Acessibilidade / Reportar erro

Eco-Friendly, Catalyst and Solvent-Free, Synthesis of Acetanilides and N-Benzothiazole-2-yl-acetamides

Abstract

An expeditious and green synthesis of acetamides in a solvent-free simple way is described, without catalyst or additives, and in good yield by an instantaneous reaction of anilines or 2-aminothiazoles and acetic anhydride without external heating, and with simple purification. Sixteen substituted acetanilides and four N-benzothiazole-2-yl-acetamides were formed, but aliphatic amines of low molecular weight were not as effective as aromatic ones, and only cyclohexylamine and the enaminone ethyl 3-amino-2-butenoate afforded the corresponding acetamides in good yield.

Keywords:
acetylation; acetamides; amides; solvente-free reaction; green chemistry


Introduction

In the modern synthetic chemistry the development of greener approaches to the functional group transformations is of continuous interest.11 Candeias, R.; Branco, C.; Gois, P.; Afonso, M.; Trindade, F.; Chem. Rev. 2009, 109, 2703. There are several ongoing efforts to develop methods which do not need solvent, additives, and without tedious purification. Even reactions carried out without heating and magnetic stirring are relevant contributions, due to the energy economy aspects.22 Brahmachari, G.; Banerjee, B.; Curr. Green Chem. 2015, 2, 274.

The acetamide/acetanilide are functional groups whose importance is beyond of a simple protecting group. For instance, in medicinal chemistry they play a pivotal role affording chemically stable compounds as prodrugs with improved pharmacological profile, and many N-acylated derivatives are in clinical use.33 Simplicio, L.; Clancy, M.; Gilmer, F.; Molecules 2008, 13, 519. On the other hand, acetanilides have natural aptitude to act as ortho directing group in C-H transformations to C-C bond formation, wherein functionalized benzophenone,44 Luo, F.; Yang, J.; Li, Z.; Xiang, H.; Zhou, X.; Eur. J. Org. Chem. 2015, 11, 2463 and references herein cited. quinone,55 Moon, Y.; Jeong, Y.; Kook, D.; Hong, S.; Org. Biomol. Chem. 2015, 13, 3918. bisphenyl,66 Hubric, J.; Himmler, T.; Rodefeld, L.; Ackermann, L.; Adv. Synth. Catal. 2015, 357, 474. or styrene77 Ackermann, L.; Wang, L.; Wolfram, R.; Lygin, A.; Org. Lett. 2012, 14, 728; Herman, G.; Becker, P.; Bolm, C.; Angew. Chem. Int. Ed. 2015, 54, 7414.,88 Takahama, Y.; Shibata, Y.; Tanaka, K.; Chem. Eur. J. 2015, 21, 9053; Wen, J.; Wu, A.; Chen, P.; Zhu, J.; Tetrahedron Lett. 2015, 56, 5282. derivatives can be obtained by Pd or Rh catalysis, Figure 1. Besides, the reactivity of some ortho functional group of acetanilides is modulated by the presence of the N-acetyl moiety, which is thus selectively converted to more complex compound, constituting this kind of acetanilide into important synthetic intermediates.55 Moon, Y.; Jeong, Y.; Kook, D.; Hong, S.; Org. Biomol. Chem. 2015, 13, 3918.,99 Li, G.; Jia, C.; Chen, Q.; Sun, K.; Zhao, F.; Wu, H.; Wang, Z.; Lv, Y.; Chen, X.; Adv. Synth. Catal. 2015, 357, 1311.

10 Stuart, D.; Bertrand-Laperle, M.; Burgess, K.; Fagnou, K.; J. Am. Chem. Soc. 2008, 130, 16474.

11 Zhang, Z.; Wu, L.; Liao, J.; Wu, W.; Jiang, H.; Li, J.; Li, J.; J. Org. Chem. 2015, 80, 7594.

12 Tasker, S.; Jamison, T.; J. Am. Chem. Soc. 2015, 137, 9531.
-1313 Marinho, E.; Proença, M.; Synthesis 2015, 47, 1623.

Figure 1
Representative synthetic applications of acetanilides.

Due to the abovementioned applications, new developments in the acetylation procedure are still desirables, and representative contributions are described, Figure 2.1414 Wang, X.; Yang, Q.; Liu, F.; You, Q.; Synth. Commun. 2008, 38, 1028.

15 Dulla, B.; Vijayavardhini, S.; Rambau, D.; Anuradha, V.; Rao, M.; Pal, M.; Curr. Green Chem. 2014, 1, 73; Yadav, J.; Narsaiah, A.; Basak, A.; Goud, P.; Sreenu, D.; Nagaiah, K.; J. Mol. Catal. 2006, 255, 78; Alleti, R.; Perambuduru, M.; Samantha, S.; Reddy, P.; J. Mol. Catal. 2005, 226, 57.

16 Chikkukapalli, A.; Aavula, S.; Mona, R.; Karthikeyan, C.; Kumar, V.; Sulur, G.; Sumathi, S.; Tetrahedron Lett. 2015, 56, 3799.

17 Saikia, P.; Hussain, L.; Suri, M; Pahari, P.; Tetrahedron Lett. 2016, 57, 1158.

18 Xie, S.; Fukumoto, R.; Ramstrom, O.; Yan, M.; J. Org. Chem. 2015, 80, 4392.

19 Jeyakumar, K.; Chand, D.; J. Mol. Catal. A 2006, 255, 275.

20 Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Babaghanbari, M.; Zarea, M.; Shariati, L.; Taghavi, A.; J. Iran. Chem. Soc. 2009, 6, 523.

