Acessibilidade / Reportar erro

SOYBEAN AGRONOMIC PERFORMANCE AND SOIL PHYSICAL ATTRIBUTES UNDER TRACTOR TRAFFIC INTENSITIES

ABSTRACT

Machinery traffic intensification has been recurrent in intensive agriculture in annual crops, which may lead to structural soil degradation and, consequently, a reduction of its productive capacity. Therefore, this study aimed to assess the influence of tractor traffic intensification on soil physical attributes and soybean yield components. The study was performed in an Oxisol under no-tillage for 10 years, using a randomized block design with five tractor traffic intensities (0, 2, 4, 6, 8, and 12 passes) and five replications. Density, porosity, macroporosity, microporosity, and penetration resistance were assessed in the soil and stem diameter, number of pods per plant, number of grains per pod, grain weight per plant, thousand-grain weight, and grain yield were assessed in the soybean crop. Tractor traffic intensification changed soil physical attributes, which were not limiting factors to soybean yield under the no-tillage system, providing higher stem diameter, number of pods per plant, grain weight per plant, and grain yield after 12 passes.

KEYWORDS
soil compaction; yield components; shoot; soil penetration resistance; machinery traffic

INTRODUCTION

Soybean (Glycine max) is one of the main crops produced in different regions of Brazil. The agricultural sector has been undergoing a profound transformation over the last 40 years with the use of technologies and tools involved in rural property management, aiming to achieve satisfactory levels of yield and profitability. In this scenario, the no-till system has played an essential role in soil conservation and grain yield increase (Trentin et al., 2018Trentin RG, Modolo AJ, Vargas TO, Campos JRR, Adami PF, Baesso MM (2018) Soybean productivity in Rhodic Hapludox compacted by the action of furrow openers. Acta Scientiarum. Agronomy 40(35015):1-9. DOI: http://dx.doi.org/10.4025/actasciagron.v40i1.35015
http://dx.doi.org/10.4025/actasciagron.v...
).

Despite the benefits of no-tillage on resource quality, there are soil compaction problems related to increased traffic from ever larger and heavier machinery in both the topsoil (Bergamin et al., 2010Bergamin AC, Vitorino ACT, Franchini JC, Souza CMA, Souza FR (2010) Compactação de um Latossolo Vermelho Distroférrico e suas relações com o crescimento radicular do milho. Revista Brasileira de Ciência do Solo 34(3):681-691. DOI: http://dx.doi.org/10.1590/S0100-06832010000300009
http://dx.doi.org/10.1590/S0100-06832010...
; Valadão et al., 2015Valadão FCA, Weber OL, Valadão Júnior DD, Scarpinelli A, Deina FR, Bianchini A (2015) Adubação fosfatada e compactação do solo: sistema radicular da soja e do milho e atributos físicos do solo. Revista Brasileira de Ciência do Solo 39(1):243-255. DOI: http://dx.doi.org/10.1590/01000683rbcs20150144
http://dx.doi.org/10.1590/01000683rbcs20...
) and subsurface layers (Kirnak et al., 2017Kirnak H, Gokalp Z, Dogan E, Çopur O (2017) Soil characteristics of soybean fields as effected by compaction, irrigation and fertilization. Legume Research 40(4):691-697. DOI: http://dx.doi.org/10.18805/lr.v0i0.8407
http://dx.doi.org/10.18805/lr.v0i0.8407...
; Sivarajan et al., 2018Sivarajan S, Maharlooeia M, Bajwaa SG, Nowatzkia J (2018) Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil and Tillage Research 175:234-243. DOI: http://dx.doi.org/10.1016/j.still.2017.09.001
http://dx.doi.org/10.1016/j.still.2017.0...
).

