Acessibilidade / Reportar erro

Synthesis and Insecticidal Activity of Lactones Derived from Furan-2(5H)-one

Abstract

Ten 4,7-methanoisobenzofuran-1(3H)-ones were synthesized and their insecticidal activities against the insect pest Diaphania hyalinata were evaluated. The most active substances have been selected from the initial screening to find the dose to kill 50 (LD50) and 90% (LD90) of the melonworm. Time-mortality curves of the three selected formulations at the LD90 concentration have been made against D. hyalinata. From the time-mortality curves we found that the formulation (3aR,4R,5S,6S,7S,7aS)- and (3aS,4S,5R,6R,7R,7aR)-5,6-dichlorohexahydro-4,7-methanoisobenzofuran-1(3H)-one + (3aR,4R,5R,6R,7S,7aS)- and (3aS,4S,5S,6S,7R,7aR)-5,6-dichlorohexahydro-4,7-methanoisobenzofuran-1(3H)-one has killed 50% of the melonworm after 2 h, presenting the best knockdown effect. Bioassays against Solenopsis saevissima and Tetragonisca angustula were carried out for the lactones selected in the initial screening against D. hyalinata. The formulation (3aS,4R,5S,6S,7S,7aR)- and (3aR,4S,5R,6R,7R,7aS)-5,6-dibromohexahydro-4,7-methanoisobenzofuran-1(3H)-one + (3aS,4R,5R,6R,7S,7aR)- and (3aR,4S,5S,6S,7R,7aS)-5,6-dibromohexahydro-4,7-methanoisobenzofuran-1(3H)-one has killed 31.25 and 68.30% of the pest natural enemy and the pollinator bee, respectively. At the same concentration this formulation killed 90% of D. hyalinata. The selectivity in favor of the non-target organisms has rendered this formulation a position as a promising agrochemical.

Keywords:
Diaphania hyalinata; Tetragonisca angustula; Solenopsis saevissima; insecticide


Introduction

The melonworm Diaphania hyalinata (Lepidoptera: Crambidae) is an important pest of plants of the family Curcubitaceae and occurs in the Americas.11 Moreira, M. D.; Picanço, M. C.; Barbosa, L. C. A.; Guedes, R. N. C.; Barros, E. C.; Campos, M. R.; Pest Manage. Sci.2007, 63, 615.,22 Paula, V. F.; Barbosa, L. C. A.; Teixeira, R. R.; Picanço, M. C.; Silva, G. A.; Pest Manage. Sci.2008, 64, 863. The leaves are first attacked by these insects, limiting plant photosynthesis, therefore, growth and development. After this the stems and shoots are damaged leading to the plant death. When attacked by the caterpillar, fruits become unfit for human consumption.33 Bavaresco, A.; Acta Sci., Agron.2007, 29, 309.

Solenopsis saevissima, an ant widely distributed in South America, is among the natural enemies of D. hyalinata. Worker individuals of this species are aggressive and have a painful sting.44 Pesquero, M. A.; Vaz, A. P. A.; Arruda, F. V.; Sociobiology2013, 60, 484. Predation by S. saevissima contributes significantly to the biological control of agricultural crops.55 Moreno, S. C.; Carvalho, G. A.; Picanço, M. C.; Morais, E. G. F.; Pereira, R. M.; Pest Manage. Sci.2011, 68, 386. Species of the genus Solenopsis have been considered important predators contributing to insect pest reduction in the tropics and subtropics.66 Way, M. J.; Khoo, K. C.; Annu. Rev. Entomol.1992, 37, 479.

Bees are another important non-target group of organisms that contribute to the biodiversity of the ecosystems. However, an alarming fact is that during the last decades there were losses in the number of colonies in locations around the world.77 Ratnieks, F. L. W.; Carreck, N. L.; Science2010, 327, 152. Multiple environmental factors can potentially contribute to these losses, including biotic ones like pathogens, parasites, availability of resources due to habitat fragmentation and loss; and abiotic ones like climate change and pollutants.88 Decourtye, A.; Mader, E.; Desneux, N.; Apidologie2010, 41, 264.

9 Neumann, P.; Carreck, N. L.; J. Apic. Res.2010, 49, 1.
-1010 Johnson, R. M.; Ellis, M. D.; Mullin, C. A.; Frazier, M.; Apidologie2010, 41, 312. Although the causes of the loss of pollinators are still under study, which currently go through a screening process, extensive use of chemical pesticides against insect pests for crop protection may have contributed to the decline of pollinators.1111 Blacquiere, T.; Smagghe, G.; van Gestel, C. A. M.; Mommaerts, V.; Ecotoxicology2012, 21, 973. One hypothesis for the disappearance of bees relates to the use of neonicotinoid insecticides.1212 Laycock, I.; Lenthall, K. M.; Barratt, A. T.; Cresswell, J. E.; Ecotoxicology2012, 21, 1937.

13 Whitehorn, P. R.; O'Connor, S.; Wackers, F. L.; Goulson, D.; Science2012, 336, 351.

14 Gill, R. J.; Ramos-Rodriguez, O.; Raine, N. E.; Nature2012, 491, 105.

15 Goulson, D.; J. Appl. Ecol.2013, 50, 977.

16 Feltham, H.; Park, K.; Goulson, D.; Ecotoxicology2014, 23, 317.
-1717 Gill, R. J.; Raine, N. E.; Funct. Ecol.2014, 28, 1459. Concern for bees is justified by the fact that they play a vital role in agriculture.1818 Breeze, T. D.; Bailey, A. P.; Balcombe, K. G.; Potts, S. G.; Agric., Ecosyst. Environ.2011, 142, 137. Nearly 35% of the world's food crops depend on pollination mostly by insects,1919 Klein, A. M.; Vaissiere, B. E.; Cane, J. H.; Steffan, D. I.; Cunningham, S. A.; Kremen, C.; Tscharntke, T.; Proc. R. Soc. London, Ser. B2007, 274, 303. especially bees and butterflies. The pollinator insects can increase genetic biodiversity in the cultivated species by the cross pollination leading to better fruits, seeds and plants.2020 Hajjar, R.; Jarvis, D. I.; Gemmill, H. B.; Agric., Ecosyst. Environ.2008, 123, 261.

In recent years, several species are rapidly going into extinction because the insecticides have been planned to be very effective against pests in general, but with great potential to affect beneficial organisms.2121 Thomas, J. A.; Telfer, M. G.; Roy, D. B.; Preston, C. D.; Greenwood, J. J. D.; Asher, J.; Fox, R.; Clarke, R. T.; Lawton, J. H.; Science2004, 303, 1879. This concept has fueled concerns about the ecological consequences of biodiversity loss, leading to a flurry of studies examining how changes in diversity affect the ecosystems, particularly those that provide goods and services that humans depend upon.2222 Hooper, D. U.; Chapin, F. S.; Ewel, J. J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J. H.; Lodge, D. M.; Loreau, M.; Naeem, S.; Schmid, B.; Setala, H.; Symstad, A. J.; Vandermeer, J.; Wardle, D. A.; Ecol. Monogr.2005, 75, 3.,2323 Desneux, N.; Decourtye, A.; Delpuech, J. M.; Annu. Rev. Entomol.2007, 52, 81.

Pest control should be based on equilibrium between the use of chemical agents and survival of the natural enemies.2424 Stara, J.; Ourednickova, J.; Kocourek, F.; J. Pest Sci.2011, 84, 25. Therefore, to avoid the possible interruption of the natural control of pests it is important to evaluate the effects of pesticides against the beneficial organisms.2525 Bengochea, P.; Amor, F.; Saelices, R.; Hernando, S.; Budia, F.; Adán, A.; Medina, P.; Chemosphere2013, 91, 1189.

The idea that beneficial organisms and insecticides were incompatible has been modified in recent years. The outdated broad-spectrum insecticides have been superseded by more modern agrochemicals like spinosads,2626 Gentz, M. C.; Murdoch, G.; King, G. F.; Biol. Control2010, 52, 208. and novel pyrethroids that present selectivity in favor of the beneficial organisms and a desirable ecotoxicology.2727 Preetha, G.; Stanley, J.; Suresh, S.; Samiyappan, R.; Chemosphere2010, 80, 498. The novel pyrethroids have been evaluated for their toxicological effect against target insects and adverse activity on natural enemies.2828 Alvarenga, E. S.; Silvério, F. O.; Picanço, M. C.; Moreno, S. C.; Br PI 0705674-5A2, 2009.,2929 Silvério, F. O.; Alvarenga, E. S.; Moreno, S. C.; Picanço, M. C.; Pest Manage. Sci.2009, 65, 900.