21 Balaskar, S.; Gavade, N.; Mane, S.; Shingare, S.; Mane, V.; Green Chem. Lett. Rev. 2011, 4, 91.

22 Tajbakhsh, M.; Hosseinzadeh, R.; Alinezhad, H.; Rezaee, P.; Tajbakhsh, M.; Lett. Org. Chem. 2013, 10, 657.

23 Prajapti, K.; Nagarsenkar, A.; Babu, N.; Tetrahedron Lett. 2014, 55, 1784.
-2424 Shirini, F.; Akbari-Dadamahaleh, S.; Mohammad-Khah, A.; Phosphorus Sulfur Silicon Relat. Elem. 2014, 189, 577. Furthermore, in undergraduate courses, the parent acetanilide is extensively synthesized as classical preparation of aromatic amide.2525 Reeve, W.; Lowe, C.; J. Chem. Educ. 1979, 56, 488; Cardinal, P.; Greer, B.; Luong, H.; Tyagunova, Y.; J. Chem. Educ. 2012, 89, 1061; Merat, L. M. O. C.; Gil, R. A. S.; Quim. Nova 2003, 26, 779; Saba, S.; Ciaccio, J. A.; J. Chem. Educ. 2016, 93, 945. Therefore, we recently developed a practical solvent-free green synthesis of such compound to experimental courses.2626 Cunha, S.; Costa, S.; Santana, B.; Lopes, A.; Quim. Nova 2015, 38, 874. However, a search in the literature revealed that when other substituted acetanilides are needed as starting material in the context of a research project, the preparation used is very similar to that of parent acentanilide, which is almost the same of one century ago, which uses large amounts of solvents and additives such as acetic acid and sodium acetate, for instance.55 Moon, Y.; Jeong, Y.; Kook, D.; Hong, S.; Org. Biomol. Chem. 2015, 13, 3918.

6 Hubric, J.; Himmler, T.; Rodefeld, L.; Ackermann, L.; Adv. Synth. Catal. 2015, 357, 474.

7 Ackermann, L.; Wang, L.; Wolfram, R.; Lygin, A.; Org. Lett. 2012, 14, 728; Herman, G.; Becker, P.; Bolm, C.; Angew. Chem. Int. Ed. 2015, 54, 7414.

8 Takahama, Y.; Shibata, Y.; Tanaka, K.; Chem. Eur. J. 2015, 21, 9053; Wen, J.; Wu, A.; Chen, P.; Zhu, J.; Tetrahedron Lett. 2015, 56, 5282.

9 Li, G.; Jia, C.; Chen, Q.; Sun, K.; Zhao, F.; Wu, H.; Wang, Z.; Lv, Y.; Chen, X.; Adv. Synth. Catal. 2015, 357, 1311.

10 Stuart, D.; Bertrand-Laperle, M.; Burgess, K.; Fagnou, K.; J. Am. Chem. Soc. 2008, 130, 16474.

11 Zhang, Z.; Wu, L.; Liao, J.; Wu, W.; Jiang, H.; Li, J.; Li, J.; J. Org. Chem. 2015, 80, 7594.

12 Tasker, S.; Jamison, T.; J. Am. Chem. Soc. 2015, 137, 9531.

13 Marinho, E.; Proença, M.; Synthesis 2015, 47, 1623.

14 Wang, X.; Yang, Q.; Liu, F.; You, Q.; Synth. Commun. 2008, 38, 1028.
-1515 Dulla, B.; Vijayavardhini, S.; Rambau, D.; Anuradha, V.; Rao, M.; Pal, M.; Curr. Green Chem. 2014, 1, 73; Yadav, J.; Narsaiah, A.; Basak, A.; Goud, P.; Sreenu, D.; Nagaiah, K.; J. Mol. Catal. 2006, 255, 78; Alleti, R.; Perambuduru, M.; Samantha, S.; Reddy, P.; J. Mol. Catal. 2005, 226, 57.,1919 Jeyakumar, K.; Chand, D.; J. Mol. Catal. A 2006, 255, 275.

20 Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Babaghanbari, M.; Zarea, M.; Shariati, L.; Taghavi, A.; J. Iran. Chem. Soc. 2009, 6, 523.

21 Balaskar, S.; Gavade, N.; Mane, S.; Shingare, S.; Mane, V.; Green Chem. Lett. Rev. 2011, 4, 91.

22 Tajbakhsh, M.; Hosseinzadeh, R.; Alinezhad, H.; Rezaee, P.; Tajbakhsh, M.; Lett. Org. Chem. 2013, 10, 657.

23 Prajapti, K.; Nagarsenkar, A.; Babu, N.; Tetrahedron Lett. 2014, 55, 1784.
-2424 Shirini, F.; Akbari-Dadamahaleh, S.; Mohammad-Khah, A.; Phosphorus Sulfur Silicon Relat. Elem. 2014, 189, 577.

Figure 2
Selected recent syntheses of acetanilides.

It should be pointed out that, although there are a few syntheses of acetanilides in the absence of solvent, it is always necessary the use of grinding or microwave heating in these previously described syntheses or, more recurrent, the use of catalyst such as morpholinium bisulfate, zirconyl triflate, tris(pentaflurophenyl)borate, anatase phase TiO2 nanoparticles, or even the unconventional rice husk ash, Figure 2.2424 Shirini, F.; Akbari-Dadamahaleh, S.; Mohammad-Khah, A.; Phosphorus Sulfur Silicon Relat. Elem. 2014, 189, 577. Despite that solvent-free catalyst's dependent approaches represent important contribution, more environmentally friendly procedures which reduce the use of chemicals and energy is still needed.

With these scenarios in mind, the solvent-free condition could be useful in the acetylation of more complex amines. In this way, we present herein a solvent-free synthesis of several acetanilides and acetamides, including heterocyclic examples, which do not involve the use of any catalyst and additive, and with practical isolation and purification steps, being a green practical alternative to the current preparations. Thus, the search for an environmental benign protocol to acetamides synthesis prompted us to try the reaction of several aromatic amines using only acetic anhydride, without any solvent or additive. The method was intentionally tested to synthesize a representative set of known acetamides, allowing direct comparison to the current alternatives that employ catalyst.

Results and Discussion

The search for environmental benign protocol to acetamides synthesis prompted us to try the reaction of several aromatic amines using only acetic anhydride, without any solvent or additive, Scheme 1.

Scheme 1
Scope of prepared acetanilides.