Compaction is reported as the main problem of structural soil degradation, changing its physical properties. It changes soil pore space, reducing the macroporosity and total porosity and increasing density and soil penetration resistance (Bergamin et al., 2010Bergamin AC, Vitorino ACT, Franchini JC, Souza CMA, Souza FR (2010) Compactação de um Latossolo Vermelho Distroférrico e suas relações com o crescimento radicular do milho. Revista Brasileira de Ciência do Solo 34(3):681-691. DOI: http://dx.doi.org/10.1590/S0100-06832010000300009
http://dx.doi.org/10.1590/S0100-06832010...
; Valicheski et al., 2012Valicheski RR, Grossklaus Stürmer FSLK, Tramontin AL, Baade ESAS (2012) Desenvolvimento de plantas de cobertura e produtividade da soja conforme atributos físicos em solo compactado. Revista Brasileira de Engenharia Agrícola e Ambiental 16(9):969-977.; Valadão et al., 2015Valadão FCA, Weber OL, Valadão Júnior DD, Scarpinelli A, Deina FR, Bianchini A (2015) Adubação fosfatada e compactação do solo: sistema radicular da soja e do milho e atributos físicos do solo. Revista Brasileira de Ciência do Solo 39(1):243-255. DOI: http://dx.doi.org/10.1590/01000683rbcs20150144
http://dx.doi.org/10.1590/01000683rbcs20...
).

These changes limit root growth and the area explored by the roots (Secco et al., 2009Secco D, Reinert DJ, Reichert JM, Silva VR (2009) Atributos físicos e rendimento de grãos de trigo, soja e milho em dois Latossolos compactados e escarificados. Ciência Rural 39(1):58-64. DOI: http://dx.doi.org/10.1590/S0103-84782009000100010
http://dx.doi.org/10.1590/S0103-84782009...
), reduce water and nutrient absorption (Valadão et al., 2017Valadão FCA, Weber OLS, Valadão Júnior DD, Santin MFM, Scapinelli A (2017) Teor de macronutrientes e produtividade da soja influenciados pela compactação do solo e adubação fosfatada. Revista de Ciências Agrárias 40(1):183-195. DOI: http://dx.doi.org/10.19084/RCA15092
http://dx.doi.org/10.19084/RCA15092...
), hinder gas exchange for infiltration/drainage, decrease the infiltration rate and water flow in the soil (Zambrana et al., 2010Zambrana MOD, Ruiz HA, Silva TCA, Neves JCL, Corrêa GF, Eraso MHR (2010) A compactação de três materiais de solo, na redução da condutividade hidráulica, porosidade do solo e matéria seca de raiz nas culturas de soja e caupi. Revista de Agronomía 37(1):74-84.), reduce growth (Kirnak et al., 2016Kirnak H, Gokalp Z, Dogan E, Çopur O (2016) Effects of irrigation, soil compaction and fertilization treatments on physiological – vegetative characteristics and root development of soybean. Legume Research 39(1):52-60. DOI: http://dx.doi.org/10.18805/lr.v39i1.8864
http://dx.doi.org/10.18805/lr.v39i1.8864...
) and soybean yield components (Trentin et al., 2018Trentin RG, Modolo AJ, Vargas TO, Campos JRR, Adami PF, Baesso MM (2018) Soybean productivity in Rhodic Hapludox compacted by the action of furrow openers. Acta Scientiarum. Agronomy 40(35015):1-9. DOI: http://dx.doi.org/10.4025/actasciagron.v40i1.35015
http://dx.doi.org/10.4025/actasciagron.v...
), and may decrease grain yield (Valadão et al., 2017Valadão FCA, Weber OLS, Valadão Júnior DD, Santin MFM, Scapinelli A (2017) Teor de macronutrientes e produtividade da soja influenciados pela compactação do solo e adubação fosfatada. Revista de Ciências Agrárias 40(1):183-195. DOI: http://dx.doi.org/10.19084/RCA15092
http://dx.doi.org/10.19084/RCA15092...
).

