton Mifflin Co. 480 p.; Bower et al., 1994Bower, S.; McGladdery, S. and Price, I. 1994. Synopsis of infectious diseases and parasites of commercially exploited shellfish. Annual Review of Fish Diseases, 4: 1-199.). The larvae feed on plankton from the open ocean (Sandoz and Hopkins, 1947Sandoz, M. and Hopkins, S.H. 1947. Early life history of the oyster crab, Pinnotheres ostreum (Say). Biological Bulletin, 93: 250-258. ), explaining their oceanic affinity, while the adults live as parasites in oysters (Stauber, 1945Stauber, L.A. 1945. Pinnotheres ostreum, parasitic on the American oyster, Ostrea (Gryphaea) virginica. Biological Bulletin, 88: 269-291.; Cheng, 1973Cheng, T. 1973. General Parasitology. New York and London, Academic Press. 965 p.). In this group, adults stay in the nearshore zone and release their larvae close by.

The species in the fourth group (G. lividus, M. mercenaria, P. gracilis and P. transversus) were mainly collected in cold front weather conditions. The adults live in intertidal areas among rocky pilings, roots of mangroves, and sandy shores at high tide, and are well adapted to salinity ranges near the mouths of estuaries and can survive extreme salinity. The ovigerous females can be found year-round but are more common from February to September (Dudley and Judy, 1971Dudley, D.L. and Judy, M.H. 1971. Occurrence of larval, juvenile, and mature crabs in the vicinity of Beaufort Inlet, North Carolina. NOAA Technical Report, NMFS Special Scientific Report-Fisheries 637, 10p.; Rickner, 1977Rickner, J.A. 1977. Notes on a collection of crabs (Crustacea: Brachyura) from the east coast of Mexico. Proceedings of the Biological Society of Washington, 90: 831-838.; Williams 1984Williams, A.B. 1984. Shrimps, lobsters, and crabs of the Atlantic coast of the Eastern United States, Maine to Florida. Washington, Smithsonian Institution Press, 550p.; Burggren and McMahon, 1988Burggren, W.W. and MacMahon, B.R. 1988. Biology of the Land Crabs. Cambridge University press, 492p.; Cuesta and Schubart, 1999Cuesta, J.A. and Schubart, C.D. 1999. First zoeal stages of Geograpsus lividus and Goniopsis pulchra from Panama confirm consistent larval characters for the subfamily Grapsinae. Ophelia, 51: 163-176. ; Poupin et al., 2005Poupin, J.; Davie, P.J.F. and Cexus, J.C. 2005. A revision of the genus Pachygrapsus Randall, 1840 (Crustacea: Decapoda: Brachyura, Grapsidae), with special reference to the Southwest Pacific species. Zootaxa, 1015: 1-66.; Hartnoll, 2009Hartnoll, R.G. 2009. Sexual Maturity and Reproductive Strategy of the Rock Crab Grapsus adscensionis (Osbeck, 1765) (Brachyura, Grapsidae) on Ascension Island. Crustaceana, 82: 275-291. ). The females of these species release their larvae in the swash zone (Williams, 1984Williams, A.B. 1984. Shrimps, lobsters, and crabs of the Atlantic coast of the Eastern United States, Maine to Florida. Washington, Smithsonian Institution Press, 550p.).

Our results show that the larval community provides valuable information about the composition, place, and potential spawning season, of the crustacean community. Likewise, the temporal distribution of decapod larvae suggests a larval hatching period for many species with abundance peaks associated with seasonality; all this consistent with Landeira and Soldevilla (2018Landeira, J.M. and Lozano-Soldevilla, F. 2018. Seasonality of planktonic crustacean decapod larvae in the subtropical waters of Gran Canaria Island, NE Atlantic. Scientia Marina, 82: 119-134. ).