The conservation of beneficial organisms is an essential component in integrated pest management.2222 Hooper, D. U.; Chapin, F. S.; Ewel, J. J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J. H.; Lodge, D. M.; Loreau, M.; Naeem, S.; Schmid, B.; Setala, H.; Symstad, A. J.; Vandermeer, J.; Wardle, D. A.; Ecol. Monogr.2005, 75, 3.,2323 Desneux, N.; Decourtye, A.; Delpuech, J. M.; Annu. Rev. Entomol.2007, 52, 81.,3030 Metcalf, R. L.; Annu. Rev. Entomol.1980, 25, 219. The most frequent source of mortality for phytophagous arthropods in ecosystems is attack by natural enemies.55 Moreno, S. C.; Carvalho, G. A.; Picanço, M. C.; Morais, E. G. F.; Pereira, R. M.; Pest Manage. Sci.2011, 68, 386.

The synthesis of new lactones has been inspired by small molecules from natural products that have been the mainstay of research in organic chemistry since its initial development.3131 Wilson, R. M.; Danishefsky, S. J.; J. Org. Chem.2006, 71, 8329. Within this context, phthalides or isobenzofuranones, natural volatile compounds present in apiaceous plants have attracted the attention of many research groups.3232 Logrado, L. P. L.; Santos, C. O.; Romeiro, L. A. S.; Costa, A. M.; Ferreira, J. R. O.; Cavalcanti, B. C.; Moraes, O. M.; Lotufo, L. V. C.; Pessoa, C.; Santos, M. L.; Eur. J. Med. Chem.2010, 45, 3480. This class of compound has presented a wide spectrum of activities such as vasodilatation,3333 Chan, S. S. K.; Cheng, T. Y.; Lin, G.; J. Ethnopharmacol.2007, 111, 677. analgesic,3434 Du, J.; Yu, Y.; Ke, Y.; Wang, C.; Zhu, L.; Qian, Z. M.; J. Ethnopharmacol.2007, 112, 211. anti-inflammatory,3535 Shao, M.; Qu, K.; Liu, K.; Zhang, Y.; Zhang, L.; Lian, Z.; Chen, T.; Liu, J.; Wu, A.; Tang, Y.; Zhu, H.; Planta Med.2011, 77, 809.,3636 Huang, J.; Lu, X. Q.; Zhang, C.; Lu, J.; Li, G. Y.; Lin, R. C.; Wang, J. H.; Fitoterapia2013, 91, 21. and protection effect against neuronal impairment induced by deprival of oxygen and glucose.3737 Wei, Q.; Yang, J.; Ren, J.; Wang, A.; Ji, T.; Su, Y.; Fitoterapia2014, 93, 226.

The focus on the use of natural products for agrochemicals is widely used, because the resulting secondary metabolites of plant interaction with the environment during its evolution play an important function in plant protection against herbivores.3838 Dayan, F. E.; Cantrell, C. L.; Duke, S. O.; Bioorg. Med. Chem. Lett.2009, 17, 4022.

39 Xu, H.; Xiao, X.; Wang, Q. T.; Bioorg. Med. Chem. Lett.2010, 20, 5009.
-4040 Sreelatha, T.; Hymavathi, A.; Rao, V. R. S.; Devanand, P.; Rani, P. U.; Rao, M.; Babu, K. S.; Bioorg. Med. Chem. Lett.2010, 20, 549.

Phthalide derivatives possess potential as agrochemicals because recent research indicates that a large number of compounds display insecticidal,4141 Miyazawa, M.; Tsukamoto, T.; Anzai, J.; Ishikawa, Y.; J. Agric. Food Chem.2004, 52, 4401.,4242 Tsukamoto, T.; Ishikawa, Y.; Miyazawa, M.; J. Agric. Food Chem.2005, 53, 5549. nematicidal,4343 Momin, R. A.; Nair, M. G. J.; J. Agric. Food Chem.2001, 49, 142. and acaricidal4444 Kwon, J. H.; Ahn, Y. J.; Pest Manage. Sci.2002, 59, 119. activities. These plant-based agrochemicals have presented themselves as an important tool to combat the evolution of resistance to pesticides.4545 Copping, L. G.; Duke, S. O.; Pest Manage. Sci.2007, 63, 524.

Therefore, the aim of this work was to investigate the toxicity of compounds of the class of phthalides against D. hyalinata and non-target organisms: bee pollinator (T. angustula) and the pest natural enemy (S. saevissima). The insecticidal activities of these compounds have been evaluated against the important pest of Curcubitaceae from which three of them have shown stunning insecticidal activities. Besides that we have been involved in functional group modification and/or stereochemistry aiming for novel compounds which could play an important role with respect to the biological activity.

Results and Discussion

Synthesis

Cycloaddition reaction of furan-2(5H)-one 1 and cyclopentadiene has been employed in first stage of our work for the synthesis of 4,7-methanoisobenzofuran-1(3H)-ones. The synthesis of the endo2 and exo3 adducts using this methodology is represented in Scheme 1. This reaction has been carried out with regio- and stereoselective control but without asymmetric induction. Therefore, to simplify we have opted to use only one of the enantiomers to represent each adduct.

Scheme 1
Preparation of adducts 2 and 3 using Diels-Alder reaction.

The most distinct signals of adduct 2 in the 13C nuclear magnetic resonance (NMR) spectrum were the carbonyl and the alkene carbons at δ 178.0, 134.3, and 136.7, respectively. The double bond is confirmed by the multiplet at 6.25-6.33 ppm in the 1H NMR spectrum. These distinct signals have also been observed in the 13C NMR of adduct 3 but at slightly different chemical shifts (δ 177.6, 137.3, and 137.6). The olefinic protons H5 and H6 of 3 are displayed as doublet of doublets at δ 6.18 and 6.23, respectively. Long distance detection experiments in the NMR (nuclear Overhauser effect (NOE)) have enabled us to differentiate these isomers. Irradiation of the signal of H8 of adduct 2 has resulted in 1.32 and 1.87% increase in the signals of H7a and H3a, respectively. However, irradiation of H8 of adduct 3 has resulted in 0.85% NOE in the signal of H3' which is close in space to H8.

In the next stage, the double bond of lactones 2 and 3 was oxidized with meta-chloroperbenzoic acid to give only epoxides 4 (98% yield) and 5 (83% yield) with stereospecific control (Scheme 2). In the 1H NMR of 4 and 5, H5 and H6 (δ ca. 3.2 ppm) were chemically shielded compared to H5 and H6 (δ ca. 6 ppm) at the double bond in compounds 2 and 3, which is a strong evidence of the epoxide formation. The oxygen at the exo position in epoxides 4 and 5 was established by NOE experiments. Irradiation of the signal of H5/H6 of epoxide 4 has resulted in 1.17% increase in the signal of H3'. However, irradiation of the signal of H5 of epoxide 5 has led to 0.9% increase of H3a. To reinforce the exo position of the oxygen in the epoxide 5 we have irradiated the signal of H6 resulting in 2.03% increase of H7a.

Scheme 2
Reagents: (a) meta-chloroperbenzoic acid (MCPBA), CH2Cl2; (b) H2, Pd/C (10%), EtOH; (c) Cl2, CH2Cl2; (d) Br2, CH2Cl2.

Following the idea of preparing novel isobenzofuranone derivatives we have also performed hydrogenation, chlorination, and bromination reactions of these adducts (Scheme 2). Bromination and chlorination of unsaturated lactone 3 have proceeded stereoselectively to give only the trans-1,2-dihalogenated products, as expected. The structures of all compounds have been established by using the spectrometric methods, including in these methods the bidimensional NMR experiments such as heteronuclear single quantum coherence (HSQC), correlation spectroscopy (COSY), and nuclear Overhauser effect spectroscopy (NOESY).

Insecticidal activity

In this study, we have assessed the efficacy of compounds 1-7, 9a, and 9b against second-instar larvae of D. hyalinata. Furthermore, the insecticidal activities of the mixtures of 8a/8b (2:1 ratio), and 9a/9b (1:1 ratio) have also been evaluated. Compounds 8a and 8b have not been evaluated separately because only a small quantity of 8b was isolated and purified (57.5 mg).

There was a significant difference in the mortality of larvae of D. hyalinata as a function of the treatments (analysis of variance (ANOVA), F14.75 = 48.24, p < 0.001). The mortality of D. hyalinata as a result of the treatments is presented in Figure 1 as a histogram with standard deviation bars and assignment letters according to the Scott-Knott grouping analysis test at p < 0 .05. The compounds 1, 9a, 9a + 9b, 9b, and 8a + 8b have presented significant insecticidal activities killing more than the negative control. The lactones 9a + 9b, 9b, and 8a + 8b at the concentration of 45.2 µmol g-1 insect were the most potent, killing 84.8, 91.3 and 96.3% of D. hyalinata, respectively. These compounds were more active than the commercial piperine, which has presented 64.5% mortality.4646 Alvarenga, E. S.; Teixeira, M. G.; Pimentel, M. F.; Picanço, M. C.; Br PI 102014031753 8, 2014. Compounds 1 and 9a have shown moderate activities of 23.1 and 40.0%, respectively.