As already mentioned, aniline 1a afforded acetanilide 3a in almost quantitative yield.2626 Cunha, S.; Costa, S.; Santana, B.; Lopes, A.; Quim. Nova 2015, 38, 874. More importantly, several solid and liquid substituted aromatic amines were reactive under this catalyst and solvent-free condition, and afforded the corresponding known acetanilides2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. in an instantaneous reaction (for practical reason, the reaction time of 10 s was established), and some trends emerged from the results, Scheme 1. Thus, anilines ortho, meta and para substituted were tolerated (see acetanilides 3a-h), but the presence of a strong electron-withdrawing group at ortho position precludes amide formation even under conventional (90 ºC, 24 h) or microwave heating (90 ºC, 10 min), and the starting amine was recovered, as indicated for 1q in the "Limitations" of Scheme 1. Probably, the association of the strong electron-withdrawing character of nitro group, and the steric hindered environment in the ortho position should preclude acetylation. However, the presence of such group was tolerated in anilines with at least one electron-releasing group at the aromatic ring (compare 3i and 1r). Chemioselective N-acetylation in the presence of OH group was observed to anilines 1c and 1l, albeit in modest yield to this latter. The low yield of 3l in relation to 3c should be due to the 1,4-relationship between hydroxyl and nitro substituents, which may increase the intensity of the intramolecular hydrogen bonding between ortho positioned groups H2N···HO, and thus decrease the nucleophilicity of the amino group. However, amine 1s did not afford the corresponding acetanilide, being recovered. This fact is in contrast with the work of Pahari and co-workers,1717 Saikia, P.; Hussain, L.; Suri, M; Pahari, P.; Tetrahedron Lett. 2016, 57, 1158. which successfully synthesized the corresponding acetanilide of 3-hydroxy-aniline using acetonitrile as acylating reagent.

The presence of two moderated electron-withdrawing groups in the aromatic ring was possible, but yield was decreased when one such group is ortho positioned (compare 3j and 3k), and acetanilide was not formed with 1t. Furthermore, naphthylamine and bisamines were very effective in this transformation, once that acetanilides 3m-p were isolated in excellent yields, Scheme 1.

To expand the potential of developed catalyst-free and solventless acetamide synthesis, a representative set of heterocyclic amines were evaluated, Scheme 2. In this way, when 2-aminothiazole was reacted with acetic anhydride, N-thiazole-2-yl-acetamide 5a had formed in same modest yield described in the literature.1414 Wang, X.; Yang, Q.; Liu, F.; You, Q.; Synth. Commun. 2008, 38, 1028. To our delight, under the solvent-free condition, known N-benzothiazole-2-yl-acetamides 5b-c were obtained in excellent yields.1414 Wang, X.; Yang, Q.; Liu, F.; You, Q.; Synth. Commun. 2008, 38, 1028.,2828 Nayak, S.; Narayana, B.; Jasinski, P.; Yathirajan, S.; Kaur, M.; Acta Crystallogr. E 2013, 69, 1622; Takahashi, T.; Yakugaku Zasshi 1949, 69, 398; Pandeya, S. N.; Yadav, M.; Mishra, V.; Asian J. Chem. 2011, 23, 3003; Wang, X.; Yang, Q.; Liu, F.; You, Q.; Synth. Commun. 2008, 38, 1028. However, with other heterocyclic amines indicated in Scheme 2, no amide formation was detected, and the amines were recovered. For 2-aminopyridine 4e, microwave heating (90 ºC, 1 min) was also inefficient.

Scheme 2
Heterocyclic acetamides.

Contrary to aromatic amines indicated in the present study, the catalyst-free and solventless condition was not effective to butylamina 6a and ethylamine 6b. Considering the low boiling points of amines 6a (78 ºC) and 6b (16.6 ºC) as compared to cyclohexylamine 6c (134 ºC), and the observed exothermic dissolution in acetic anhydride, amines 6a-b should be volatilized under open flask reaction condition. Therefore only with 6c the acetylation afforded 7 in 77% yield, Scheme 3.2929 Rosen, T.; Lico, I.; Chu, D.; J. Org. Chem. 1988, 53, 1580.

Scheme 3
Acetylation of alkyl amines and enaminone.

In a complementary way, due to our interest in the synthetic applications of enaminones as building block to heterocycles,3030 Cunha, S.; Santana, B.; J. Braz. Chem. Soc. 2014, 25, 1311; Cunha, S.; Santos, A. O.; Correia, J. T. M.; Sabino, J. R.; Tetrahedron 2014, 70, 3284; Cunha, S.; Santos Filho, R. F.; Saraiva, K. H.; Azevedo-Santos, A. V.; Menezes, D.; Tetrahedron Lett. 2013, 54, 3366; Cunha, S.; Gomes, A. T.; Tetrahedron Lett. 2012, 53, 6710; Cunha, S.; Oliveira, C. C.; Sabino, J. R.; J. Braz. Chem. Soc. 2011, 22, 598; Cunha, S.; Damasceno, F.; Ferrari, J.; Tetrahedron Lett. 2007, 48, 5795; Cunha, S.; Bastos, R. M.; Silva, P. O.; Costa, G. A. N.; Vencato, I.; Lariucci, C.; Napolitano, H. B.; Oliveira, C. M. A.; Kato, L.; Silva, C. C.; Menezes, D.; Vannier-Santos, M. A.; Monatsh. Chem. 2007, 138, 111; Cunha, S.; Silva, V. C.; Napolitano, H. B.; Lariucci, C.; Vencato, I.; J. Braz. Chem. Soc. 2003, 14, 2007; Cunha, S.; Rodovalho, W.; Azevedo, N.; Mendonça, M. O.; Lariucci, C.; Vencato, I.; J Braz. Chem. Soc. 2002, 13, 629; Cunha, S.; Kascheres, A.; J. Braz. Chem. Soc. 2001, 12, 481. representative compounds 8a-c were tentatively acetylated, but no reaction was observed at room temperature. Hence, microwave heating was applied, which allowed exclusive formation of N-acylated enaminone 9 from ethyl 3-amino-2-butenoate 8a in yield improved when compared to that previously obtained with acid chloride.3131 Shabana, R.; Rasmussen, J.; Lawesson, S.; Bull. Soc. Chim. Belg. 1981, 90, 75. However, here again, no reaction was observed to enaminones 8b-c, Scheme 3.

Conclusions

We developed a fast, practical solvent-free, and eco-friendly alternative protocol to access synthetically and biological important acetanilides in good yields, whereby substitution at aromatic ring was tolerated, including bisamines, and the substrate scope could be extended to N-benzothiazole-2-yl-acetamides in a simple way. In contrast of current methods, no additive or catalyst was necessary, being the greener approach of the investigated N-acetylation.

Experimental

Melting points were determined on a Microquímica MQAPF 301 hot plate apparatus and are uncorrected. Infrared spectra were recorded as KBr discs on Shimadzu IR Affinity-1 instrument. Nuclear magnetic resonance (NMR) spectra were obtained for 1H at 500 MHz and for 13C at 125 MHz using a Bruker Avance III 500 spectrometer. Chemical shifts are reported in ppm units downfield from reference (internal TMS or residual deuterated solvent). Microwave heating reactions were performed in a CEM Discover SP using the 10 mL Pyrex pressure vial for closed vessel reactions, under the indicated power automatically to reach and maintain the set temperature, specified in each case, with infrared (IR) temperature control and medium stirring speed using cylindrical stir bars (10 × 3 mm), default ramp time of 10 minutes. When the reaction was done in under microwave heating, this is indicated.