The highest density of Brachyura zoea I found in the PNSAV was consistent with the results attained in estuaries by other authors (Schwamborn et al., 2001Schwamborn, R.; Neumann-Leitão, S.; Almeida e Silva, T.A.; Pinto-Silva, W.E. and Saint-Paul, U. 2001. Distribution and dispersal of decapod crustacean larvae and other zooplankton in the Itamaracá estuarine system, Brazil. Tropical Oceanography, 29: 1-18. ; Silva-Falcão et al., 2007Silva-Falcão, E.C.; Severi, W. and Rocha, A.A.F. 2007. Dinâmica espacial e temporal de zoeas de Brachyura (Crustacea, Decapoda) no estuário do Rio Jaguaribe, Itamaracá, Pernambuco, Brasil. Iheringia, Série Zoologia, 97: 434-440.), however, it is lower than that reported in bays and lagoons (Costa-Brandão et al., 2011Costa-Brandão, M.; Stumpf, L.; Macedo-Soares, L.C.P. and Freire, A.S. 2011. Spatial and temporal distribution of brachyuran crab larvae in Ibiraquera Lagoon, southern Brazil. Pan-American Journal of Aquatic Sciences, 6: 16-27.; Fernandes et al., 2002Fernandes, L.D.A.; Bonecker, S.L.C. and Valentin, J.L. 2002. Dynamic of decapod crustacean larvae on the entrance of Guanabara Bay. Brazilian Archives of Biology and Technology, 45: 491-498. ; Silva et al., 2004Silva, A.P.; Neumann-Leitão, S.; Schwamborn, R.; Gusmão, M.L.O. and Silva, T.A. 2004. Mesozooplankton of an Impacted Bay in North Eastern Brazil. Brazilian Archives of Biology and Technology, 47: 485-493. ; Pantaleón-Lópes et al., 2005Pantaleón-López, B.; Aceves, G. and Castellanos, I.A. 2005. Distribución y abundancia del zooplancton del complejo lagunar Chacahua-La Pastoría, Oaxaca, México. Revista Mexicana de Biodiversidad, 76: 63-70. ) (Tab. 9). This can be attributed to the types of sampling used, the geomorphology of the systems, and the reproductive strategies of the adults (Spivak and Cuesta, 2009Spivak, E.D. and Cuesta, J.A. 2009. The effect of salinity on larval development of Uca tangeri (Eydoux, 1835) (Brachyura: Ocypodidae) and new findings of the zoeal morphology. Scientia Marina, 73: 297-305. ). On the other hand, we observed that the species with the highest density were C. allinectes sapidus and L. dubia, which have also been subject to most of the academic study. For example, in Ibiraquera Lagoon, Brazil, the larval density of C. sapidus (84 larvae 100 m−3) (Costa-Brandão et al., 2011Costa-Brandão, M.; Stumpf, L.; Macedo-Soares, L.C.P. and Freire, A.S. 2011. Spatial and temporal distribution of brachyuran crab larvae in Ibiraquera Lagoon, southern Brazil. Pan-American Journal of Aquatic Sciences, 6: 16-27.) was found to be higher than that in the mouth of Delaware Bay (55 larvae 100 m−3) (Dittel and Epifanio, 1982Dittel, A.I. and Epifanio, C.E. 1982. Seasonal abundance and vertical distribution of crab in Delaware Bay. Estuaries, 5: 197-202.). In another study of C. sapidus in the estuarine and coastal regions of Patos Lagoon in Southern Brazil, 53.97 zoeae 100 m−3 were collected in summer, 13.18 zoeae 100 m−3 in autumn and 19.75 zoeae 100 m−3 in spring (Ramos-Vieira and Calazans, 2015Ramos-Vieira, R.R. and Calazans, D.K. 2015. Abundance and distribution of Portunidae larval phases (Crustacea: Brachyura) in the estuarine and coastal region of the Patos Lagoon, Southern Brazil. Nauplius, 23: 132-145.). The higher density of Callinectes and Libinia is related to the number of eggs produced. Callinectes produces approximately 3.2 million eggs per female in the northern Gulf of Mexico and is influenced by seasonality (highest in Spring) (Graham et al., 2012Graham, D.; Perry, H.; Biesiot, P. and Fulford, R. 2012. Fecundity and egg diameter of primiparous and multiparous blue crab Callinectes sapidus (Brachyura: Portunidae) in Mississippi waters. Journal of Crustacean Biology, 32: 49-56. ) while Libinia produces approximately 75,000 eggs per female between June and December (Hinsch, 1968Hinsch, G.W. 1968. Reproductive behavior in the spider crab, Libinia emarginata (L.). Biological Bulletin, 135: 273-278. ; Carmona-Osalde and Rodríguez-Serna, 2012Carmona-Osalde, C. and Rodríguez-Serna, M. 2012. Reproductive aspects of the spider crab Libinia dubia under laboratory conditions. Hidrobiológica, 22: 58-61.). In the present study we obtained larval density values higher than those reported in the above-mentioned studies and these high densities correspond to cold fronts and dry weather conditions.

Table 9.
Density of Brachyura zoea I 100-3 in lagoons, bays and estuaries.

The species composition of brachyuran zoea identified in this study was similar to that in other estuarine systems and bays, including of the genus Menippe (Schwamborn et al., 1999Schwamborn, R.; Ekau, W; Silva, A.P.; Silva, T.A. and Saint-Paul, U. 1999. The contribution of estuarine decapod larvae to marine zooplankton communities in North-East Brazil. Archives of Fishery and Marine Research, 47: 167-182.), species in the families Ocypodidae and Portunidae (Negreiros-Fransozo et al., 2002Negreiros-Fransozo, M.L.; Fransozo, A. and González-Gordillo, J.I. 2002. First appraisal on releasing and reinvasion of decapod larvae in a subtropical estuary from Brazil. Acta Limnologica Brasiliensia, 14: 87-94.), and particularly, species of the genus Callinectes (Steppe and Epifanio, 2006Steppe, C.N. and Epifanio, C.E. 2006. Synoptic distribution of crab larvae near the mouth of Chesapeake Bay: influence of nearshore hydrographic regimes. Estuarine, Coastal and Shelf Science, 70: 654-662.; Silva-Falcão et al., 2007Silva-Falcão, E.C.; Severi, W. and Rocha, A.A.F. 2007. Dinâmica espacial e temporal de zoeas de Brachyura (Crustacea, Decapoda) no estuário do Rio Jaguaribe, Itamaracá, Pernambuco, Brasil. Iheringia, Série Zoologia, 97: 434-440.).

The diversity values obtained in this study were similar to the findings of Magris and Loureiro-Fernandes (2011Magris, R.A. and Loureiro-Fernandes, L.F. 2011. Diversity and distribution of assemblages of estuarine decapod larvae (Crustacea: Decapoda: Anomura, Brachyura) in tropical southeastern Brazil. Zootaxa, 2758: 26-42. ), who also applied the Shannon-Wiener model to data from a set of decapod larvae in which brachyurans were the dominating fauna within the community, with 69% of the taxa. The authors found a diversity of 0.8 to 2.2 bits individual−1 and a species richness of 6 to 16 in the Piraquê-Mirim estuary, and a diversity of 1.2 to 2.5 bits individual−1 and a species richness of 7 to 17 in the Piraquê-Açú estuary. The authors concluded that for estuaries located in tropical zones, seasonal variations in larval abundance depend on the dynamics of the temperate waters of the coast, and further that larvae are most abundant in late summer (i.e., the ocypodids are very abundant, so they are important components for pelagic food webs). In another study conducted by Koettker and Lopes (2013Koettker, A.G. and Lopes, R.M. 2013. Meroplankton spatial structure and variability on Abrolhos Bank and adjacent areas, with emphasis on brachyuran larvae. Continental Shelf Research, 70: 97-108. ) on meroplankton, brachyuran larvae were analyzed in detail, leading to a list of 61 taxa for the area, 24 of which accounted for half of the total brachyuran larval density. These authors found a diversity of 1.2 to 2.6 bits individual−1 at shallow stations with an evenness of 0.7 to 0.9, and 0.7 to 1.9 bits individual−1 at deep stations with an evenness of 0.9. Moreover, they mentioned that the analysis of brachyuran larval composition and distribution suggests a negligible influence of estuarine fauna on inner shelf assemblages during winter conditions. It is important to consider that Shannon-Wiener index values lower than 1 are found in places with low environmental stability, values of 1 to 2 are found in places with intermediate stability, and values higher than 3 indicate places with stable environmental conditions (Stub et al., 1970Stub, R.; Appling, J.W.; Hatstetter, A.M. and Hass, I.J. 1970. The effect of industrial waste of Memphis and Shelby country on primary planktonic producers. Bioscience, 20: 905-912.). Therefore, from the data obtained for the community of Brachyura zoea, the PNSAV may be regarded as having intermediate stability (Horta-Puga et al., 2013Horta-Puga, G.; Cházaro-Olvera, S.; Winfield, I.; Ávila-Romero, M. and Moreno-Ramírez, M. 2013. Cadmium, copper and lead in macroalgae from the Veracruz reef system, Gulf of Mexico: spatial distribution and rainy weather condition variability. Marine Pollution Bulletin, 68: 127-133. ).