Figure 1
Mortality (mean ± standard error) of second-instar larvae of D. hyalinata. Columns followed by the same letter are not significantly different by the Scott-Knott grouping analysis test at p > 0.05.

Piperine was used as the positive control because the insecticidal activity of this substance has been extensively described in the literature.4747 Park, I. K.; Lee, S. G.; Shin, S. C.; Park, J. D.; Ahn, Y. J.; J. Agric. Food Chem.2002, 50, 1866.

48 Scott, I. M.; Gagnon, N.; Lesage, L.; Philogene, B. J.; Arnason, J. T.; J. Econ. Entomol.2005, 98, 845.

49 Krchnak, V.; Waring, K. R.; Noll, B. C.; Moellmann, U.; Dahse, H. M.; Miller, M. J.; J. Org. Chem.2008, 73, 4559.

50 Tavares, W. S.; Cruz, I.; Petacci, F.; Freitas, S. S.; Serrao, J. E.; Zanuncio, J. C.; J. Med. Plants Res.2011, 5, 5301.
-5151 Qu, H.; Yu, X.; Zhi, X.; Lv, M.; Xu, H.; Bioorg. Med. Chem. Lett.2013, 23, 5552. Furthermore, extracts of black pepper Piper nigrum L. (Piperaceae), whose main constituent is piperine are toxic to Lepidoptera insects, including Ascia monuste orseis Latreile (Lepidoptera: Pieridae)5252 Paula, V. F.; Barbosa, L. C. A.; Demuner, A. J.; Pilo-Veloso, D.; Picanço, M. C.; Pest Manage. Sci.2000, 56, 168. and Spodoptera frugiperda Smith (Lepidoptera: Noctuidae).5353 Batista-Pereira, L. G.; Castral, T. C.; Silva, M. T. M.; Amaral, B. R.; Fernandes, J. B.; Vieira, P. C.; Silva, M. F. G. F.; Corrêa, A. G.; Z. Naturforsch., C: J. Biosci.2006, 61, 196.

The isolated isomers 9a and 9b, in the concentration of 45.2 µmol g-1 insect and a period of 48 h, have caused 40.0 and 91.3% mortalities of the insects, respectively. According to Ahern and Whitney,5454 Ahern, J. R.; Whitney, K. D.; Ann. Bot.2014, 113, 731. many secondary metabolite classes are responsible for the plant resistance against herbivore. Therefore, totally different compounds could play an important defense mechanism for the plants. To the best of our knowledge we have not found many references describing the ecological effects played by modifying the stereochemistry of the active ingredients.5555 Bidart-Bouzat, M. G.; Kliebenstein, D. J.; J. Chem. Ecol.2008, 34, 1026.

56 Berenbaum, M. R.; Zangerl, A. R.; Nitao J. K.; Evolution1986, 40, 1215.

57 Agrawal, A. A.; Evol. Ecol. Res.2005, 7, 651.

58 Shonle, I.; Bergelson, J.; Evolution2000, 54, 778.
-5959 Macel, M.; Klinkhamer, P. G. L.; Evol. Ecol.2010, 24, 237.

In some cases, individual isomers have identical bioactivities, but in other cases different isomers can drastically differ in bioactivity.6060 Patel, B. K.; Hutt, A. J. In Chirality in Drug Design and Development; Reddy, I. K.; Mehvar, R., eds; Marcel Dekker Inc.: New York, 2004.

A significant difference in insecticide activity has been observed for stereoisomers 9a and 9b. The isomer 9b is the most active killing 91.3% of the insect pest. However the formulation 9a + 9b at the ratio of 1:1 has killed 84.8% of the pest, which does not differ significantly from that obtained for the pure isomer 9a. Therefore, the laborious separation of the chemicals 9a and 9b is not necessary considering only the difference in insecticidal activity.

The most active lactones 8a + 8b, 9a + 9b, and 9b were selected for a more thorough investigation after the general insecticidal bioassay. This selection is in line with the Brazilian Health Surveillance Agency (ANVISA) for tests of efficacy on pest control products, which recommends that only values between 90 ± 10% mortality should be considered satisfactory.6161 Agência Nacional de Vigilância Sanitária (ANVISA); Manual de Protocolo para Testes de Eficácia de Produtos Desinfestantes; Anvisa: Brasília, 2004.

The dose-mortality results from the lactones application in larvae of D. hyalinata have shown low chi-square test (χ2) and high p values (< 2.39 and > 0 .05, respectively) indicating the suitability of the probit model for fitting the dose-response curves. Curves with acceptance probability of the null hypothesis by χ2 greater than 0.05 were accepted. The doses to kill 50 (LD50) and 90% (LD90) of the insects were obtained from these curves (Figure 2).

Figure 2
Dose-mortality curves of the compounds 8a + 8b, 9a + 9b, and 9b against D. hyalinata caterpillars.

According to Table 1, the formulation 8a + 8b exhibited the highest toxicity to D. hyalinata, with lethal doses of 20.58 (LD50) and 40.37 (LD90) µmol g-1 insect. However, lactones 9a + 9b and 9b have shown similar insecticidal activities.

Table 1
Toxicity of the chemicals 8a + 8b, 9a + 9b and 9b against second instar D. hyalinata caterpillars 48 h after application

The curves with the activity rates for the most promising chemicals at the LD90 concentration against D. hyalinata are presented in Figure 3. The survival analysis of D. hyalinata exposed to lactones indicated significant differences among treatments (log-rank test, χ2 = 190.28, df = 3, p < 0.001). The chemicals 8a + 8b, 9a + 9b and 9b have killed 50% of the population of the pest in intervals of 2, 4 and 3 h, respectively. The rate of activity of the insecticide is very important to control the outbreak of pests in the agriculture. The fast population growth of pests should be controlled to avoid great damages to the crops. The formulation 8a + 8b has presented the best time mortality result, which is adequate to control the outbreak of pests because it has killed 50% of the population of D. hyalinata in the shortest period (2 h).

Figure 3
Survival curves of D. hyalinata subjected to the application of the chemicals 8a + 8b, 9a + 9b, and 9b at the LD90 concentration.

The insecticides have been planned to be very effective against pests in general, but with great potential to affect beneficial organisms. Thus we have evaluated the toxicity of eleven chemical formulations against the pest D. hyalinata, and the three most promising formulations have been tested against the beneficial bee pollinator and the natural enemy fire ant.

The formulations 8a + 8b, 9a + 9b, and 9b have been evaluated against the beneficial organisms S. saevissima and T. angustula (Table 2). The results from this study showed that lactones 9b (t10 = 6.35, p < 0.001) and 9a + 9b (t10 = 4.59, p < 0.001) were selective in favor of S. saevissima and T. angustula (more toxic to the pest than to the natural enemy).

Table 2
Mortalities of the pest natural enemy S. saevissima and the pollinator T. angustula 48 h after application of the formulations 8a + 8b, 9a + 9b, and 9b at 40.37, 43.03, and 48.74 mmol g-1 of insect, respectively

Besides the efficiency against insect pests, novel agrochemical agents should preferably provide selectivity to non-target species, especially predators and pollinators. This is important because natural enemies can aid in the control of the population of pests in agricultural crops.6262 Mills, N. J.; Beers, E. H.; Shearer, P. W.; Unruh, T. R.; Amarasekare, K. G.; Biol. Control,in press, DOI: 10.1016/j.biocontrol.2015.05.006.
https://doi.org/10.1016/j.biocontrol.201...
Moreover, the conservation and enhancement of natural enemy activity in agroecosystems is one of the key elements of sustainable agricultural production.6363 Symondson, W. O. C.; Sunderland, K. D.; Greenstone, M. H.; Annu. Rev. Entomol.2002, 47, 561.

64 Pretty, J.; Philos. Trans. R. Soc., B2008, 363, 447.

65 Shennan, C.; Philos. Trans. R. Soc., B2008, 363, 717.

66 Biondi, A.; Desneux, N.; Siscaro, G.; Zappalà, L.; Chemosphere2012, 87, 803.
-6767 Jones, V. P.; Horton, D. R.; Mills, N. J.; Unruh, T. R.; Baker, C. C.; Melton, T. D.; Milickzy, E.; Steffan, S. A.; Shearer, P. W.; Amarasekare, K. G.; Biol. Control,in press, DOI: 10.1016/j.biocontrol.2015.03.009.
https://doi.org/10.1016/j.biocontrol.201...

However, the natural enemies alone are not able to prevent any damage caused by the pest.2424 Stara, J.; Ourednickova, J.; Kocourek, F.; J. Pest Sci.2011, 84, 25. Because of this, finding a balance between the use of chemical insecticides and the survival of natural enemies is a priority of integrated pest management.