General procedure for the synthesis of acetamides 3a-p, 5a-d, and 7

To a 10 mL round bottom flask was added 0.5 mmol of the amine and 0.1 mL of acetic anhydride. The reaction is instantaneous and exothermic, and after 10 s the solid product formed was filtered and washed with cold water. When no solid was immediately formed, 4 mL of cold water was added, and the mixture allowed standing in a refrigerator for 24 h, leading to precipitation. To all synthesized acetamides, measured physical data were in agreement to the reported values.1717 Saikia, P.; Hussain, L.; Suri, M; Pahari, P.; Tetrahedron Lett. 2016, 57, 1158.

18 Xie, S.; Fukumoto, R.; Ramstrom, O.; Yan, M.; J. Org. Chem. 2015, 80, 4392.
-1919 Jeyakumar, K.; Chand, D.; J. Mol. Catal. A 2006, 255, 275.,2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61.,3131 Shabana, R.; Rasmussen, J.; Lawesson, S.; Bull. Soc. Chim. Belg. 1981, 90, 75.,3232 Barluenga, J.; Jimenz, C.; Yus, M.; J. Chem. Soc. 1981, 14, 670.

N-(o-Tolyl)acetamide (3b)

White solid, 51.5 mg, 71% yield; m.p. 108.4-109.0 ºC (Lit.2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. 108-109 ºC); IR (KBr) ν / cm-1 3291, 1647, 1587, 1527, 1458, 1369, 1271, 1116, 1039, 933, 854, 756, 698, 651, 607; 1H NMR (500 MHz, CDCl3) δ 2.19 (s, 3H, CH3), 2.30 (s, 3H, CH3), 7.10 (t, 1H, J 7.5 Hz, CH), 7.21 (t, 1H, J 8.0 Hz, CH), 7.71 (d, 1H, J 8.0 Hz, CH); 13C NMR (125 MHz, CDCl3) δ 17.8, 24.2, 123.7, 125.4, 126.7, 129.7, 130.5, 135.6, 168.6.

N-(2-Hydroxyphenyl)acetamide (3c)

Brown solid, 98.6 mg, 95% yield; m.p. 206.5-207.4 ºC (Lit.2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. 207 ºC); IR (KBr) ν / cm-1 3402, 3084, 1658, 1595, 1544, 1456, 1369, 1330, 1284, 1242, 1201, 1107, 1039, 842, 765, 667; 1H NMR (500 MHz, DMSO-d6) δ 2.28 (s, 3H, CH3), 6.73 (td, 1H, J 8.0, 1.5 Hz, CH), 6.83 (dd, 1H, J 8.0, 1.5 Hz, CH), 6.93 (td, 1H, J 8.0, 1.5 Hz, CH), 7.44 (dd, 1H, J 8.0, 1.0 Hz, CH), 9.27 (brs, 1H, NH), 9.7 (brs, 1H, OH); 13C NMR (125 MHz, DMSO-d6) δ 24.1, 116.4, 119.4, 122.8, 125.1, 126.9, 148.3, 169.5.

N-(2-Chlorophenyl)acetamide (3d)

White solid, 60.3 mg, 72% yield; m.p. 87.9-88.1 ºC (Lit.2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. 87.9-88.5 ºC); IR (KBr) ν / cm-1 3244, 3043, 1662, 1589, 1533, 1473, 1438, 1367, 1301, 1126, 1060, 1033, 966, 941, 848, 754, 725, 696, 648; 1H NMR (500 MHz, CDCl3) δ 2.24 (s, 3H, CH3), 7.04 (tl, 1H, J 8.0 Hz, CH), 7.26 (td, 1H, J 8.5, 1.0 Hz, CH), 7.35 (dd, 1H, J 8.0, 1.0 Hz, CH), 7.71 (brs, 1H, NH), 8.32 (dl, 1H, J 8.0 Hz, CH); 13C NMR (125 MHz, CDCl3) δ 24.8, 121.8, 122.7, 124.7, 127.7, 129.0, 130.5, 134.6, 168.4.

N-(3-Nitrophenyl)acetamide (3e)

Yellow solid, 67.5 mg, 76% yield; m.p. 150.8-151.4 ºC (Lit.2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. 152-153 ºC); IR (KBr) ν / cm-1 3304, 3261, 3194, 3130, 3095, 1674, 1645, 1598, 1550, 1529, 1477, 1425, 1369, 1350, 1325, 1294, 1261, 1163, 1078, 1016, 983, 887, 823, 808, 742, 711, 603; 1H NMR (500 MHz, CDCl3) δ 2.26 (s, 3H, CH3), 7.52 (t, 1H, J 8.5 Hz, CH), 7.56 (brs, 1H, CH), 7.99-7.97 (m, 2H, CH), 8.37 (brs, 1H, NH); 13C NMR (125 MHz, CDCl3) δ 24.6, 114.4, 118.9, 125.4, 129.9, 138.9, 168.6.

N-(4-Nitrophenyl)acetamide (3f)

Yellow solid, 76.5 mg, 86% yield; m.p. 212.9-213.9 ºC (Lit.2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. 212-213 ºC); IR (KBr) ν / cm-1 3302, 3277, 1683, 1618, 1597, 1568, 1504, 1404, 1348, 1332, 1303, 1269, 1178, 1112, 1006, 848, 750, 686, 601; 1H NMR (500 MHz, CDCl3) δ 2.24 (s, 3H, CH3), 7.44 (brs, 1H, NH), 7.69 (d, 2H, J 9.0 Hz, CH), 8.21 (d, 2H, J 9.0 Hz, CH); 13C NMR (125 MHz, CDCl3) δ 24.8, 118.9, 125.1, 143.6. 168.7.

N-(4-Chlorophenyl)acetamide (3g)

Gray solid, 62.4 mg, 75% yield; m.p. 177.3-177.8 ºC (Lit.2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. 177-178.5 ºC); IR (KBr) ν / cm-1 3304, 3263, 3192, 1670, 1608, 1541, 1489, 137, 1315, 1236, 1170, 1089, 1008, 821, 750, 707; 1H NMR (500 MHz, CDCl3) δ 2.20 (s, 3H, CH3), 7.22 (brs, 1H, NH), 7.30 (d, 2H, J 8.5 Hz, CH), 7.47 (d, 2H, J 8.5 Hz, CH); 13C NMR (125 MHz, CDCl3) δ 24.6, 121.0, 129.0, 136.1, 168.2.