Thus, studies have reported compaction problems in the topsoil under no-tillage (Bergamin et al., 2010Bergamin AC, Vitorino ACT, Franchini JC, Souza CMA, Souza FR (2010) Compactação de um Latossolo Vermelho Distroférrico e suas relações com o crescimento radicular do milho. Revista Brasileira de Ciência do Solo 34(3):681-691. DOI: http://dx.doi.org/10.1590/S0100-06832010000300009
http://dx.doi.org/10.1590/S0100-06832010...
; Valicheski et al., 2012Valicheski RR, Grossklaus Stürmer FSLK, Tramontin AL, Baade ESAS (2012) Desenvolvimento de plantas de cobertura e produtividade da soja conforme atributos físicos em solo compactado. Revista Brasileira de Engenharia Agrícola e Ambiental 16(9):969-977.; Valadão et al., 2015Valadão FCA, Weber OL, Valadão Júnior DD, Scarpinelli A, Deina FR, Bianchini A (2015) Adubação fosfatada e compactação do solo: sistema radicular da soja e do milho e atributos físicos do solo. Revista Brasileira de Ciência do Solo 39(1):243-255. DOI: http://dx.doi.org/10.1590/01000683rbcs20150144
http://dx.doi.org/10.1590/01000683rbcs20...
; Arcoverde et al., 2019aArcoverde SNS, Souza CMA, Suarez AHT, Colman BA, Nagahama HJ (2019a) Atributos físicos do solo cultivado com cana-de-açúcar em função do preparo e época de amostragem. Revista de Agricultura Neotropical 6(1):41-47. DOI: http://dx.doi.org/10.32404/rean.v6i1.2761
http://dx.doi.org/10.32404/rean.v6i1.276...
). The depth of the compacted layer depends on several factors, including machine traffic intensity (Becerra et al., 2010Becerra AT, Botta GF, Bravo XL, Tourn M, Melcon FB, Vasquez J, Rivero D, Linares P, Nardon G (2010) Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchad in Alméria España. Soil and Tillage Research 107(1):49-56. DOI: http://dx.doi.org/10.1016/j.still.2010.02.001
http://dx.doi.org/10.1016/j.still.2010.0...
; Valadão et al., 2015Valadão FCA, Weber OL, Valadão Júnior DD, Scarpinelli A, Deina FR, Bianchini A (2015) Adubação fosfatada e compactação do solo: sistema radicular da soja e do milho e atributos físicos do solo. Revista Brasileira de Ciência do Solo 39(1):243-255. DOI: http://dx.doi.org/10.1590/01000683rbcs20150144
http://dx.doi.org/10.1590/01000683rbcs20...
; Trentin et al., 2018Trentin RG, Modolo AJ, Vargas TO, Campos JRR, Adami PF, Baesso MM (2018) Soybean productivity in Rhodic Hapludox compacted by the action of furrow openers. Acta Scientiarum. Agronomy 40(35015):1-9. DOI: http://dx.doi.org/10.4025/actasciagron.v40i1.35015
http://dx.doi.org/10.4025/actasciagron.v...
), soil texture and mineralogy (Bergamin et al., 2010Bergamin AC, Vitorino ACT, Franchini JC, Souza CMA, Souza FR (2010) Compactação de um Latossolo Vermelho Distroférrico e suas relações com o crescimento radicular do milho. Revista Brasileira de Ciência do Solo 34(3):681-691. DOI: http://dx.doi.org/10.1590/S0100-06832010000300009
http://dx.doi.org/10.1590/S0100-06832010...
), organic matter content (Mujdeci et al., 2017Mujdeci M, Isildar AA, Uygur V, Alaboz P, Unlu H, Senol H (2017) Cooperative effects of field traffic and organic matter treatments on some compaction-related soil properties. Solid Earth 8(1):189-198. DOI: http://dx.doi.org/10.5194/se-8-189-2017
http://dx.doi.org/10.5194/se-8-189-2017...
), soil water content (Kirnak et al., 2017Kirnak H, Gokalp Z, Dogan E, Çopur O (2017) Soil characteristics of soybean fields as effected by compaction, irrigation and fertilization. Legume Research 40(4):691-697. DOI: http://dx.doi.org/10.18805/lr.v0i0.8407
http://dx.doi.org/10.18805/lr.v0i0.8407...
; Trentin et al., 2018Trentin RG, Modolo AJ, Vargas TO, Campos JRR, Adami PF, Baesso MM (2018) Soybean productivity in Rhodic Hapludox compacted by the action of furrow openers. Acta Scientiarum. Agronomy 40(35015):1-9. DOI: http://dx.doi.org/10.4025/actasciagron.v40i1.35015
http://dx.doi.org/10.4025/actasciagron.v...
), mass of agricultural equipment (Cortez et al., 2014Cortez JW, Olszevski N, Pimenta WA, Patrocínio Filho AP, Souza EB, Nagahama HJ (2014) Avaliação da intensidade de tráfego de tratores em alguns atributos de um argissolo amarelo. Revista Brasileira de Ciência do solo 38(3):1000-1010. DOI: http://dx.doi.org/10.1590/S0100-06832014000300032
http://dx.doi.org/10.1590/S0100-06832014...
; Sivarajan et al., 2018Sivarajan S, Maharlooeia M, Bajwaa SG, Nowatzkia J (2018) Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil and Tillage Research 175:234-243. DOI: http://dx.doi.org/10.1016/j.still.2017.09.001
http://dx.doi.org/10.1016/j.still.2017.0...
), inflation pressure, tire type, and tractor mass distribution on the axles (Cunha et al., 2009Cunha JPAR, Cascão VN, Reis EF (2009) Compactação causada pelo tráfego de trator em diferentes manejos Compactação causada pelo tráfego de trator em diferentes manejos. Acta Scientiarum. Agronomy 31(3):371-375. DOI: http://dx.doi.org/10.4025/actasciagron.v31i3.819
http://dx.doi.org/10.4025/actasciagron.v...
; Becerra et al., 2010Becerra AT, Botta GF, Bravo XL, Tourn M, Melcon FB, Vasquez J, Rivero D, Linares P, Nardon G (2010) Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchad in Alméria España. Soil and Tillage Research 107(1):49-56. DOI: http://dx.doi.org/10.1016/j.still.2010.02.001
http://dx.doi.org/10.1016/j.still.2010.0...
; Cortez et al., 2014Cortez JW, Olszevski N, Pimenta WA, Patrocínio Filho AP, Souza EB, Nagahama HJ (2014) Avaliação da intensidade de tráfego de tratores em alguns atributos de um argissolo amarelo. Revista Brasileira de Ciência do solo 38(3):1000-1010. DOI: http://dx.doi.org/10.1590/S0100-06832014000300032
http://dx.doi.org/10.1590/S0100-06832014...
).