Furthermore, pollination is essential to ensure the reproduction of most plants.6868 Garibaldi, L. A.; Steffan-Dewenter, I.; Winfree, R.; Aizen, M. A.; Bommarco, R.; Cunningham, S. A.; Kremen, C.; Carvalheiro, L. G.; Harder, L. D.; Afik, O.; Bartomeus, I.; Benjamin, F.; Boreux, V.; Cariveau, D.; Chacoff, N. P.; Dudenhöffer, J. H.; Freitas, B. M.; Ghazoul, J.; Greenleaf, S.; Hipólito, J.; Holzschuh, A.; Howlett, B.; Isaacs, R.; Javorek, S. K.; Kennedy, C. M.; Krewenka, K. M.; Krishnan, S.; Mandelik, Y.; Mayfield, M. M.; Motzke, I.; Munyuli, T.; Nault, B. A.; Otieno, M.; Petersen, J.; Pisanty, G.; Potts, S. G.; Rader, R.; Ricketts, T. H.; Rundlöf, M.; Seymour, C. L.; Schüepp, C.; Szentgyörgyi, H.; Taki, H.; Tscharntke, T.; Vergara, C. H.; Viana, B. F.; Wanger, T. C.; Westphal, C.; Williams, N.; Klein, A. M.; Science2013, 339, 1608. Thus pollinator should be retained, so that the biodiversity of the ecosystem is maintained.6969 Larsen, T. H.; Williams, N. M.; Kremen, C.; Ecol. Lett.2005, 8, 538.,7070 Ollerton, J.; Winfree, R.; Tarrant, S.; Oikos2011, 120, 321.

The International Organization for Biological Control (IOBC) uses a standardized classification for the impact of pesticides on natural enemies for experiments in laboratory which consists of four categories: harmless (< 30% effect), slightly harmful (30-79% effect), moderately harmful (80-99% effect), and harmful (> 99% effect).7171 Sterk, G.; Hassan, S. A.; Baillod, M.; Bakker, F.; Bigler, F.; Blümel, S.; Bogenschütz, H.; Boller, E.; Bromand, B.; Brun, J.; Calis, J. N. M.; Coremans-Pelseneer, J.; Duso, C.; Garrido, A.; Grove, A.; Heimbach, U.; Hokkanen, H.; Jacas, J.; Lewis, G.; Moreth, L.; Polgasr, L.; Roversti, L.; Samsoe-Petersen, L.; Sauphanor, B.; Schaub, L.; Stäubli, A.; Tuset, J. J.; Vainio, A.; Van de Veire, M.; Viggiani, G.; Viñuela, E.; Vogt, H.; BioControl1999, 44, 99. The formulation 9a + 9b has killed 31.25 and 68.30% of S. saevissima and T. angustula, respectively. However, the isolated compound 9b has killed 46.99 and 65.33% of S. saevissima and T. angustula, respectively. The selectivity of these lactones in favor of S. saevissima and T. angustula surpasses the negative impact of the outdated broad-spectrum insecticides which kill the insects without selectivity. The selectivity provided by lactones (9a + 9b and 9b) to S. saevissima and T. angustula suggests that the use of these compounds to control D. hyalinata presents a low risk to these non-target insects according to the IOBC classification.

To sum up we have found that a number of structural features have influenced the insecticidal activity, particularly the presence of halogens and the cis-relationship between the lactone ring and the methylene bridge. The most active compounds were the exo adducts and the ones containing halogens which is in agreement with literature reports where various compounds with biological activities such as fungicide, herbicide, antibiotic, and insecticide have been described.7272 Jeschke, P.; Pest Manage. Sci.2010, 66, 10.

73 Gribble, G. W.; Naturally Occurring Organohalogen Compounds - A Comprehensive Update; Springer: Vienna, 2010.
-7474 Smith, D. R. M.; Gruschow, S.; Goss, R. J. M.; Curr. Opin. Chem. Biol.2013, 17, 276.

Conclusions

In summary, we have synthesized and determined the insecticidal activity of ten lactones. The agrochemicals 9a + 9b, 9b, and 8a + 8b at the concentration of 45.2 µmol g-1 insect were the most active against D. hyalinata killing 84.8, 91.3 and 96.3% of the worms, respectively. The activities presented by these lactones were better than the commercial positive control. The lactones 9a + 9b and 9b were selective in favor of non-target organisms. Therefore, these lactones are promising as potential novel agrochemicals for the integrated pest management.

Experimental

General

Reagents and solvents were purified, when necessary, according to the procedures described by Perrin and Armarego.7575 Perrin, D. D.; Armarego, W. L. F.; Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: Oxford, 1988. The reactions were followed by visualizing the thin layer chromatography (TLC) plates coated with silica-gel in an ultraviolet chamber at 254 nm.7676 Alvarenga, E. S.; Saliba, W. A.; Milagres, B. G.; Quim. Nova2005, 28, 927. The furan-2(5H)-one was obtained as previously described.7777 Näsman, J. H.; Org. Synth.1990, 68, 162. The cyclopentadiene was obtained by distillation of dicyclopentadiene commercially available (Sigma-Aldrich) before being used in the Diels-Alder reaction. The 1H, 13C NMR, COSY, HSQC, heteronuclear correlation (HETCOR), heteronuclear multiple-bond correlation (HMBC), NOE difference (NOEDIFF), and NOESY spectra were recorded on a Varian Mercury 300 instrument (300 MHz), using deuterated chloroform as solvent. Infrared (IR) spectra were recorded on a Varian 660-IR, equipped with GladiATR scanning from 4000 to 500 cm-1. Mass spectra (MS) were recorded on a Shimadzu GCMSQP5050A instrument under electron impact (70 eV) conditions. Melting points are uncorrected and were obtained using MQAPF-301 melting point apparatus (Microquímica). Column chromatography was performed over silica gel (60-230 mesh).

Synthesis of lactones

(3aR,4S,7R,7aS)- and (3aS,4R,7S,7aR)-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1(3H)-one (2) and (3aS,4S,7R,7aR)-and (3aR,4R,7S,7aS)-3a,4,7,7a-tetrahydro-4,7-methanoisobenzo-furan-1(3H)-one (3)

Furan-2(5H)-one 1 (1.0012 g, 11.9 mmol) and cyclopentadiene (8.1 g, 0.12 mol) have been added to a sealed tube. The resulting reaction mixture has been magnetically stirred and heated at 100 ºC for 72 h. The excess of cyclopentadiene has been evaporated, and the crude product was purified by column chromatography (eluent: hexane: ethyl acetate 2:1 v/v) to give 1.139 g (66% yield) of 2 and 0.363 g (18% yield) of 3.

Data for compound 2

White solid; TLC Rf = 0.44 (hexane:ethyl acetate 2:1 v/v); m.p. 119.8-120.6 ºC; IR (film) νmax / cm-1 3065, 2097, 2873, 1765, 1481, 1381, 1345, 1185, 1001; 1H NMR (300 MHz, CDCl3) δ 1.46 (d, 1H, J 8.6 Hz, H8), 1.64 (d, 1H, J 8.6 Hz, H8'), 3.04-3.15 (m, 2H, H3a and H4), 3.25 (dd, 1H, J 9.2, 4.6 Hz, H7a), 3.30-3.36 (m, 1H, H7), 3.79 (dd, 1H, J 9.7, 3.1 Hz, H3'), 4.28 (dd, 1H, J 9.7, 8.3 Hz, H3), 6.25-6.33 (m, 2H, H5 and H6); 13C NMR (75 MHz, CDCl3) δ 40.1 (C3a), 45.6 (C7), 46.0 (C4), 47.4 (C7a), 51.7 (C8), 70.2 (C3), 134.3 (C5), 136.7 (C6), 178.0 (C1); MS m/z (%) 91 (7), 85 (11), 66 (100).

Data for compound 3

Colorless oil; TLC Rf = 0.56 (hexane:ethyl acetate 2:1 v/v); IR (film) νmax / cm-1 3061, 2974, 2909, 1761, 1485, 1381, 1185, 1005; 1H NMR (300 MHz, CDCl3) δ 1.47 (dt, 1H, J 9.8, 1.7 Hz, H8), 1.55 (dquint, 1H, J 9.8, 1.7 Hz, H8'), 2.51-2.60 (m, 1H, H3a), 2.65 (dt, 1H, J 8.5, 1.7 Hz, H7a), 2.90 (sl, 1H, H4), 3.27 (sl, 1H, H7), 3.96 (dd, 1H, J 9.8, 3.5 Hz, H3'), 4.48 (dd, 1H, J 9.8, 8.7 Hz, H3), 6.18 (dd, 1H, J 5.7, 3.0 Hz, H5) 6.23 (dd, 1H, J 5.7, 3.0 Hz, H6); 13C NMR (75 MHz, CDCl3) δ 41.7 (C3a), 43.1 (C8), 46.2 (C7), 47.8 (C7a), 48.0 (C4), 71.7 (C3), 137.3 (C6), 137.6 (C5), 177.6 (C1); MS m/z (%) 150 ([M]+, 1), 91 (7), 85 (10), 66 (100).