In conclusion, the results obtained in this study are consistent with the other studies, confirming that the abundance and distribution of decapod larvae are influenced by factors such as temperature, salinity, and areas of spawning. In the PNSAV region, environmental parameters are modified by cold fronts and rainy weather conditions, and the estuarine plume of the Jamapa River. Tropical storms and hurricanes cause a mixed layer, reincorporating nutrients into the photic zone, which in turn are used by phytoplankton, which are later consumed by brachyuran zoea. The species with the highest density were L. dubia, C. sapidus and M. nodifrons. Considering environmental factors and reproductive strategies, we observed the separation of three weather conditions, three perpendicular zones (northern, central and southern), and four groups of Brachyura zoea in the PNSAV. The species in the first group move to the marine environment, while some others move from the coast to the infralittoral zone to release their larvae. In the second group, the adults stay in the infralittoral zone and release their larvae there. The species of the third group manifest a close relationship with other species present in coral reefs and release their larvae in such locations. The species of the fourth group live in intertidal areas among rocky pilings and are well adapted to salinity ranges near the mouths of estuaries. This is the first investigation into brachyuran zoea larvae assemblages in Veracruz, Mexico. The obtained diversity values of approximately 2.0 bits individual−1 resemble diversity values found in similar studies concerning Brachyura larvae, hence the PNSAV can be deemed as having intermediate stability.

ACKNOWLEDGEMENTS

We appreciate the support of the national sabbatical program 2018 of CONACYT, of the authorities of SEMARNAT, CONANP and CONAPESCA-DGOPA (SAGARPA) for the permits granted for the realization of the present study, and to the students of the crustacean laboratory of FES Iztacala that participated in the review and separation of samples.