Soil density and porosity are considered indicators of the structural soil degradation caused by compaction (Mujdeci et al., 2017Mujdeci M, Isildar AA, Uygur V, Alaboz P, Unlu H, Senol H (2017) Cooperative effects of field traffic and organic matter treatments on some compaction-related soil properties. Solid Earth 8(1):189-198. DOI: http://dx.doi.org/10.5194/se-8-189-2017
http://dx.doi.org/10.5194/se-8-189-2017...
; Trentin et al., 2018Trentin RG, Modolo AJ, Vargas TO, Campos JRR, Adami PF, Baesso MM (2018) Soybean productivity in Rhodic Hapludox compacted by the action of furrow openers. Acta Scientiarum. Agronomy 40(35015):1-9. DOI: http://dx.doi.org/10.4025/actasciagron.v40i1.35015
http://dx.doi.org/10.4025/actasciagron.v...
). Penetration resistance is related to soil density and moisture, reflecting the effects of management on the root environment (Bergamin et al., 2010Bergamin AC, Vitorino ACT, Franchini JC, Souza CMA, Souza FR (2010) Compactação de um Latossolo Vermelho Distroférrico e suas relações com o crescimento radicular do milho. Revista Brasileira de Ciência do Solo 34(3):681-691. DOI: http://dx.doi.org/10.1590/S0100-06832010000300009
http://dx.doi.org/10.1590/S0100-06832010...
; Valadão et al., 2015Valadão FCA, Weber OL, Valadão Júnior DD, Scarpinelli A, Deina FR, Bianchini A (2015) Adubação fosfatada e compactação do solo: sistema radicular da soja e do milho e atributos físicos do solo. Revista Brasileira de Ciência do Solo 39(1):243-255. DOI: http://dx.doi.org/10.1590/01000683rbcs20150144
http://dx.doi.org/10.1590/01000683rbcs20...
). Soil penetration resistance values close to 2 MPa are considered limiting to corn yield (Secco et al., 2009Secco D, Reinert DJ, Reichert JM, Silva VR (2009) Atributos físicos e rendimento de grãos de trigo, soja e milho em dois Latossolos compactados e escarificados. Ciência Rural 39(1):58-64. DOI: http://dx.doi.org/10.1590/S0103-84782009000100010
http://dx.doi.org/10.1590/S0103-84782009...
). However, Marasca et al. (2011)Marasca I, Oliveira CAA, Guimarães EC, Cunha JPAR, Assis RL, Perin A, Menezes LAS (2011) Variabilidade espacial da resistência do solo à penetração e teor de agua em sistema de plantio direto na cultura da soja. Bioscience Journal 27(2):239-246. observed that higher values were not limiting to soybean yield. Kirnak et al. (2017)Kirnak H, Gokalp Z, Dogan E, Çopur O (2017) Soil characteristics of soybean fields as effected by compaction, irrigation and fertilization. Legume Research 40(4):691-697. DOI: http://dx.doi.org/10.18805/lr.v0i0.8407
http://dx.doi.org/10.18805/lr.v0i0.8407...
and Sivarajan et al. (2018)Sivarajan S, Maharlooeia M, Bajwaa SG, Nowatzkia J (2018) Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil and Tillage Research 175:234-243. DOI: http://dx.doi.org/10.1016/j.still.2017.09.001
http://dx.doi.org/10.1016/j.still.2017.0...
found that the intensification of machinery traffic increased soil penetration resistance and density in the subsurface soil layer, with reduced plant height and soybean stem diameter, but without an effect on grain yield. On the other hand, Valadão et al. (2017)Valadão FCA, Weber OLS, Valadão Júnior DD, Santin MFM, Scapinelli A (2017) Teor de macronutrientes e produtividade da soja influenciados pela compactação do solo e adubação fosfatada. Revista de Ciências Agrárias 40(1):183-195. DOI: http://dx.doi.org/10.19084/RCA15092
http://dx.doi.org/10.19084/RCA15092...
found a decrease in soybean grain yield after four tractor passes.