(3aR,4R,5R,6S,7S,7aR)- and (3aS,4S,5S,6R,7R,7aS)-5,6-epoxyhexahydro-4,7-methanoisobenzofuran-1(3H)-one (4)

meta-Chloroperbenzoic acid (MCPBA) (2.6366 g of MCPBA 70%, 15.2 mmol) was added portionwise to a round-bottom flask containing phthalide 2 (1.1386 g, 7.59 mmol) and dichloromethane (100 mL). The reaction mixture was stirred for 15 h and quenched with aqueous Na2SO3 solution (20%, 100 mL). The mixture was extracted with diethyl ether (3 × 100 mL), and the combined organic layers were washed with aqueous NaHCO3 solution (10%, 100 mL) and brine until neutral. The organic layer was dried with anhydrous MgSO4 and filtered. After evaporation of solvent, the product mixture was purified by column chromatography with silica-gel using hexane:ethyl acetate 1:1 as eluent to give 1.238 g of 4 (98% yield): white solid; TLC Rf = 0.36 (hexane:ethyl acetate 1:1 v/v); m.p. 120.9-121.7 ºC; IR (film) νmax / cm-1 2997, 2961, 1761, 1381, 1193, 1001, 849; 1H NMR (300 MHz, CDCl3) δ 0.96 (d, 1H, J 10.2 Hz, H8), 1.56 (d, 1H, J 10.2 Hz, H8'), 2.70-2.74 (m, 1H, H4), 2.95-2.99 (m, 1H, H7), 2.99-3.06 (m, 1H, H3a), 3.11 (dd, 1H, J 10.3, 5.0 Hz, H7a), 3.32-3.36 (m, 2H, H5 and H6), 4.26-4.41 (m, 2H, H3 and H3'); 13C NMR (75 MHz, CDCl3) δ 29.3 (C8), 39.2 (C7), 39.9 (C4), 41.3 (C3a), 45.5 (C7a), 47.3 (C5)*, 48.5 (C6)*, 67.6 (C3), 176.7 (C1); MS m/z (%) 138 (11), 110 (13), 109 (20), 92 (17), 91 (25), 82 (42), 81 (100), 80 (11), 79 (49), 78 (19), 77 (45), 70 (27), 69 (57), 66 (17), 65 (14), 55 (17), 54 (27), 53 (29), 51 (21), 41 (22), 40 (12). *These assignments could be reversed.

(3aS,4R,5R,6S,7S,7aS)- and (3aR,4S,5S,6R,7R,7aR)-5,6-epoxyhexahydro-4,7-methanoisobenzofuran-1(3H)-one (5)

Epoxide 5 was obtained (137.5 mg) in 83% yield by reaction of lactone 3 (150 mg, 1.0 mmol) with 70% MCPBA (346.8 mg, 2.0 mmol), by following the same procedure described for lactone 4: white solid; TLC Rf = 0.30 (hexane:ethyl acetate 1:1 v/v); m.p. 112.9-113.4 ºC; IR (film) νmax / cm-1 2969, 1769, 1385, 1189, 1001, 853; 1H NMR (300 MHz, CDCl3) δ 0.87 (dm, 1H, J 11.2 Hz, H8), 1.42 (dquint, 1H, J 11.2, 1.9 Hz, H8'), 2.57 (sl, 1H, H4), 2.61 (ddt, 1H, J 8.9, 3.6, 1.9 Hz, H3a), 2.65-2.70 (m, 1H, H7a), 3.94 (sl, 1H, H7), 3.16 (d, 1H, J 4.4 Hz, H5), 3.26 (d, 1H, J 4.4 Hz, H6) 3.97 (dd, 1H, J 9.7, 3.6 Hz, H3'), 4.49 (dd, 1H, J 9.7, 8.9 Hz, H3); 13C NMR (75 MHz, CDCl3) δ 21.3 (C8), 39.1 (C3a), 41.6 (C7), 43.2 (C4), 45.6 (C7a), 50.5 (C5), 50.9 (C6), 71.4 (C3), 177.3 (C1); MS m/z (%) 93 (21), 91 (27), 82 (92), 81 (100), 79 (34), 77 (43), 66 (12), 65 (11), 54 (22), 53 (21), 51 (18), 41 (15), 40 (9).

(3aR,4R,7S,7aS)- and (3aS,4S,7R,7aR)-hexahydro-4,7-methanoisobenzofuran-1(3H)-one (6)

To a 25 mL round-bottom flask were added compound 2 (0.1024 g, 0.68 mmol), ethanol (10 mL) and Pd/C 10% (7.3 mg). The resulting mixture was stirred under hydrogen atmosphere for 1 h. After the solvent evaporation the residue was purified by column chromatography with silica-gel using hexane:ethyl acetate 1:1 as eluent to give 73.1 mg of 6 (70% yield): white solid; TLC Rf = 0.63 (hexane:ethyl acetate 1:1 v/v); m.p. 64.8-65.6 ºC; IR (film) νmax / cm-1 2961, 2881, 1761, 1485, 1381, 1172, 1069, 997; 1H NMR (300 MHz, CDCl3) δ 1.50-1.63 (m, 6H, H5, H6, H8 and H8'), 2.34-2.40 (m, 1H, H4), 2.64-2.69 (m, 1H, H7), 2.80-3.92 (m, 1H, H3a), 2.98 (dd, 1H, J 11.2, 5.7 Hz, H7a) 4.21-4.34 (m, 2H, H3 and H3'); 13C NMR (75 MHz, CDCl3) δ 21.5 (C5)*, 25.4 (C6)*, 39.8 (C7), 40.3 (C4), 41.9 (C8/C3a), 46.7 (C7a), 68.4 (C3), 178.8 (C1); MS m/z (%) 93 (13), 91 (12), 85 (40), 80 (33), 79 (31), 77 (15), 68 (12), 67 (32), 66 (100), 65 (10), 53 (9), 41 (19). *These assignments could be reversed.

(3aS,4R,7S,7aR)- and (3aR,4S,7R,7aS)-hexahydro-4,7-methanoisobenzofuran-1(3H)-one (7)

Product 7 was obtained (197.8 mg, 1.30 mmol) in 92% yield by reaction of lactone 3 (0.2132 mg, 1.42 mmol) and Pd/C 10% (14.2 mg) under hydrogen atmosphere, by using the same procedure described for the synthesis of lactone 6: white solid; TLC Rf = 0.30 (hexane:ethyl acetate 1:1 v/v); m.p. 112.9-113.4 ºC; IR (film) νmax / cm-1 2969, 1769, 1385, 1189, 1001, 853; 1H NMR (300 MHz, CDCl3) δ 1.15-1.38 (m, 4H, H5, H6, H8 and H8'), 1.45-1.67 (m, 2H, H5' and H6'), 2.24-2.28 (m, 1H, H4), 2.42 (tdd, 1H, J 8.7, 3.6, 1.3 Hz, H3a), 2.51 (dt, 1H, J 8.7, 1.3 Hz, H7a), 2.65-2.69 (1H, m, H7), 3.89 (dd, 1H, J 9.5, 3.8 Hz, H3'), 4.43 (dd, 1H, J 9.5, 9.0 Hz, H3); 13C NMR (75 MHz, CDCl3) δ 27.1 (C5)*, 27.8 (C6)*, 33.4 (C8), 40.5 (C7), 41.7 (C3a), 42.6 (C4), 48.0 (C7a), 72.9 (C3), 179.6 (C1); MS m/z (%) 152 ([M]+, 14), 93 (19), 91 (11), 85 (10), 81 (10), 80 (100), 79 (72), 78 (11), 77 (20), 68 (17), 67 (39), 66 (86), 64 (15), 54 (14), 53 (13), 51 (10), 41 (27), 40 (10). *These assignments could be reversed.

(3aR,4R,5S,6S,7S,7aS)- and (3aS,4S,5R,6R,7R,7aR)-5,6-dichlorohexahydro-4,7-methanoisobenzofuran-1(3H)-one (8a) and (3aR,4R,5R,6R,7S,7aS)- and (3aS,4S,5S,6S,7R,7aR)-5,6-dichlorohexahydro-4,7-methanoisobenzofuran-1(3H)-one (8b)

Chlorine was bubbled for 20 min into a solution of lactone 3 (537.1 mg, 3.58 mmol) δissolved in dichloromethane (20 mL). The chlorine was produced by adding concentrated HCl to a two-neck round-bottom flask containing MnO2 under vigorous stirring. The progress of the reaction was checked by TLC, and the mixture was stirred until all the substrate was fully consumed. The solvent was evaporated and the pure product was obtained after column chromatography packed with silica-gel using hexane:diethyl ether 1:1 as eluent to give 0.2761 g (35% yield) of 8a and 0.0575 g (7% yield) of 8b.