REFERENCES

  • Agardh, C.A. 1820-1821. Species algarum rite cognitae, cum synonymis, differentiis specificis et descriptionibus succinctis. Volumen primum. Pars prima. pp. [i-iv], [1] 168. Lundae[Lund ]: ex officina Berlingiana.
  • Aguayo-Saviñon, M.A. 1966. Contribución al conocimiento de los Copépodos de la zona arrecifal de Veracruz. Ver. Sistemática y distribución. [Tesis]. Facultad de Ciencias, Universidad Nacional Autónoma de México, México. 74p.
  • Álvarez, F.; Villalobos, J.L.; Rojas, Y. and Robles, R. 1999. Listas y comentarios sobre los crustáceos decápodos de Veracruz. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, 70: 1-27.
  • Álvarez, F.; Villalobos, J.L. and Cházaro-Olvera, S. 2011. Camarones y cangrejos dulceacuícolas y marinos (Crustacea: Decapoda). p. 287-293. In: A. Cruz-Angón (ed), La biodiversidad en Veracruz, estudio de estado. Vol. 2. México, DF, CONABIO.
  • Álvarez, Z., and Ewald, J. 1990. Efectos de la salinidad y la dieta sobre el desarrollo larvario de Sesarma ricordi (Milne Edwards, 1853) (Decapoda, Grapsidae). Scientia Marina, 54: 55-60.
  • Álvarez-Cadena, J.N.; Ordóñez-López, U.; Valdés-Lozano, D.; Almaral, A.R. and Uicab-Sabido, A. 2007. Estudio anual del zooplancton: composición, abundancia, biomasa e hidrología del norte de Quintana Roo, Mar Caribe de México. Revista Mexicana de Biodiversidad, 78: 421-430.
  • Amador-del Ángel, L.E.; Viveros-Trinidad, J.; Casanova-Broca, M.; Cabrera-Rodríguez, P.; and Reyes-Fernández, Z.E. 2004. Distribution and abundance of larvae Callinectes rathbunae in Atasta Lagoon, Terminos Lagoon, Campeche, Mexico. Proceedings of the Gulf and Caribbean Fisheries Institute, 55: 1010-1011.
  • Anderson, M.J.; Gorley, R.N. and Clarke, K. R. 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth. 214p.
  • Anger, K. 2001. The Biology of Decapod Crustacean Larvae. Crustacean Issues, 14. Lisse, A.A. Balkema Publishers, 419 p.
  • Ayala-Rodríguez, G.A.; Ordóñez- López, U.; Meiners, C. and Marín-Hernández, M. 2016. Listado taxonómico, aspectos ecológicos y biogeográficos de las larvas de peces del Sistema Arrecifal Veracruzano, Suroeste del Golfo de México (junio 2011-junio 2013). Revista de Biología Marina y Oceanografía, 51: 255-264.
  • Barnwell, F.H. and Thurman, C.L. 1984. Taxonomy and biogeography of fiddler crabs of the Atlantic and Gulf coasts of Eastern North America. Zoological Journal of the Linnean Society, 81: 23-87.
  • Bedia-Sánchez, C. and Franco-López, J. 2008. Peces de los sistemas costeros del estado de Veracruz. México, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala. 508p.
  • Benetti, A.S.; Negreiros-Fransozo, M.L. and Costa, T.M. 2007. Population and reproductive biology of the crab Uca burgersi (Crustacea: Ocypodidae) in three subtropical mangrove forests. Revista de Biología Tropical, 55: 55-70.
  • Boltovskoy, D. 1999. South Atlantic Zooplankton. Leiden, Backhuys Publishers, 1706p.
  • Bott, R. 1954. Ergebnisse der Forschungsreise A. Zilch 1951 nach El Salvador, 15. Dekapoden (Crustacea) aus El Salvador. 1. Winkerkrabben (Uca). Senckenbergiana biologica, 35: 155-180.
  • Bower, S.; McGladdery, S. and Price, I. 1994. Synopsis of infectious diseases and parasites of commercially exploited shellfish. Annual Review of Fish Diseases, 4: 1-199.
  • Burggren, W.W. and MacMahon, B.R. 1988. Biology of the Land Crabs. Cambridge University press, 492p.
  • Campos, A. 1980. Distribución y abundancia relativa de los copépodos planctónicos en el Golfo de México y el Mar Caribe. Ciencias Biológicas, 5: 57-74.
  • Campos-Hernández, A. and Suárez-Morales, E. 1994. Copépodos pelágicos del Golfo de México y mar Caribe. I. Biología y Sistemática. México, Consejo Nacional de Ciencia y Tecnología/Centro de Investigaciones de Quintana Roo. 353 p.
  • Carmona-Osalde, C. and Rodríguez-Serna, M. 2012. Reproductive aspects of the spider crab Libinia dubia under laboratory conditions. Hidrobiológica, 22: 58-61.
  • Carricart-Ganivet, J.P.; Carrera-Parra, L.F.; Quan-Young, L.I.; García-Madrigal, M.S. 2004. Ecological note on Troglocarcinus corallicola (Brachyura: Cryptochiridae) living in symbiosis with Manicina areolata (Cnidaria: Scleractinia) in the Mexican Caribbean. Coral Reefs, 23: 215-217.
  • Carrillo, L.; Horta-Puga, G. and Carricart-Ganivet, J.P. 2007. Climate and Oceanography. p. 34-41. In: J.W. Tunnell, Jr., E.A. Chavez and K. Withers (eds), Coral reefs of the Southern Gulf of Mexico. College Station, USA, Texas A & M University Press.
  • Chávez, E.; Tunnell, J.W. and Withers, K. 2007. Reef zonation and ecology. p. 41-67. In: J.W. Tunnel, E.A. Chávez and K. Withers (eds), Coral reefs of the Southern Gulf of México. College Station, USA, Texas A & M University Press .
  • Cházaro-Olvera, S.; Windfield, I.; Ortiz-Touzet, M.; Jiménez-Badillo, M.L.; and Lozano-Aburto, M.A. 2014. Larvas zoeas de cangrejos (Crustacea, Decapoda, Brachyura) del estado de Veracruz, México. Claves de indentificación. Tlalnepantla, Estado de México, México, Facultad de Estudios Superiores Iztacala, 68p.
  • Cházaro-Olvera, S.; Montoya-Mendoza, J.; Rosales-Saldívar, S.; Vázquez-López, H. and Meiners-Mandujano, C. 2019. Planktonic copepod community of a reef zone in the southern Gulf of Mexico. Journal of Natural History, 53: 1187-1208.
  • Cheng, T. 1973. General Parasitology. New York and London, Academic Press. 965 p.
  • Chowdhury, P. and Behera, M.R. 2019. Nearshore Sediment Transport in a Changing Climate. p. 48-60. In: C. Venkataraman, T. Mishra, S. Ghosh and S. Karmakar (eds), Climate Change Signals and Response, Springer, Singapore, Harte Research Institute, Corpus Christi, USA, Texas A & M University.
  • Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal Ecology, 18: 117-143.
  • Clarke, K.R. and Gorley, R.N. 2015. PRIMER V7: User Manual/Tutorial. PRIMER-E, Plymouth . 296 p.
  • Coelho, P.A. and Ramos, M.D.A. 1972. A constituição e a distribuição da fauna de decápodos do litoral leste da América do Sul entre as latitudes de 5ºN e 39ºS. Tropical Oceanography, 13: 133-236.
  • Costa-Brandão, M.; Stumpf, L.; Macedo-Soares, L.C.P. and Freire, A.S. 2011. Spatial and temporal distribution of brachyuran crab larvae in Ibiraquera Lagoon, southern Brazil. Pan-American Journal of Aquatic Sciences, 6: 16-27.
  • Cuesta, J.A. and Schubart, C.D. 1999. First zoeal stages of Geograpsus lividus and Goniopsis pulchra from Panama confirm consistent larval characters for the subfamily Grapsinae. Ophelia, 51: 163-176.
  • De Haan, W. 1833. Crustacea. p. 1-243. In: P.F. von Siebold (ed), Fauna Japonica sive Descriptio Animalium, quae in Itinere per Japoniam, Jussu et Auspiciis Superiorum, qui Summum in India Batava Imperium Tenent, Suspecto, Annis 1823-1830 Collegit, Notis, Observationibus et Adumbrationibus Illustravit, Lugduni-Batavorum.
  • de Saussure, H. 1857. Diagnoses de quelques Crustacés nouveaux de l’Amérique tropicale. Revue et Magasin de Zoologie, 9: 501-505.
  • de Saussure, H. 1858. Mémoire sur divers Crustaces nouveaux des Antilles et du Mexique. Memoires de la Societe Physiques de Geneve, 14: 417-4696.
  • Diesel, R. and Schuh, M. 1998. Effects of salinity and starvation on larval development of the crabs Armases ricordi and A. roberti (Decapoda: Grapsidae) from Jamaica, with notes on the biology and ecology of adults. Journal of Crustacean Biology, 18: 423-436.
  • Dittel, A.I. and Epifanio, C.E. 1982. Seasonal abundance and vertical distribution of crab in Delaware Bay. Estuaries, 5: 197-202.
  • DOF [Diario Oficial de la Federación]. 1992. Decreto por el que se declara área natural protegida con el carácter de Parque Marino Nacional, la zona conocida como Sistema Arrecifal Veracruzano, ubicada frente a las Costas de los municipios de Veracruz, Boca del Río y Alvarado del estado de Veracruz Llave, con superficie de 52,238 hectáreas. Comisión Nacional de Áreas Naturales Protegidas (CONANP). Available at Available at http://www.conanp.gob.mx/sig/decretos/parques/sav.pdf Accessed on 01 May 2020.
    » http://www.conanp.gob.mx/sig/decretos/parques/sav.pdf
  • DOF [Diario Oficial de la Federación]. 2012. Decreto que modifica al diverso por el que se declara Área Natural Protegida, con el carácter de Parque Marino Nacional, la zona conocida como Sistema Arrecifal Veracruzano, ubicada frente a las costas de los municipios de Veracruz, Boca del Río y Alvarado del Estado de Veracruz Llave, con una superficie de 52,238-91-50 hectáreas, publicado los días 24 y 25 de agosto de 1992, 14p.
  • Dudley, D.L. and Judy, M.H. 1971. Occurrence of larval, juvenile, and mature crabs in the vicinity of Beaufort Inlet, North Carolina. NOAA Technical Report, NMFS Special Scientific Report-Fisheries 637, 10p.
  • Fabricius, J.C. 1798. Entomologia Systematica emendata et aucta, secundum classes, ordines, genera, species adjectis synonimis locis observationibus descriptionibus. Hafniae. I-IV. Supplementum Entomologiae Systematicae Copenhagen, 572p.
  • Felder, D.L. and Camp, D.K. 2009. Gulf of Mexico: Origins, Waters, and Biota. Corpus Christi, Texas A & M University Press, 1393p.
  • Fernandes, L.D.A.; Bonecker, S.L.C. and Valentin, J.L. 2002. Dynamic of decapod crustacean larvae on the entrance of Guanabara Bay. Brazilian Archives of Biology and Technology, 45: 491-498.
  • FIR, 2004. Ficha Informativa de los Humedales de Ramsar. Sitio Ramsar No. 1346 a nivel internacional No. 33 a nivel nacional, 15p.
  • Flores-Coto, C. 1965. Notas preliminares sobre la identificación de las apendicularias de las aguas veracruzanas. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, 36: 293-296.
  • Flores-Coto, C. 1974. Contribución al conocimiento de las apendicularias del Arrecife “La Blanquilla” Veracruz, México con descripción de una nueva especie. Anales del Centro de Ciencias del Mar Limnología, Universidad Nacional Autónoma de México, 1: 41-60.
  • Franks, J.S.; Christmas, J.Y.; Siler, W.L.; Combs, R.; Waller, R. and Bums, C. 1972. A study of nektonic and benthic faunas of the shallow Gulf of Mexico off the state of Mississippi as related to some physical, chemical and geological factors. Gulf Research Reports, 4: 1-148.
  • Fransozo, A. and Negreiros-Fransozo, M.L. 1986. Influencia da salinidade no desenvolvimento larval de Eriphia gonagra (Fabricius, 1781) e Sesarma (Holometopus) rectum Randall, 1840 (Crustacea, Decapoda), em laboratorio. Revista Brasileira de Biologia, 46: 439-446.
  • García-Montes, J.F.; Soto, L.A. and Gracia, A. 1988. Cangrejos portúnidos del suroeste del Golfo de México: Aspectos pesqueros y ecológicos. Anales del Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 15: 135-150.
  • Gibbes, L.R. 1850. On the carcinological collections of the United States, and an enumeration of species contained in them, with notes on the most remarkable, and descriptions of new species. Proceedings of the American Association for the Advancement of Science, 3: 165-201.
  • Gore, R.H. 1985. Molting and growth in decapod larvae. p. 1-65. In: A.M. Wenner (ed), Larval growth. Rotterdam/Boston, A.A. Balkema.