N-(4-Methoxyphenyl)acetamide (3h)

Gray solid, 61.6 mg, 76% yield; m.p. 126.2-127.3 ºC (Lit.2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. 126-128 ºC); IR (KBr) ν / cm-1 3444, 1651, 1604, 1562, 1512, 1465, 1411, 1369, 1319; 1H NMR (500 MHz, CDCl3) δ 2.1 (s, 3H, CH3), 3.80 (s, 3H, OCH3), 6.86 (d, 2H, J 8.5 Hz, CH), 7.40 (d, 2H, J 8.5 Hz, CH), 7.49 (brs, 1H, NH); 13C NMR (125 MHz, CDCl3) δ 24.3, 55.5, 114.1, 122.0, 131.0, 156.4, 168.4.

N-(4-Methoxy-2-nitrophenyl)acetamide (3i)

Yellow solid, 80.4 mg, 78% yield; m.p. 117.8-118.9 ºC (Lit.2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. 118 ºC); IR (KBr) ν / cm-1 3475, 1705, 1627, 1581, 1512, 1458, 1365, 1319, 1288, 1249, 1149, 1072, 1033, 921, 871, 844, 790, 759, 632; 1H NMR (500 MHz, CDCl3) δ 2.26 (s, 3H, CH3), 3.85 (s, 3H, OCH3), 7.64 (s, 1H, CH), 7.22 (d, 1H, J 8.5 Hz, CH), 8.62 (d, 1H, J 8.5 Hz, CH), 10.02 (brs, 1H, NH); 13C NMR (125 MHz, CDCl3) δ 25.4, 55.9, 108.5, 123.4, 123.9, 128.5, 154.9, 168.8.

N-(2,4-Dichlorophenyl)acetamide (3j)

Gray solid, 40.1 mg, 40% yield; m.p. 143.6-144.7 ºC (Lit.2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. 144-145 ºC); IR (KBr) ν / cm-1 3456, 1666, 1585, 1523, 1473, 1384, 1300, 1253, 1145, 1099, 1056, 1010, 964, 945, 860, 817, 767, 690, 663; 1H NMR (500 MHz, CDCl3) δ 2.2 (s, 3H, CH3 ), 7.22 (dd, 1H, J 8.5, 2.0 Hz, CH), 7.36 (d, 1H, J 2.0 Hz, CH), 7.56 (brs, 1H, NH), 8.31 (d, 1H, J 7.5 Hz, CH); 13C NMR (125 MHz, CDCl3) δ 24.8, 122.4, 127.9, 128.7, 133.4, 168.2.

N-(3,4-Dichlorophenyl)acetamide (3k)

Brown solid, 98.4 mg, 98% yield; m.p. 122.4-123.4 ºC (Lit.2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. 121.9-123.3 ºC); IR (KBr) ν / cm-1 3417, 1666, 1589, 1531, 1473, 1388, 1365, 1307, 1257, 1126, 1014, 871, 813, 721, 678, 609; 1H NMR (500 MHz, CDCl3) δ 2.17 (s, 3H, CH3 ), 7.29-7.35 (m, 2H, CH), 7.66 (brs, 1H, CH), 7.72 (brs, 1H, NH); 13C NMR (125 MHz, CDCl3) δ 24.5, 119.1, 121.6, 127.5, 130.5, 132.8, 137.4, 168.7.

N-(2-Hydroxy-5-nitrophenyl)acetamide (3l)

Brown solid, 54.9 mg, 56% yield; m.p. 270.2-271.3 ºC (Lit.2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. 271-272 ºC); IR (KBr) ν / cm-1 3417, 1658, 1589, 1539, 1500, 1423, 1334, 1292, 1080, 1026, 945, 894, 821, 748, 682, 640; 1H NMR (500 MHz, DMSO-d6) δ 2.12 (s, 3H, CH3), 6.99 (d, 1H, J 9.0 Hz, CH), 7.86 (dd, 1H, J 9.0, 2.5 Hz, CH), 8.90 (d, 1H, J 2.5 Hz, CH), 9.41 (brs, 1H, NH), 11.50 (brs, 1H, OH); 13C NMR (125 MHz, DMSO-d6) δ 24.3, 108.7, 113.5, 113.6, 115.1, 116.9, 120.9, 127.3, 139.6, 134.2, 169.8.

N-(Naphthalen-1-yl)acetamide (3m)

Purple solid, 80.1 mg, 87% yield; m.p. 158.8-159.5 ºC (Lit.2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. 159-160 ºC); IR (KBr) ν / cm-1 3429, 1654, 1546, 1504, 1427, 1342, 1280, 1018, 960, 775, 721, 605; 1H NMR (500 MHz, CDCl3) δ 2.24 (s, 3H, CH3), 7.39-7.48 (m, 3H, CH), 7.67 (dl, 1H, J 8.0 Hz, CH), 7.77-7.8 (m, 4H, CH); 13C NMR (125 MHz, CDCl3) δ 24.1, 121.0, 121.6, 125.6, 125.9, 126.0, 128.6, 134.1, 169.2.

N,N'-(1,2-Phenylene)diacetamide (3n)

Brown solid, 75.2 mg, 80% yield; m.p. 188.3-189.1 ºC (Lit.2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. 188.2-188.7 ºC); IR (KBr) ν / cm-1 3232, 3024, 1666, 1610, 1535, 1462, 1367, 1313, 1111, 1035, 972, 765, 713, 680, 605; 1H NMR (500 MHz, CDCl3) δ 2.08 (s, 6H, CH3), 7.14-7.17 (m, 2H, CH), 7.27-7.29 (m, 2H, CH ), 8.44 (brs, 2H, NH); 13C NMR (125 MHz, CDCl3) δ 23.7, 125.5, 126.1, 130.6, 169.9.