Data for compound 8a

Colorless oil; TLC Rf = 0.37 (hexane:ether 1:1 v/v); IR (film) νmax / cm-1 2981, 2913, 1769, 1485, 1385, 1273, 1189, 1052, 1009, 945, 812, 776, 689, 641, 480; 1H NMR (300 MHz, CDCl3) δ 1.55-1.64 (m, 1H, H8), 2.00 (dquint, 1H, J 12.1, 1.6 Hz, H8'), 2.53-2.58 (m, 1H, H4), 2.70 (d, 1H, J 8.9 Hz, H7a), 2.86 (sl, 1H, H7), 3.20 (tdd, 1H, J 8.9, 3.7, 1.6 Hz, H3a), 3.74 (t, 1H, J 3.0 Hz, H6), 3.97 (dd, 1H, J 9.7, 3.7 Hz, H3'), 4.24 (dd, 1H, J 4.0, 3.0 Hz, H5), 4.56 (t, 1H, J 9.7 Hz, H3); 13C NMR (75 MHz, CDCl3) δ 30.4 (C8), 33.6 (C3a), 45.6 (C7a), 49.3 (C4), 49.6 (C7), 66.5 (C6), 67.4 (C5), 71.6 (C3), 177.3 (C1); MS m/z (%) 224 ([M+4]+, 0.22), 222 ([M+2]+, 1.21), 220 ([M]+, 1.70), 141 (12), 105 (29), 91 (25), 80 (100), 79 (52), 78 (11), 77 (23), 66 (38), 65 (42), 63 (19), 53 (17), 52 (15), 51 (44), 50 (15), 49 (10), 41 (15), 40 (13).

Data for compound 8b

Colorless oil; TLC Rf = 0.31 (hexane:ether 1:1 v/v); IR (film) νmax / cm-1 2975, 2911, 1769, 1485, 1385, 1189, 1048, 1009, 821, 785, 653, 493; 1H NMR (300 MHz, CDCl3) δ 1.57-1.66 (m, 1H, H8), 2.03 (dquint, 1H, J 12.1, 1.7 Hz, H8'), 2.49 (sl, 1H, H4), 2.61 (tdd, 1H, J 9.0, 3.7, 1.7 Hz, H3a), 2.93-2.97 (m, 1H, H7), 3.27 (dt, 1H, J 9.0, 1.7 Hz, H7a), 3.70 (t, 1H, J 2.7 Hz, H5), 3.97 (dd, 1H, J 9.9, 3.7 Hz, H3'), 4.30 (dd, 1H, J 4.1, 2.7 Hz, H6), 4.54 (dd, 1H, J 9.9, 9.2 Hz, H3); 13C NMR (75 MHz, CDCl3) δ 30.5 (C8), 39.3 (C3a), 47.5 (C7a), 47.6 (C7), 52.1 (C4), 66.3 (C5), 67.2 (C6), 71.5 (C3), 178.6 (C1); MS m/z (%) 224 ([M+4]+, 0.31), 222 ([M+2]+, 1.88), 220 ([M]+, 2.87), 141 (13), 105 (50), 91 (40), 80 (100), 79 (72), 78 (16), 77 (31), 75 (12), 66 (66), 65 (65), 63 (31), 53 (25), 52 (22), 51 (74), 50 (27), 49 (20), 41 (23), 40 (24).

(3aS,4R,5S,6S,7S,7aR)- and (3aR,4S,5R,6R,7R,7aS)-5,6-dibromohexahydro-4,7-methanoisobenzofuran1(3H)-one (9a) and (3aS,4R,5R,6R,7S,7aR)- and (3aR,4S,5S,6S,7R,7aS)-5,6-dibromohexahydro-4,7-methanoisobenzofuran-1(3H)-one (9b)

The phthalide 3 (420.3 mg, 2.80 mmol) was dissolved in dichloromethane (20 mL) in a round-bottom flask with a magnetic stirring bar. Then a solution of bromine in dichloromethane was added dropwise using a Pasteur pipette. The reaction mixture was stirred until the substrate was fully consumed. When the reaction was completed by TLC (1 h), the mixture was concentrated. The product mixture was purified by column chromatography with silica-gel using hexane:diethyl ether 1:1 to give 0.1952 g (23% yield) of 9a and 0.1858 g (21% yield) of 9b.

Data for compound 9a

Colorless oil; TLC Rf = 0.31 (hexane:diethyl ether 1:1 v/v); IR (film) νmax / cm-1 2976, 2917, 1761, 1475, 1457, 1371, 1180, 1052, 996, 754, 677, 605, 543, 466; 1H NMR (300 MHz, CDCl3) δ 1.56-1.64 (m, 1H, H8), 2.08 (d, 1H, J 12.1 Hz, H8'), 2.55 (d, 1H, J 3.7 Hz, H4), 2.72 (d, 1H, J 8.9 Hz, H7a), 2.92 (s, 1H, H7), 3.22 (tdd, 1H, J 8.9, 3.7, 1.9 Hz, H3a), 3.88 (t, 1H, J 3.0 Hz, H6), 3.96 (dd, 1H, J 9.9, 3.6 Hz, H3'), 4.43 (t, 1H, J 3.7 Hz, H5), 4.56 (t, 1H, J 9.6 Hz, H3); 13C NMR (75 MHz, CDCl3) δ 30.6 (C8), 35.7 (C3a), 46.2 (C7a), 50.0 (C4/C7), 56.0 (C6), 58.0 (C5), 71.7 (C3), 177.0 (C1); MS m/z (%) 231 (33), 229 (35), 106 (31), 105 (100), 92 (11), 91 (60), 80 (19), 79 (48), 78 (22), 77 (40), 66 (86), 65 (85), 63 (36), 53 (28), 52 (32), 51 (78), 50 (34), 41 (26), 40 (33) .

Data for compound 9b

Colorless oil; TLC Rf = 0.29 (hexane:diethyl ether 1:1 v/v); IR (film) νmax / cm-1 2977, 2911, 1761, 1478, 1380, 1180, 1053, 1009, 757, 613, 485; 1H NMR (300 MHz, CDCl3) δ 1.60-1.66 (m, 1H, H8), 2.13 (dquint, 1H, J 12.1, 1.8 Hz, H8'), 2.55 (sl, 1H, H4), 2.63 (tdd, 1H, J 8.7, 3.6, 1.8 Hz, H3a), 2.92-2.96 (m, 1H, H7), 3.31 (ddd, 1H, J 8.7, 1.8, 1.8 Hz, H7a), 3.85 (t, 1H, J 2.9 Hz, H5), 3.97 (dd, 1H, J 10.0, 3.6 Hz, H3'), 4.47-4.56 (m, 2H, H3 and H6); 13C NMR (75 MHz, CDCl3) δ 30.8 (C8), 40.0 (C3a), 43.0 (C7a), 48.3 (C7), 52.6 (C4), 55.9 (C5), 57.6 (C6), 71.6 (C3), 178.6 (C1); MS m/z (%) 231 (40), 229 (43), 106 (29), 105 (100), 91 (60), 80 (16), 79 (45), 78 (21), 77 (34), 66 (79), 65 (73), 63 (31), 55 (14), 53 (23), 52 (24), 51 (68), 50 (28), 41 (26), 40 (30).

Biological assays

Biological assays were conducted with second-instar larvae of D. hyalinata and adults of S. saevissima and T. angustula. Larvae of D. hyalinata were obtained from a laboratory rearing and adults of S. saevissima and T. angustula were collected from nests located at the University campus.

Screening bioassay for D. hyalinata

The experimental design was completely randomized with six replications. Each experimental unit consisted of a glass petri dish (9.5 cm × 2.0 cm) containing ten insects. The average weights of the insects were obtained by measuring, on an analytical balance, the mass of ten insects and taking the average. Bioassays were conducted by topical application. A 10 µL Hamilton micro syringe was employed to apply, on the thoracic tergite of each individual insect, 0.5 µL of a solution of the test compound, dissolved in acetone, corresponding to a concentration of 45.2 µmol g-1 insect. In a negative control experiment, carried out under the same conditions, 0 .5 µL of acetone was applied on each insect. After the application, the insects were kept in individual petri dishes containing discs of chayote leaf as food. The petri dishes were placed in an incubator at 25 ± 0 .5 ºC and 75 ± 5% relative humidity with a photoperiod of 12 h. The mortality counts were made after 6, 12, 24 and 48 h of treatment. Mortalities included dead individuals as well as those without movements. The insecticidal activity of piperine (Sigma-Aldrich) was taken as positive control.

Dose-mortality bioassays for D. hyalinata

The most active lactones against D. hyalinata were subjected to experiments to obtain dose-mortality curves. The experimental design was completely randomized with six replications. Each experimental unit consisted of a glass petri dish (9.5 cm × 2.0 cm) containing ten insects. Initially, four doses of each compound were tested to identify the range of concentrations that would provide mortalities greater than zero and less than 100%. Once the ranges of concentrations were defined, other doses were tested for each compound. The number of doses used to obtain the dose-mortality curves varied from five to seven. Bioassays were conducted by topical application using the same procedure described above.