  • Graham, D.; Perry, H.; Biesiot, P. and Fulford, R. 2012. Fecundity and egg diameter of primiparous and multiparous blue crab Callinectes sapidus (Brachyura: Portunidae) in Mississippi waters. Journal of Crustacean Biology, 32: 49-56.
  • Granados-Barba, A.; Abarca-Arenas, L.G. and Vargas-Hernández, J.M. 2007. Investigaciones Científicas en el Sistema Arrecifal Veracruzano. Campeche, México, Universidad Autónoma de Campeche. 304p.
  • Harmer, Ø.; Harper, D.A.T. and Ryan, P.D. 2001. PAST: Paleontological statistics software for education and data analysis. Palaeontologia Electrononica, 4: 9.
  • Hartnoll, R.G. 2009. Sexual Maturity and Reproductive Strategy of the Rock Crab Grapsus adscensionis (Osbeck, 1765) (Brachyura, Grapsidae) on Ascension Island. Crustaceana, 82: 275-291.
  • Hermoso-Salazar, M. and Arvizu-Coyotzi, K. 2015. Crustáceos del Sistema Arrecifal Veracruzano. p. 1-26. In: A. Granados-Barba, L.D. Ortiz-Lozano, D. Salas-Monreal and C. Gonzalez-Gandara (eds), Aportes al conocimiento del Sistema Arrecifal Veracruzano: hacia el corredor arrecifal del soroeste del Golfo de México. Xalapa, Veracriz, México, Universidad Veracuzana.
  • Hinsch, G.W. 1968. Reproductive behavior in the spider crab, Libinia emarginata (L.). Biological Bulletin, 135: 273-278.
  • Hirose, G.L. 2009. Distribuição larval planctônica de Brachyura (Crustacea,Decapoda) na região de Ubatuba com novas descrições larvais para gênero Persephona Leach,1817. Tese de Doutorado, Universidade Estadual Paulista Júlio de Mesquita Filho, 116p.
  • Horta-Puga, G. 2007. Environmental impacts. p. 126-141. In: J.W. Tunnell, E.A. Chávez and K. Withers (eds), Coral Reefs of the Southern Gulf of Mexico. Corpus Christi, Texas A & M University Press .
  • Horta-Puga, G.; Cházaro-Olvera, S.; Winfield, I.; Ávila-Romero, M. and Moreno-Ramírez, M. 2013. Cadmium, copper and lead in macroalgae from the Veracruz reef system, Gulf of Mexico: spatial distribution and rainy weather condition variability. Marine Pollution Bulletin, 68: 127-133.
  • Horta-Puga, G.; Cházaro-Olvera, S.; Winfield, I.; Lozano-Aburto, M.A. and Arenas-Fuentes, V. 2016. Heavy metals in macroalgae from the Veracruz Reef System, Southern Gulf of Mexico. Revista Bio Ciencias, 3: 326-339.
  • Hutcheson, K. 1970. A test for comparing diversities based on the Shannon formula. Journal of Theoretical Biology, 29: 151-154.
  • Johnson, W.S. and Allen, D. M. 2012. Zooplankton of the Atlantic and the Gulf Coasts. A guide to their identification and ecology. Baltimore, Maryland, The Johns Hopkins University Press, 452p.
  • Johnston, G. 1847. A history of the British zoophytes. 2nded. London, John Van Voorst. 451 p.
  • Jordán-Dahlgren, E. 2002. Gorgonian distribution patterns in coral reef environments of the Gulf of Mexico: evidence of sporadic ecological connectivity? Coral Reefs, 21: 205-215.
  • Kaplan, E. 1988. A Feld Guide to Southeastern and Caribbean Seashores. Boston. Houghton Mifflin Co. 480 p.
  • Koettker, A.G. and A. Freire. 2006. Spatial and temporal distribution of decapod larvae in the subtropical waters of the Arvoredo archipelago, SC, Brazil. Iheringia, Série Zoologia, 96: 31-39.
  • Koettker, A.G. and Lopes, R.M. 2013. Meroplankton spatial structure and variability on Abrolhos Bank and adjacent areas, with emphasis on brachyuran larvae. Continental Shelf Research, 70: 97-108.
  • Koettker, A.G.; Sumida, P.Y.G.; Lopes, R.M. and Freire, A.S. 2012. Illustrated key for the identification of the known zoeal stages of brachyuran crabs (Crustacea: Decapoda) from tropical and subtropical Brazil, southwestern Atlantic. Zootaxa, 3204: 1-19.
  • Kropp, R.K. and Manning, R.B. 1987. The Atlantic Gall Crabs, Family Cryptochiridae (Crustacea: Decapoda: Brachyura) Smithsonian Contributions to Zoology, 462: 1-21.
  • Landeira, J.M. and Lozano-Soldevilla, F. 2018. Seasonality of planktonic crustacean decapod larvae in the subtropical waters of Gran Canaria Island, NE Atlantic. Scientia Marina, 82: 119-134.
  • Leach, W.E. 1817. The zoological miscellany, being descriptions of new, or interesting animals. London, E. Nodder & Son, 154p.
  • Leal-Rodríguez, D. 1965. Distribución de pterópodos de Veracruz. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, 36: 249-251.
  • Linnaeus, C. 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata, Laurentius Salvius: Holmiae. 824p.
  • Magris, R.A. and Loureiro-Fernandes, L.F. 2011. Diversity and distribution of assemblages of estuarine decapod larvae (Crustacea: Decapoda: Anomura, Brachyura) in tropical southeastern Brazil. Zootaxa, 2758: 26-42.
  • Magurran, A. 1988. Ecological Diversity and its Measurement. London, Chapman and Hall, 179p.
  • Manning, R.B. and Felder, D.L. 1989. The Pinnixa cristata complex in the western Atlantic, with a description of two new species (Crustacea: Decapoda: Pinnotheridae). Smithsonian Contributions to Zoology, 473: 1-26.
  • Martin, J.W.; Olesen, J. and Hoeg, T.J. 2014. Atlas of crustacean larvae. Baltimore, Maryland, The Johns Hopkins University Press, 370p.
  • McConnaughey, H.B. 1974. Introducción a la biología marina. Acribia. Zaragoza, España. p. 7-8, 103-104, 132-136.
  • Melo, G.A.S. 1996. Manual de Identificação dos Brachyura (Caranguejos e Siris) do Litoral Brasileiro. São Paulo, Plêiade, 604p.
  • Milne Edwards, H. 1834-1837. Histoire naturelle des Crustacés, comprenanl l’anatomie, la physiologie et la classification de ces animaux. vol. 1, 1934, 468p; vol. 2, 1937, 531p. Paris, Librairie encyclopédique de Roret.