N,N'-([1,1'-Biphenyl]-4,4'-diyl)diacetamide (3o)

Gray solid, 131.1 mg, 98% yield; m.p. 326.2-326.7 ºC (Lit.2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. 325 ºC); IR (KBr) ν / cm-1 3290, 1658, 1597, 1577, 1519, 1396, 1365, 1319, 1284, 1176, 1111, 1006, 817, 752, 663; 1H NMR (500 MHz, CDCl3) δ 2.30 (s, 6H, CH3), 7.42 (d, 4H, J 8.5 Hz, CH), 7.50 (d, 4H, J 8.5 Hz, CH), 9.28 (brs, 1H, NH); 13C NMR (125 MHz, CDCl3) δ 29.7, 115.4, 115.5, 120.2, 126.8, 127.3, 127.7.

N,N'-(3,3'-Dimethyl-[1,1'-biphenyl]-4,4'-diyl)diacetamide (3p)

Gray solid, 143.6 mg, 97% yield; m.p. 313.1-314.3 ºC (Lit.2727 Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61. 312 ºC); IR (KBr) ν / cm-1 3278, 1654, 1649, 1583, 1516, 1490, 1431, 1365, 1317, 1284, 1128, 1039, 1018, 950, 867, 819, 709, 659, 613; 1H NMR (500 MHz, DMSO-d6) δ 2.06 (s, 3H, CH3), 2.24 (s, 3H, CH3), 7.40 (dl, 1H, J 8.0 Hz, CH), 7.47 (m, 2H, CH), 9.29 (s, 1H, NH); 13C NMR (125 MHz, DMSO-d6) δ 18.5, 23.8, 124.3, 125.6, 128.7, 132.1, 136.2, 136.7, 168.7.

N-(Thiazol-2-yl)acetamide (5a)

Yellow solid, 61.0 mg, 43% yield; m.p. 201.7-202.1 ºC (Lit.2828 Nayak, S.; Narayana, B.; Jasinski, P.; Yathirajan, S.; Kaur, M.; Acta Crystallogr. E 2013, 69, 1622; Takahashi, T.; Yakugaku Zasshi 1949, 69, 398; Pandeya, S. N.; Yadav, M.; Mishra, V.; Asian J. Chem. 2011, 23, 3003; Wang, X.; Yang, Q.; Liu, F.; You, Q.; Synth. Commun. 2008, 38, 1028. 202-203 ºC), IR (KBr) ν / cm-1 3448, 1689,1566, 1427, 1369, 1296, 1230, 1168, 1068, 1041, 995, 972, 875, 821, 779, 709, 659, 628; 1H NMR (500 MHz, CDCl3) δ 2.34 (s, 3H, CH3), 6.99 (d, 1H, J 3.5 Hz, CH), 7.44 (d, 1H, J 3.5 Hz, CH), 12.58 (brs, 1H, NH); 13C NMR (125 MHz, CDCl3) δ 23.1, 135.0, 136.1, 160.3, 168.1.

N-(Benzothiazol-2-yl)acetamide (5b)

White solid, 90.2 mg, 94% yield; m.p. 182.3-183.2 ºC (Lit.2828 Nayak, S.; Narayana, B.; Jasinski, P.; Yathirajan, S.; Kaur, M.; Acta Crystallogr. E 2013, 69, 1622; Takahashi, T.; Yakugaku Zasshi 1949, 69, 398; Pandeya, S. N.; Yadav, M.; Mishra, V.; Asian J. Chem. 2011, 23, 3003; Wang, X.; Yang, Q.; Liu, F.; You, Q.; Synth. Commun. 2008, 38, 1028. 182-183 ºC), IR (KBr) ν / cm-1 3448, 1693, 1604, 1546, 1446, 1369, 1269, 1076, 1049, 999, 860, 759, 725, 675, 628; 1H NMR (500 MHz, CDCl3) δ 2.28 (s, 3H, CH3), 7.33 (t, 1H, J 7.5 Hz, CH), 7.46 (t, 1H, J 7.5 Hz, CH), 7.77 (d, 1H, J 8.0 Hz, CH), 7.85 (d, 1H, J 8.0 Hz, CH), 11.44 (brs, 1H, NH); 13C NMR (125 MHz, CDCl3) δ 23.5, 120.4, 121.6, 124.1, 126.4, 131.9, 147.8, 159.7, 168.8.

N-(6-Methylbenzothiazol-2-yl)acetamide (5c)

White solid, 94.8 mg, 92% yield; m.p. 224.3-224.7 ºC (Lit.2828 Nayak, S.; Narayana, B.; Jasinski, P.; Yathirajan, S.; Kaur, M.; Acta Crystallogr. E 2013, 69, 1622; Takahashi, T.; Yakugaku Zasshi 1949, 69, 398; Pandeya, S. N.; Yadav, M.; Mishra, V.; Asian J. Chem. 2011, 23, 3003; Wang, X.; Yang, Q.; Liu, F.; You, Q.; Synth. Commun. 2008, 38, 1028. 225 ºC); IR (KBr) ν / cm-1 3196, 1691, 1606, 1541, 1460, 1365, 1288, 1267, 1247, 1224, 1041, 993, 873, 812, 723, 657; 1H NMR (500 MHz, CDCl3) δ 2.26 (s, 3H, CH3), 2.48 (s, 3H, CH3), 7.25 (d, 1H, J 8.5 Hz, CH), 7.63 (s, 1H, CH), 7.64 (d, 1H, J 8.5 Hz, CH), 11.90 (brs, 1H, NH); 13C NMR (125 MHz, CDCl3) δ 21.4, 23.5, 119.9, 121.5, 127.9, 132.0, 134.1, 145.6, 159.3, 168.8.

N-(6-Methoxybenzothiazol-2-yl)acetamide (5d)

Brown solid, 93.2 mg, 84% yield; m.p. 229.1-229.7 ºC (Lit.2828 Nayak, S.; Narayana, B.; Jasinski, P.; Yathirajan, S.; Kaur, M.; Acta Crystallogr. E 2013, 69, 1622; Takahashi, T.; Yakugaku Zasshi 1949, 69, 398; Pandeya, S. N.; Yadav, M.; Mishra, V.; Asian J. Chem. 2011, 23, 3003; Wang, X.; Yang, Q.; Liu, F.; You, Q.; Synth. Commun. 2008, 38, 1028. 228-229 ºC); IR (KBr) ν / cm-1 3406, 1689, 1604, 1550, 1477, 1438, 1369, 1284, 1265, 1215, 1060, 1029, 898, 848, 813, 725, 702, 624; 1H NMR (500 MHz, CDCl3) δ 2.28 (s, 3H, CH3), 3.87(s, 3H, OCH3), 7.04 (d, 1H, J 8.0 Hz, CH), 7.30 (s, 1H, CH), 7.64 (d, 1H, J 8.0 Hz, CH), 10.21 (brs, 1H, NH); 13C NMR (125 MHz, CDCl3) δ 23.4, 55.9, 104.4, 115.3, 121.1, 133.3, 142.2, 156.9, 168.1.