Time-mortality bioassays for D. hyalinata

The most active lactones were subjected to experiments to obtain curves of survival. The experimental design was completely randomized with twelve replicates. Each experimental unit consisted of ten insects kept on a glass Petri dish (9 cm diameter × 2 cm height) covered with organza. Bioassays were conducted by the same procedure as that described above. The dose used was equivalent to LD90 obtained for the three most active lactones. Insect mortality was observed every 30 min during the initial 12 h exposure followed by 5 h intervals of observation until the death of approximately 90% of insects' populations.

Risk assessment to non-target insects

To determine the magnitude of selectivity of the compounds, LD90 for the most active lactones against D. hyalinata were applied to beneficial insects. The experimental design was completely randomized with six replications. Bioassays were conducted using the same procedure to that described above . T. angustula was subjected to a photoperiod of 12 h while S. saevissima was kept in the dark during the experiment. After application, the insects were kept in individual Petri dishes, containing a mixture of sugar (85%), honey (15%) and water as food. The mortality counts have been made after 6, 12, 24 and 48 h after treatment.

Data analysis

Mortality data were subjected to analysis of variance, and the averages were compared by the Scott-Knott grouping analysis test (p < 0 .05). Dose-mortality data of active compounds were corrected by Abbott's method7878 Abbott, W. S.; J. Econ. Entomol.1925, 18, 265. and then subjected to probit analysis7979 Finney, D. J.; Probit Analysis; Cambridge University Press: London, 1971. using PROC PROBIT procedure of Statistical Analysis System (SAS) program8080 SAS Institute Inc.; SAS/STAT User's Manual, version 9.4; SAS Institute Inc.: Cary, NC, 2013. to estimate dose-mortality curves. The curves that presented probabilities greater than 0.05 by the χ22 Paula, V. F.; Barbosa, L. C. A.; Teixeira, R. R.; Picanço, M. C.; Silva, G. A.; Pest Manage. Sci.2008, 64, 863. test8181 Young, L. J.; Young, J. H.; Statistical Ecology: A Population Perspective; Kluwer Academic: Boston, 1998. were accepted. These curves were used to estimate the lethal dose (LD) that causes 50 and 90% mortalities. Time-mortality data were subjected to survival analysis (p < 0.05) with non-parametric Kaplan-Meier estimator8282 Kaplan, E. L.; Meier, P.; J. Am. Stat. Assoc.1958, 53, 457. using LIFETEST procedure.8080 SAS Institute Inc.; SAS/STAT User's Manual, version 9.4; SAS Institute Inc.: Cary, NC, 2013. The survival curves constructed were compared by log-rank test (p < 0.05) and the median survival times (LT50) of the larvaes were estimated. To evaluate the selectivity, mortality of non-target species were compared with pest mortality by t-test for independent samples (p < 0.05).

  • Supplementary Information
    Supplementary data are available free of charge at http://jbcs.sbq.org.br as PDF file.

Acknowledgments

We are grateful to FAPEMIG, CNPq, and CAPES for financial support.