  • Milne Edwards, H. 1853. Memoire sur la famille des Ocypodiens, suite. Annales des Sciences Naturelles, Series 3 Zoologie, 20: 163-228.
  • Mörch, O.A.L. 1863. Revisio critica Serpulidarum. Et Bidrag til Rørormenes Naturhistorie. Naturhistorisk Tidsskrift København, 1: 347-470.
  • Negreiros-Fransozo, M.L.; Fransozo, A. and González-Gordillo, J.I. 2002. First appraisal on releasing and reinvasion of decapod larvae in a subtropical estuary from Brazil. Acta Limnologica Brasiliensia, 14: 87-94.
  • Ojeda, E.; Appendini, C.M. and Mendoza, E.T. 2017. Storm-wave trends in Mexican waters of the Gulf of Mexico and Caribbean Sea. Natural Hazards and Earth System Sciences, 17: 1305-1317.
  • Okolodkov, Y.B.; Aké-Castillo, J.A.; Gutiérrez-Quevedo, M.G.; Pérez-España, H. and Salas-Monreal, D. 2011. Annual cycle of the plankton biomass in the National Park Sistema Arrecifal Veracruzano, southwestern Gulf of Mexico. p. 63-88. In: G. Kattel (ed), Zooplankton and phytoplankton. New York, Nova Science Publishers, Inc.
  • Oliveira, D.A.F.; Hattori, G.Y. and Pinheiro M.A.A. 2005. Fecundity of Menippe nodifrons Stimpson, 1859 (Brachyura, Menippidae) in the Parnapuã, Beach, SP, Brazil. Nauplius, 3: 167-174.
  • Olmstead, P.S. and Tukey, J.W. 1947. A corner test for association. Annals of Mathematical Statistics, 18: 495-513.
  • Oshiro, L.M. 1999. Aspectos reprodutivos do caranguejo guaia, Menippe nodifrons Stimpson (Crustacea, Decapoda, Xanthidae) da Baía de Sepetiba, Rio de Janeiro, Brasil. Revista brasileira de Zoologia, 16: 827-834.
  • Pantaleón-López, B.; Aceves, G. and Castellanos, I.A. 2005. Distribución y abundancia del zooplancton del complejo lagunar Chacahua-La Pastoría, Oaxaca, México. Revista Mexicana de Biodiversidad, 76: 63-70.
  • Paz-Ríos, C.E.; Pech, D.; Mariño-Tapia, I. and Simões, N. 2020. Influence of bottom environment conditions and hydrographic variability on spatiotemporal trends of macrofaunal amphipods on the Yucatan continental shelf. Continental Research Self, 104098.
  • Peiro, D.F.; Pezuto, P.R. and Mantelatto, F.L. 2011. Relative growth and sexual dimorphism of Austinixa aidae (Brachyura: Pinnotheridae): a symbiont of the ghost shrimp Callichirus major from the southwestern Atlantic. Latin American Journal Aquatic Research, 39: 261-270.
  • Peres-Neto, P.R.; Legendre, P.; Dray, S. and Borcard, D. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614-2625.
  • Pessani, D.; Tirelli, T. and Flagella, S. 2004. Key for the identification of Mediterranean brachyuran megalopae. Mediterranean Marine Science, 5: 53-64.
  • Pohle, G.; Mantelatto, F.L.M.; Negreiros-Fransozo, M.L. and Fransozo, A. 1999. Larval Decapoda (Brachyura). p. 869-1706. In: D. Boltovskoy (ed), South Atlantic Zooplankton. Backhuys Publisher, Leiden, Netherlands.
  • Poupin, J.; Davie, P.J.F. and Cexus, J.C. 2005. A revision of the genus Pachygrapsus Randall, 1840 (Crustacea: Decapoda: Brachyura, Grapsidae), with special reference to the Southwest Pacific species. Zootaxa, 1015: 1-66.
  • Queiroga, H. 1996. Distribution and drift of the crab Carcinus maenas (L.) (Decapoda, Portunidae) larvae over the continental shelf off northern Portugal in April 1991. Journal of Plankton Research, 18: 1981-2000.
  • Queiroga, H. and Blanton, J. 2004. Interactions between behaviour and physical forcing in the control of horizontal transport of decapod crustacean larvae. Advances in Marine Biology, 47: 107-214.
  • Ramos-Vieira, R.R. and Calazans, D.K. 2015. Abundance and distribution of Portunidae larval phases (Crustacea: Brachyura) in the estuarine and coastal region of the Patos Lagoon, Southern Brazil. Nauplius, 23: 132-145.
  • Rathbun, M.J. 1896. The genus Callinectes Proceedings of the United States National Museum, 18: 349-375.
  • Rathbun, M.J. 1900. Results of the Branner- Agassiz Expedition to Brazil. 1. The Decapod and Stomatopod Crustacea. Proceedings of the Washington Academy of Sciences, 2: 133-156.
  • Rathbun, M.J. 1933. Preliminary descriptions of nine new species of Oxystomatous and allied crabs. Proceedings of the Biological Society of Washington, 46: 183-186.
  • Rickner, J.A. 1977. Notes on a collection of crabs (Crustacea: Brachyura) from the east coast of Mexico. Proceedings of the Biological Society of Washington, 90: 831-838.
  • Rodrigues-Alves, D.F.; Barros-Alves S.P.; Fransozo, V.; Bertini, G. and Cobo, V.J. 2013. Importance of biogenic substrates for the stone crab Menippe nodifrons Stimpson, 1859 (Brachyura: Eriphioidea). Latin American Journal of Aquatic Research, 41: 459-467.
  • Rodríguez-Gómez, C.F.; Aké-Castillo, J.A.; Campos-Bautista, G. and Okolodkov, Y.B. 2015. Revisión del estudio del fitoplancton en el Parque Nacional Sistema Arrecifal Veracruzano. E-Bios, 2: 178-191.
  • Rosenberg, M.S. 2001. The systematics and taxonomy of fiddler crabs: a phylogeny of the genus Uca Journal of Crustacean Biology, 21: 839-869.
  • Rouse, W.L. 1970. Littoral Crustacea from southwest Florida. Quarterly Journal of the Florida Academy of Science, 32: 127-152.
  • Roux, P. 1828-1830. Crustacés de la Méditerranée et de son littoral. Paris, chez Levrault; Marseille, chez l’auteur, unnumbered pages, pls. 1-10 [1828]; pls. 11-15 [1829]; pls 16-45 [1830].
  • Sandoz, M. and Hopkins, S.H. 1947. Early life history of the oyster crab, Pinnotheres ostreum (Say). Biological Bulletin, 93: 250-258.
  • Sastry, A.N. 1983. Ecological aspects of reproduction. p. 179-270. In: F.J. Vernberg and W.B. Vernberg (eds), Environmental Adaptations. The Biology of Crustacea, vol. 8. New York, Academic Press.