N-Cyclohexylacetamide (7)

White solid, 54.4 mg, 77% yield; m.p. 101.5-102.3 ºC (Lit.3232 Barluenga, J.; Jimenz, C.; Yus, M.; J. Chem. Soc. 1981, 14, 670. 101-103 ºC); IR (KBr) ν / cm-1 3288, 3088, 2931, 2852, 1714, 1643, 1633, 1556, 1446, 1373, 1315, 1255, 1153, 1129, 981, 891, 736, 607, 551; 1H NMR (500 MHz, CDCl3) δ 1.05-1.15 (m, 3H, CH2), 1.26-1.35 (m, 2H, CH2), 1.56-1.60 (m, 1H, CH2), 1.65-1.69 (m, 2H, CH2), 1.85-1.90 (m, 2H, CH2), 1.92 (s, 3H, CH3), 3.67-3.73 (m, 1H, CH2), 5.89 (brs, 1H, NH); 13C NMR (125 MHz, CDCl3) δ 23.5, 24.9, 25.5, 33.1, 48.2, 169.2.

Synthesis of ethyl (Z)-3-acetamidobut-2-enoate (9)

To a 10 mL Pyrex pressure vial for closed vessel for microwave heating reaction, was added 0.5 mmol of the enaminone 6a and 0.1 mL of acetic anhydride. The mixture was subjected to heating in a CEM Discover SP reactor at 90 ºC and 200 W for 1 minute, with IR temperature control and medium stirring speed using cylindrical stir bars (10 × 3 mm), default ramp time of 10 min. After this time, the mixture was cooled to room temperature and then 4 mL of distilled water was added. After cooling in the refrigerator the solid product was filtered and washed with cold water, resulting in 56.6 mg of white crystals of 9, 66% yield; m.p. 61.8-62.2 ºC (Lit3131 Shabana, R.; Rasmussen, J.; Lawesson, S.; Bull. Soc. Chim. Belg. 1981, 90, 75. 63-65 ºC); IR (KBr) ν / cm-1 3224, 3074, 2978, 2929, 1712, 1639, 1500, 1475, 1440, 1385, 1274, 1288, 1176, 1064, 1029, 983, 839, 783, 663, 605; 1H NMR (500 MHz, CDCl3) δ 4.87 (d, J 1.0 Hz, NH), 4.14 (q, 2H, J 7.0 Hz, CH2), 2.36 (d, 3H, J 1.0 Hz, CH3), 2.12 (s, 3H, CH3), 1.26 (t, J 7.0 Hz, 3H, CH3); 13C NMR (125 MHz, CDCl3) δ 14.2, 21.8, 25.2, 59.8, 96.4, 155.0, 168.9, 169.2.

Supplementary Information

Supplementary information (IR, 1H NMR and 13C NMR spectra for 3a-q, 5a-d, and 9) is available free of charge at http://jbcs.sbq.org.br as PDF file.

https://minio.scielo.br/documentstore/1678-4790/spYX6qGbkmyhVGGVfVF8PMH/86ec670fe5e02e65f0ec142ea8871f084bf29303.pdf

Acknowledgments

The authors gratefully acknowledge the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB). We also thank CAPES for a Postdoctoral fellowship to L. L. B. S., and a research fellowship to S. C.