References

  • 1
    Moreira, M. D.; Picanço, M. C.; Barbosa, L. C. A.; Guedes, R. N. C.; Barros, E. C.; Campos, M. R.; Pest Manage. Sci.2007, 63, 615.
  • 2
    Paula, V. F.; Barbosa, L. C. A.; Teixeira, R. R.; Picanço, M. C.; Silva, G. A.; Pest Manage. Sci.2008, 64, 863.
  • 3
    Bavaresco, A.; Acta Sci., Agron.2007, 29, 309.
  • 4
    Pesquero, M. A.; Vaz, A. P. A.; Arruda, F. V.; Sociobiology2013, 60, 484.
  • 5
    Moreno, S. C.; Carvalho, G. A.; Picanço, M. C.; Morais, E. G. F.; Pereira, R. M.; Pest Manage. Sci.2011, 68, 386.
  • 6
    Way, M. J.; Khoo, K. C.; Annu. Rev. Entomol.1992, 37, 479.
  • 7
    Ratnieks, F. L. W.; Carreck, N. L.; Science2010, 327, 152.
  • 8
    Decourtye, A.; Mader, E.; Desneux, N.; Apidologie2010, 41, 264.
  • 9
    Neumann, P.; Carreck, N. L.; J. Apic. Res.2010, 49, 1.
  • 10
    Johnson, R. M.; Ellis, M. D.; Mullin, C. A.; Frazier, M.; Apidologie2010, 41, 312.
  • 11
    Blacquiere, T.; Smagghe, G.; van Gestel, C. A. M.; Mommaerts, V.; Ecotoxicology2012, 21, 973.
  • 12
    Laycock, I.; Lenthall, K. M.; Barratt, A. T.; Cresswell, J. E.; Ecotoxicology2012, 21, 1937.
  • 13
    Whitehorn, P. R.; O'Connor, S.; Wackers, F. L.; Goulson, D.; Science2012, 336, 351.
  • 14
    Gill, R. J.; Ramos-Rodriguez, O.; Raine, N. E.; Nature2012, 491, 105.
  • 15
    Goulson, D.; J. Appl. Ecol.2013, 50, 977.
  • 16
    Feltham, H.; Park, K.; Goulson, D.; Ecotoxicology2014, 23, 317.
  • 17
    Gill, R. J.; Raine, N. E.; Funct. Ecol.2014, 28, 1459.
  • 18
    Breeze, T. D.; Bailey, A. P.; Balcombe, K. G.; Potts, S. G.; Agric., Ecosyst. Environ.2011, 142, 137.
  • 19
    Klein, A. M.; Vaissiere, B. E.; Cane, J. H.; Steffan, D. I.; Cunningham, S. A.; Kremen, C.; Tscharntke, T.; Proc. R. Soc. London, Ser. B2007, 274, 303.
  • 20
    Hajjar, R.; Jarvis, D. I.; Gemmill, H. B.; Agric., Ecosyst. Environ.2008, 123, 261.
  • 21
    Thomas, J. A.; Telfer, M. G.; Roy, D. B.; Preston, C. D.; Greenwood, J. J. D.; Asher, J.; Fox, R.; Clarke, R. T.; Lawton, J. H.; Science2004, 303, 1879.
  • 22
    Hooper, D. U.; Chapin, F. S.; Ewel, J. J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J. H.; Lodge, D. M.; Loreau, M.; Naeem, S.; Schmid, B.; Setala, H.; Symstad, A. J.; Vandermeer, J.; Wardle, D. A.; Ecol. Monogr.2005, 75, 3.
  • 23
    Desneux, N.; Decourtye, A.; Delpuech, J. M.; Annu. Rev. Entomol.2007, 52, 81.
  • 24
    Stara, J.; Ourednickova, J.; Kocourek, F.; J. Pest Sci.2011, 84, 25.
  • 25
    Bengochea, P.; Amor, F.; Saelices, R.; Hernando, S.; Budia, F.; Adán, A.; Medina, P.; Chemosphere2013, 91, 1189.
  • 26
    Gentz, M. C.; Murdoch, G.; King, G. F.; Biol. Control2010, 52, 208.
  • 27
    Preetha, G.; Stanley, J.; Suresh, S.; Samiyappan, R.; Chemosphere2010, 80, 498.
  • 28
    Alvarenga, E. S.; Silvério, F. O.; Picanço, M. C.; Moreno, S. C.; Br PI 0705674-5A2, 2009
  • 29
    Silvério, F. O.; Alvarenga, E. S.; Moreno, S. C.; Picanço, M. C.; Pest Manage. Sci.2009, 65, 900.
  • 30
    Metcalf, R. L.; Annu. Rev. Entomol.1980, 25, 219.
  • 31
    Wilson, R. M.; Danishefsky, S. J.; J. Org. Chem.2006, 71, 8329.
  • 32
    Logrado, L. P. L.; Santos, C. O.; Romeiro, L. A. S.; Costa, A. M.; Ferreira, J. R. O.; Cavalcanti, B. C.; Moraes, O. M.; Lotufo, L. V. C.; Pessoa, C.; Santos, M. L.; Eur. J. Med. Chem.2010, 45, 3480.
  • 33
    Chan, S. S. K.; Cheng, T. Y.; Lin, G.; J. Ethnopharmacol.2007, 111, 677.
  • 34
    Du, J.; Yu, Y.; Ke, Y.; Wang, C.; Zhu, L.; Qian, Z. M.; J. Ethnopharmacol.2007, 112, 211.
  • 35
    Shao, M.; Qu, K.; Liu, K.; Zhang, Y.; Zhang, L.; Lian, Z.; Chen, T.; Liu, J.; Wu, A.; Tang, Y.; Zhu, H.; Planta Med.2011, 77, 809.
  • 36
    Huang, J.; Lu, X. Q.; Zhang, C.; Lu, J.; Li, G. Y.; Lin, R. C.; Wang, J. H.; Fitoterapia2013, 91, 21.
  • 37
    Wei, Q.; Yang, J.; Ren, J.; Wang, A.; Ji, T.; Su, Y.; Fitoterapia2014, 93, 226.
  • 38
    Dayan, F. E.; Cantrell, C. L.; Duke, S. O.; Bioorg. Med. Chem. Lett.2009, 17, 4022.
  • 39
    Xu, H.; Xiao, X.; Wang, Q. T.; Bioorg. Med. Chem. Lett.2010, 20, 5009.
  • 40
    Sreelatha, T.; Hymavathi, A.; Rao, V. R. S.; Devanand, P.; Rani, P. U.; Rao, M.; Babu, K. S.; Bioorg. Med. Chem. Lett.2010, 20, 549.
  • 41
    Miyazawa, M.; Tsukamoto, T.; Anzai, J.; Ishikawa, Y.; J. Agric. Food Chem.2004, 52, 4401.
  • 42
    Tsukamoto, T.; Ishikawa, Y.; Miyazawa, M.; J. Agric. Food Chem.2005, 53, 5549.
  • 43
    Momin, R. A.; Nair, M. G. J.; J. Agric. Food Chem.2001, 49, 142.
  • 44
    Kwon, J. H.; Ahn, Y. J.; Pest Manage. Sci.2002, 59, 119.
  • 45
    Copping, L. G.; Duke, S. O.; Pest Manage. Sci.2007, 63, 524.
  • 46
    Alvarenga, E. S.; Teixeira, M. G.; Pimentel, M. F.; Picanço, M. C.; Br PI 102014031753 8, 2014
  • 47
    Park, I. K.; Lee, S. G.; Shin, S. C.; Park, J. D.; Ahn, Y. J.; J. Agric. Food Chem.2002, 50, 1866.
  • 48
    Scott, I. M.; Gagnon, N.; Lesage, L.; Philogene, B. J.; Arnason, J. T.; J. Econ. Entomol.2005, 98, 845.
  • 49
    Krchnak, V.; Waring, K. R.; Noll, B. C.; Moellmann, U.; Dahse, H. M.; Miller, M. J.; J. Org. Chem.2008, 73, 4559.
  • 50
    Tavares, W. S.; Cruz, I.; Petacci, F.; Freitas, S. S.; Serrao, J. E.; Zanuncio, J. C.; J. Med. Plants Res.2011, 5, 5301.
  • 51
    Qu, H.; Yu, X.; Zhi, X.; Lv, M.; Xu, H.; Bioorg. Med. Chem. Lett.2013, 23, 5552.
  • 52
    Paula, V. F.; Barbosa, L. C. A.; Demuner, A. J.; Pilo-Veloso, D.; Picanço, M. C.; Pest Manage. Sci.2000, 56, 168.
  • 53
    Batista-Pereira, L. G.; Castral, T. C.; Silva, M. T. M.; Amaral, B. R.; Fernandes, J. B.; Vieira, P. C.; Silva, M. F. G. F.; Corrêa, A. G.; Z. Naturforsch., C: J. Biosci.2006, 61, 196.
  • 54
    Ahern, J. R.; Whitney, K. D.; Ann. Bot.2014, 113, 731.
  • 55
    Bidart-Bouzat, M. G.; Kliebenstein, D. J.; J. Chem. Ecol.2008, 34, 1026.
  • 56
    Berenbaum, M. R.; Zangerl, A. R.; Nitao J. K.; Evolution1986, 40, 1215.
  • 57
    Agrawal, A. A.; Evol. Ecol. Res.2005, 7, 651.
  • 58
    Shonle, I.; Bergelson, J.; Evolution2000, 54, 778.
  • 59
    Macel, M.; Klinkhamer, P. G. L.; Evol. Ecol.2010, 24, 237.
  • 60
    Patel, B. K.; Hutt, A. J. In Chirality in Drug Design and Development; Reddy, I. K.; Mehvar, R., eds; Marcel Dekker Inc.: New York, 2004.
  • 61
    Agência Nacional de Vigilância Sanitária (ANVISA); Manual de Protocolo para Testes de Eficácia de Produtos Desinfestantes; Anvisa: Brasília, 2004.
  • 62
    Mills, N. J.; Beers, E. H.; Shearer, P. W.; Unruh, T. R.; Amarasekare, K. G.; Biol. Control,in press, DOI: 10.1016/j.biocontrol.2015.05.006.
    » https://doi.org/10.1016/j.biocontrol.2015.05.006
  • 63
    Symondson, W. O. C.; Sunderland, K. D.; Greenstone, M. H.; Annu. Rev. Entomol.2002, 47, 561.
  • 64
    Pretty, J.; Philos. Trans. R. Soc., B2008, 363, 447.
  • 65
    Shennan, C.; Philos. Trans. R. Soc., B2008, 363, 717.
  • 66
    Biondi, A.; Desneux, N.; Siscaro, G.; Zappalà, L.; Chemosphere2012, 87, 803.
  • 67
    Jones, V. P.; Horton, D. R.; Mills, N. J.; Unruh, T. R.; Baker, C. C.; Melton, T. D.; Milickzy, E.; Steffan, S. A.; Shearer, P. W.; Amarasekare, K. G.; Biol. Control,in press, DOI: 10.1016/j.biocontrol.2015.03.009.
    » https://doi.org/10.1016/j.biocontrol.2015.03.009
  • 68
    Garibaldi, L. A.; Steffan-Dewenter, I.; Winfree, R.; Aizen, M. A.; Bommarco, R.; Cunningham, S. A.; Kremen, C.; Carvalheiro, L. G.; Harder, L. D.; Afik, O.; Bartomeus, I.; Benjamin, F.; Boreux, V.; Cariveau, D.; Chacoff, N. P.; Dudenhöffer, J. H.; Freitas, B. M.; Ghazoul, J.; Greenleaf, S.; Hipólito, J.; Holzschuh, A.; Howlett, B.; Isaacs, R.; Javorek, S. K.; Kennedy, C. M.; Krewenka, K. M.; Krishnan, S.; Mandelik, Y.; Mayfield, M. M.; Motzke, I.; Munyuli, T.; Nault, B. A.; Otieno, M.; Petersen, J.; Pisanty, G.; Potts, S. G.; Rader, R.; Ricketts, T. H.; Rundlöf, M.; Seymour, C. L.; Schüepp, C.; Szentgyörgyi, H.; Taki, H.; Tscharntke, T.; Vergara, C. H.; Viana, B. F.; Wanger, T. C.; Westphal, C.; Williams, N.; Klein, A. M.; Science2013, 339, 1608.
  • 69
    Larsen, T. H.; Williams, N. M.; Kremen, C.; Ecol. Lett.2005, 8, 538.
  • 70
    Ollerton, J.; Winfree, R.; Tarrant, S.; Oikos2011, 120, 321.
  • 71
    Sterk, G.; Hassan, S. A.; Baillod, M.; Bakker, F.; Bigler, F.; Blümel, S.; Bogenschütz, H.; Boller, E.; Bromand, B.; Brun, J.; Calis, J. N. M.; Coremans-Pelseneer, J.; Duso, C.; Garrido, A.; Grove, A.; Heimbach, U.; Hokkanen, H.; Jacas, J.; Lewis, G.; Moreth, L.; Polgasr, L.; Roversti, L.; Samsoe-Petersen, L.; Sauphanor, B.; Schaub, L.; Stäubli, A.; Tuset, J. J.; Vainio, A.; Van de Veire, M.; Viggiani, G.; Viñuela, E.; Vogt, H.; BioControl1999, 44, 99.
  • 72
    Jeschke, P.; Pest Manage. Sci.2010, 66, 10.
  • 73
    Gribble, G. W.; Naturally Occurring Organohalogen Compounds - A Comprehensive Update; Springer: Vienna, 2010.
  • 74
    Smith, D. R. M.; Gruschow, S.; Goss, R. J. M.; Curr. Opin. Chem. Biol.2013, 17, 276.
  • 75
    Perrin, D. D.; Armarego, W. L. F.; Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: Oxford, 1988.
  • 76
    Alvarenga, E. S.; Saliba, W. A.; Milagres, B. G.; Quim. Nova2005, 28, 927.
  • 77
    Näsman, J. H.; Org. Synth.1990, 68, 162.
  • 78
    Abbott, W. S.; J. Econ. Entomol.1925, 18, 265.
  • 79
    Finney, D. J.; Probit Analysis; Cambridge University Press: London, 1971.
  • 80
    SAS Institute Inc.; SAS/STAT User's Manual, version 9.4; SAS Institute Inc.: Cary, NC, 2013.
  • 81
    Young, L. J.; Young, J. H.; Statistical Ecology: A Population Perspective; Kluwer Academic: Boston, 1998.
  • 82
    Kaplan, E. L.; Meier, P.; J. Am. Stat. Assoc.1958, 53, 457.

Data availability

Publication Dates

  • Publication in this collection
    Nov 2015

History

  • Received
    10 July 2015
  • Accepted
    28 Aug 2015
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br