  • Say, T. 1817-1818. An Account of the Crustacea of the United States. Journal of the Academy of Natural Sciences of Philadelphia, l: 57-63, 65-80, 97-101, 155-160, 161-169, 235-253, 313-319, 374-380, 381-401, 423-441.
  • Schwamborn, R.; Ekau, W; Silva, A.P.; Silva, T.A. and Saint-Paul, U. 1999. The contribution of estuarine decapod larvae to marine zooplankton communities in North-East Brazil. Archives of Fishery and Marine Research, 47: 167-182.
  • Schwamborn, R.; Ekau, W; Silva, A.P.; Silva, T.A. and Saint-Paul, U. 1999. The contribution of estuarine decapod larvae to marine zooplankton communities in North-East Brazil. Archives of Fishery and Marine Research, 47: 167-182.
  • Schwamborn, R.; Neumann-Leitão, S.; Almeida e Silva, T.A.; Pinto-Silva, W.E. and Saint-Paul, U. 2001. Distribution and dispersal of decapod crustacean larvae and other zooplankton in the Itamaracá estuarine system, Brazil. Tropical Oceanography, 29: 1-18.
  • Silva, A.P.; Neumann-Leitão, S.; Schwamborn, R.; Gusmão, M.L.O. and Silva, T.A. 2004. Mesozooplankton of an Impacted Bay in North Eastern Brazil. Brazilian Archives of Biology and Technology, 47: 485-493.
  • Silva-Falcão, E.C.; Severi, W. and Rocha, A.A.F. 2007. Dinâmica espacial e temporal de zoeas de Brachyura (Crustacea, Decapoda) no estuário do Rio Jaguaribe, Itamaracá, Pernambuco, Brasil. Iheringia, Série Zoologia, 97: 434-440.
  • Sokal, R.R. and Rohlf, F.J. 2012. Biometry: the Principles and Practice of Statistics in Biological Research. New York, W. H. Freeman, 937p.
  • Spivak, E.D. and Cuesta, J.A. 2009. The effect of salinity on larval development of Uca tangeri (Eydoux, 1835) (Brachyura: Ocypodidae) and new findings of the zoeal morphology. Scientia Marina, 73: 297-305.
  • Stauber, L.A. 1945. Pinnotheres ostreum, parasitic on the American oyster, Ostrea (Gryphaea) virginica Biological Bulletin, 88: 269-291.
  • Steel, R. and Torrie, J. 1988. Bioestadística. México, McGraw-Hill, 622p.
  • Steppe, C.N. and Epifanio, C.E. 2006. Synoptic distribution of crab larvae near the mouth of Chesapeake Bay: influence of nearshore hydrographic regimes. Estuarine, Coastal and Shelf Science, 70: 654-662.
  • Stimpson, W. 1859. Notes on North American Crustacea. Annals of the Lyceum of Natural History of New York, 7: 49-93.
  • Stub, R.; Appling, J.W.; Hatstetter, A.M. and Hass, I.J. 1970. The effect of industrial waste of Memphis and Shelby country on primary planktonic producers. Bioscience, 20: 905-912.
  • Suárez, M.E. 1992. Composición, distribución, abundancia y zoogeografía de los copépodos pelágicos (Crustacea) del Golfo de México y Mar Caribe mexicanos. Tesis de Doctorado. México, Universidad Nacional Autónoma de México, Facultad de Ciencias, 325p.
  • Suárez-Morales, E. and Gasca, R. 2000. The planktonic copepod community at Mahahual reef, Western Caribbean. Biology of Marine Science, 66: 255-267.
  • UNESCO [Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura]. 2006. Declaración del Sistema Arrecifal Veracruzano como Reserva de la Biósfera del Programa Hombre y Biósfera de la UNESCO. Available at Available at https://en.unesco.org/biosphere/lac/sistema-arrecifal-veracruzano Accessed on 01 May 2020.
    » https://en.unesco.org/biosphere/lac/sistema-arrecifal-veracruzano
  • Vega-Rodríguez, F. 1965. Distribución de Chaetognatha en Veracruz, Ver.Anales Instituto Biología Serie Zoología, Universidad Nacional Autónoma México, 36: 229-247.
  • Verrill, A.E. 1908. Brachyura and Anomura: their distribution, variations, and habits: Decapod Crustacea of Bermuda. I. Transactions of the Connecticut Arts and Sciences, 13: 299-474.
  • Williams, M.J. 1982. Natural foods and feeding in the commercial sand crab Portunus pelagicus Linnaeus 1758 (Crustacea, Decapoda, Portunidae) in Moreton Bay, Queensland. Journal of experimental Marine Biology and Ecology, 59: 165-176.
  • Williams, A.B. 1984. Shrimps, lobsters, and crabs of the Atlantic coast of the Eastern United States, Maine to Florida. Washington, Smithsonian Institution Press, 550p.
  • Williams, A.B. and Wigley, R.L. 1977. Distribution of decapod Crustacea off northeastern United States based on specimens at the Northeast Fisheries Center, Woods Hole, Massachusetts. NOAA Technical Report NMFS Circular 407, 44p.
  • WoRMS. 2020. World Register of Marine Species. Available at Available at http://www.marinespecies.org Accessed on 15 Apr 2020.
    » http://www.marinespecies.org
  • Zavala-Hidalgo, J.; Salmerón, O.; Aguilar, V.; Cerdeira, S. and Kolb, M. 2006. Caracterización y regionalización de los procesos oceanográficos de los mares mexicanos. México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO - 2016-09-02). Available at Available at http://www.conabio.gob.mx/gap/index.php/Procesos_oceanogr%C3%A1ficos Accessed on 01 May 2020.
    » http://www.conabio.gob.mx/gap/index.php/Procesos_oceanogr%C3%A1ficos
  • Zavala-Hidalgo, J.; Romero-Centeno, R. and Mateos-Jasso, A. 2014. The response of the Gulf of Mexico to wind and heat flux forcing: what has been learned in recent years. Atmósfera, 27: 317-334.
  • Zuur, A.F.; Ieno, E.N. and Smith, G.M. 2007. Analysing Ecological Data. New York, USA, Springer, 700p.

Publication Dates

  • Publication in this collection
    13 Nov 2020
  • Date of issue
    2020

History

  • Received
    14 May 2020
  • Accepted
    30 July 2020
Sociedade Brasileira de Carcinologia Instituto de Biociências, UNESP, Campus Botucatu, Rua Professor Doutor Antônio Celso Wagner Zanin, 250 , Botucatu, SP, 18618-689 - Botucatu - SP - Brazil
E-mail: editor.nauplius@gmail.com