Due to multiple factors involved in soil compaction under the no-tillage system, researches on the subject should be carried out to understand better its relationship with heavy machinery traffic under different soil and climate conditions and assist in carrying out appropriate management practices. For this reason, this study aimed to assess the influence of tractor traffic intensification on soil physical attributes and soybean yield components.

MATERIAL AND METHODS

The experiment was conducted from November 2018 to March 2019 at the Experimental Farm of Agricultural Sciences of the Federal University of Grande Dourados, Dourados, MS, Brazil. The site is located at latitude 22°14′ S, longitude 54°59′ W, and altitude of 434 m. The regional climate is type Am, i.e., a monsoon climate with dry winter, annual mean precipitation of 1500 mm, and annual mean temperature of 22 °C (Alvares et al., 2013Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22(6):711-728. DOI: http://dx.doi.org/10.1127/0941-2948/2013/0507
http://dx.doi.org/10.1127/0941-2948/2013...
). The climate data of temperature and precipitation during the experiment period are shown in Figure 1. Soybean was cultivated in a dystroferric Red Latosol (Embrapa, 2013Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2013) Sistema brasileiro de classificação de solos. Brasília, Embrapa Solos, 353p.), with the following chemical characteristics in the layer from 0.00 to 0.20 m: pH in water of 6.2, Ca2+, Mg2+, Al3+, and K+ of 5.2, 3.2, 0.0, and 0.50 cmolc dm−3, respectively, P of 12.8 mg dm−3, base saturation of 75%, and organic matter of 30 g dm−3. The particle size analysis showed 60% of clay, 15% of silt, and 25% of sand. The area has been cultivated with soybean in the summer and corn in the second crop in succession for approximately 10 years.

FIGURE 1
Precipitation (mm) and minimum, mean, and maximum temperatures per ten-day period from November 2018 (sowing) to March 2019 (harvest) in Dourados, MS, Brazil.

The experimental design consisted of randomized blocks, with five tractor traffic intensities (0, 2, 4, 6, 8, and 12 passes) on a 10-year no-tillage area and five replications, totaling 30 experimental plots. Each plot consisted of 9 soybean rows of 10 m in length, spaced 0.45 m, with a total area of 40.5 m2. The usable area corresponded to the three central rows, with 3.0 m each, in the center of the plot.

The implementation of traffic intensities was carried out in soil with mean water content in the 0.00 to 0.20 m layer of 26.0±1.5% using an NH 8030 tractor, with 89.79 kW (122 hp) engine power, diagonal tire wheels, 1.73 meter rear gauge, 1.83 meter front gauge, and 6.78 Mg mass with ballast and 83 kPa inflation pressure on front tires (14.9-28 R1) and 83 kPa on rear tires (23.1-30 R1). A grass cutter with a 0.5 Mg mass was coupled to the three-point hitch system, which corresponded to 7.28 Mg total mass of the tractor-grass cutter set, whose dynamic distribution was 37% on the front axle and 63% on the rear axle. The front and rear tire contact pressure with the soil was 113 and 109 kPa, respectively, determined according to the method proposed by O'Sullivan et al. (1999)O'sullivan MF, Hanshall JK, Dickson JWAA (1999) simplified method for estimating soil compaction. Soil and Tillage Research 49(4):325-335. DOI: http://dx.doi.org/10.1016/S0167-1987(98)00187-1
http://dx.doi.org/10.1016/S0167-1987(98)...
.