References

  • 1
    Candeias, R.; Branco, C.; Gois, P.; Afonso, M.; Trindade, F.; Chem. Rev. 2009, 109, 2703.
  • 2
    Brahmachari, G.; Banerjee, B.; Curr. Green Chem. 2015, 2, 274.
  • 3
    Simplicio, L.; Clancy, M.; Gilmer, F.; Molecules 2008, 13, 519.
  • 4
    Luo, F.; Yang, J.; Li, Z.; Xiang, H.; Zhou, X.; Eur. J. Org. Chem. 2015, 11, 2463 and references herein cited.
  • 5
    Moon, Y.; Jeong, Y.; Kook, D.; Hong, S.; Org. Biomol. Chem. 2015, 13, 3918.
  • 6
    Hubric, J.; Himmler, T.; Rodefeld, L.; Ackermann, L.; Adv. Synth. Catal. 2015, 357, 474.
  • 7
    Ackermann, L.; Wang, L.; Wolfram, R.; Lygin, A.; Org. Lett. 2012, 14, 728; Herman, G.; Becker, P.; Bolm, C.; Angew. Chem. Int. Ed. 2015, 54, 7414.
  • 8
    Takahama, Y.; Shibata, Y.; Tanaka, K.; Chem. Eur. J. 2015, 21, 9053; Wen, J.; Wu, A.; Chen, P.; Zhu, J.; Tetrahedron Lett. 2015, 56, 5282.
  • 9
    Li, G.; Jia, C.; Chen, Q.; Sun, K.; Zhao, F.; Wu, H.; Wang, Z.; Lv, Y.; Chen, X.; Adv. Synth. Catal. 2015, 357, 1311.
  • 10
    Stuart, D.; Bertrand-Laperle, M.; Burgess, K.; Fagnou, K.; J. Am. Chem. Soc. 2008, 130, 16474.
  • 11
    Zhang, Z.; Wu, L.; Liao, J.; Wu, W.; Jiang, H.; Li, J.; Li, J.; J. Org. Chem. 2015, 80, 7594.
  • 12
    Tasker, S.; Jamison, T.; J. Am. Chem. Soc. 2015, 137, 9531.
  • 13
    Marinho, E.; Proença, M.; Synthesis 2015, 47, 1623.
  • 14
    Wang, X.; Yang, Q.; Liu, F.; You, Q.; Synth. Commun. 2008, 38, 1028.
  • 15
    Dulla, B.; Vijayavardhini, S.; Rambau, D.; Anuradha, V.; Rao, M.; Pal, M.; Curr. Green Chem. 2014, 1, 73; Yadav, J.; Narsaiah, A.; Basak, A.; Goud, P.; Sreenu, D.; Nagaiah, K.; J. Mol. Catal. 2006, 255, 78; Alleti, R.; Perambuduru, M.; Samantha, S.; Reddy, P.; J. Mol. Catal. 2005, 226, 57.
  • 16
    Chikkukapalli, A.; Aavula, S.; Mona, R.; Karthikeyan, C.; Kumar, V.; Sulur, G.; Sumathi, S.; Tetrahedron Lett. 2015, 56, 3799.
  • 17
    Saikia, P.; Hussain, L.; Suri, M; Pahari, P.; Tetrahedron Lett. 2016, 57, 1158.
  • 18
    Xie, S.; Fukumoto, R.; Ramstrom, O.; Yan, M.; J. Org. Chem. 2015, 80, 4392.
  • 19
    Jeyakumar, K.; Chand, D.; J. Mol. Catal. A 2006, 255, 275.
  • 20
    Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Babaghanbari, M.; Zarea, M.; Shariati, L.; Taghavi, A.; J. Iran. Chem. Soc. 2009, 6, 523.
  • 21
    Balaskar, S.; Gavade, N.; Mane, S.; Shingare, S.; Mane, V.; Green Chem. Lett. Rev. 2011, 4, 91.
  • 22
    Tajbakhsh, M.; Hosseinzadeh, R.; Alinezhad, H.; Rezaee, P.; Tajbakhsh, M.; Lett. Org. Chem. 2013, 10, 657.
  • 23
    Prajapti, K.; Nagarsenkar, A.; Babu, N.; Tetrahedron Lett. 2014, 55, 1784.
  • 24
    Shirini, F.; Akbari-Dadamahaleh, S.; Mohammad-Khah, A.; Phosphorus Sulfur Silicon Relat. Elem. 2014, 189, 577.
  • 25
    Reeve, W.; Lowe, C.; J. Chem. Educ. 1979, 56, 488; Cardinal, P.; Greer, B.; Luong, H.; Tyagunova, Y.; J. Chem. Educ. 2012, 89, 1061; Merat, L. M. O. C.; Gil, R. A. S.; Quim. Nova 2003, 26, 779; Saba, S.; Ciaccio, J. A.; J. Chem. Educ. 2016, 93, 945.
  • 26
    Cunha, S.; Costa, S.; Santana, B.; Lopes, A.; Quim. Nova 2015, 38, 874.
  • 27
    Fors, P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, L.; Tetrahedron 2009, 65, 6576; Epishina, M. A.; Kulikov, A. S.; Ignatâ, N. V.; Schulte, M.; Makhova, N. N.; Mendeleev Commun. 2010, 20, 335; Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, L. R.; Angew. Chem. Int. Ed. 2011, 50, 5524; Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z.; J. Am. Chem. Soc. 2006, 128, 7416; Fors, B. P.; Krattiger, P.; Strieter, E.; Buchwald, S.; Org. Lett. 2008, 10, 3505; Owsley, D. C.; Bloomfield, J.; Synthesis 1977, 2, 118; Eshghi, H.; Hassankhani, A.; Mossadegh, E.; J. Chem. Res. 2006, 2006, 218; Kalyani, D.; Dick, A.; Anani, Q.; Sanford, M.; Tetrahedron 2006, 62, 11483; Roeder, C. H.; Day, A. R.; J. Org. Chem. 1941, 6, 25; Marcinkiewicz, S.; Green, J.; Mamalis, P.; Tetrahedron 1961, 14, 208; Fierz-David, H. E.; Kuster, W.; Helv. Chim. Acta 1930, 22, 82; Schmidt, B.; Berger, R.; Holter, F.; Org. Biomol. Chem. 2010, 8, 1406; Ingold, C. K.; Ingold, E. H.; J. Chem. Soc. 1926, 1310; Yang, Y.-H.; Cheng, M.-S; Wang, Q.-H; Nie, H.; Liao, N.; Wang, J.; Chen, H.; Eur. J. Med. Chem. 2009, 44, 1808; Willstaedt, H.; Justus Liebigs Ann. Chem. 1932, 500, 61.
  • 28
    Nayak, S.; Narayana, B.; Jasinski, P.; Yathirajan, S.; Kaur, M.; Acta Crystallogr. E 2013, 69, 1622; Takahashi, T.; Yakugaku Zasshi 1949, 69, 398; Pandeya, S. N.; Yadav, M.; Mishra, V.; Asian J. Chem. 2011, 23, 3003; Wang, X.; Yang, Q.; Liu, F.; You, Q.; Synth. Commun. 2008, 38, 1028.
  • 29
    Rosen, T.; Lico, I.; Chu, D.; J. Org. Chem. 1988, 53, 1580.
  • 30
    Cunha, S.; Santana, B.; J. Braz. Chem. Soc. 2014, 25, 1311; Cunha, S.; Santos, A. O.; Correia, J. T. M.; Sabino, J. R.; Tetrahedron 2014, 70, 3284; Cunha, S.; Santos Filho, R. F.; Saraiva, K. H.; Azevedo-Santos, A. V.; Menezes, D.; Tetrahedron Lett. 2013, 54, 3366; Cunha, S.; Gomes, A. T.; Tetrahedron Lett. 2012, 53, 6710; Cunha, S.; Oliveira, C. C.; Sabino, J. R.; J. Braz. Chem. Soc. 2011, 22, 598; Cunha, S.; Damasceno, F.; Ferrari, J.; Tetrahedron Lett. 2007, 48, 5795; Cunha, S.; Bastos, R. M.; Silva, P. O.; Costa, G. A. N.; Vencato, I.; Lariucci, C.; Napolitano, H. B.; Oliveira, C. M. A.; Kato, L.; Silva, C. C.; Menezes, D.; Vannier-Santos, M. A.; Monatsh. Chem. 2007, 138, 111; Cunha, S.; Silva, V. C.; Napolitano, H. B.; Lariucci, C.; Vencato, I.; J. Braz. Chem. Soc. 2003, 14, 2007; Cunha, S.; Rodovalho, W.; Azevedo, N.; Mendonça, M. O.; Lariucci, C.; Vencato, I.; J Braz. Chem. Soc. 2002, 13, 629; Cunha, S.; Kascheres, A.; J. Braz. Chem. Soc. 2001, 12, 481.
  • 31
    Shabana, R.; Rasmussen, J.; Lawesson, S.; Bull. Soc. Chim. Belg. 1981, 90, 75.
  • 32
    Barluenga, J.; Jimenz, C.; Yus, M.; J. Chem. Soc. 1981, 14, 670.

Publication Dates

  • Publication in this collection
    June 2017

History

  • Received
    06 Aug 2016
  • Accepted
    27 Sept 2016
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br