The tractor was shifted in 3rd low gear, with a rotation of 2,200 rpm and a speed of 5.3 km h−1, across the plot area so that the tires compressed areas parallel to each other, with the number of times trafficked as a function of intensity. Traffic was superimposed over the previous one, and every area of each plot was trafficked with equal number of times (Valadão et al., 2015Valadão FCA, Weber OL, Valadão Júnior DD, Scarpinelli A, Deina FR, Bianchini A (2015) Adubação fosfatada e compactação do solo: sistema radicular da soja e do milho e atributos físicos do solo. Revista Brasileira de Ciência do Solo 39(1):243-255. DOI: http://dx.doi.org/10.1590/01000683rbcs20150144
http://dx.doi.org/10.1590/01000683rbcs20...
).

Soybean sowing was carried out in the opposite direction to tractor traffic to ensure that plants reached the entire traffic area. The cultivar Monsoy 6410 IPRO (maturity group 6.4, indeterminate growth, and cycle of 105–120 days) was sown on November 21, 2018, using a nine-row no-till seed-cum-fertilizer drill. The ridger mechanism was removed from the drill not to eliminate the possible negative effects of compaction, using only the cutting disc of the seed metering (Bergamin et al., 2010Bergamin AC, Vitorino ACT, Franchini JC, Souza CMA, Souza FR (2010) Compactação de um Latossolo Vermelho Distroférrico e suas relações com o crescimento radicular do milho. Revista Brasileira de Ciência do Solo 34(3):681-691. DOI: http://dx.doi.org/10.1590/S0100-06832010000300009
http://dx.doi.org/10.1590/S0100-06832010...
). The sowing density was 13 seeds per meter, with a 0.45 m row spacing. Fertilization consisted of the application of 0.4 Mg ha−1 of the formula 05–25–06.

Undisturbed soil samples were collected at the interrows in the 0.00–0.10 and 0.10–0.20 m soil layers at 85 days after sowing, when the crop was at reproductive stage R5 (beginning of grain filling), using metal cylinders of 5.57 cm in diameter and 4.41 cm in height (107.45 cm3) for the determination of soil density, total porosity, macroporosity, and microporosity. These samples were saturated by capillarity to obtain macroporosity, microporosity, and total porosity using a tension table calibrated at 0.006 MPa (Donagema et al., 2011Donagema GK, Campos DVB, Calderano SB, Teixeira WG, Viana JHM (2011) Manual de métodos de análise de solos. Rio de Janeiro, Embrapa Solos, 230p.).

Soil penetration resistance was measured at the useful area of each plot using a PenetroLOG PLG 1020 field penetrometer, with an electronic aptitude for data acquisition. Five sampling points were made at the soybean interrows. After soil penetration resistance determinations, the data stored in the penetrometer were extracted and analyzed to a maximum depth of 0.20 m, where there may be higher effect of agricultural management. Mean values stratified in the 0.00–0.10 and 0.10–0.20 m soil layers were obtained from these data. A deformed soil sample was taken simultaneously to soil penetration resistance determinations from each treatment and assessment layer to determine the water content (Table 1) by the gravimetric method (Donagema et al., 2011Donagema GK, Campos DVB, Calderano SB, Teixeira WG, Viana JHM (2011) Manual de métodos de análise de solos. Rio de Janeiro, Embrapa Solos, 230p.).

TABLE 1
Soil water content (g g−1) when determining soil penetration resistance at the tractor traffic intensities.

Deformed soil samples were collected at a depth of 0.00–0.20 m using a Dutch auger from 93 to 125 days after sowing (soybean harvest), every two days, to determine the water content after oven drying by the gravimetric method (Donagema et al., 2011Donagema GK, Campos DVB, Calderano SB, Teixeira WG, Viana JHM (2011) Manual de métodos de análise de solos. Rio de Janeiro, Embrapa Solos, 230p.). The mean water content in the soil under no-tillage for 10 years (no pass) ranged from 0.26 to 0.34 kg kg−1 (Figure 2), which characterized a good soil water condition during the grain filling period.

FIGURE 2
Mean soil water content under no-tillage for 10 years (no pass) in the 0.00-0.20 m layer, from 93 to 125 days after sowing (DAS) of the soybean crop.

Soybean was harvested at 125 days after sowing, i.e., after physiological maturation, and stem diameter, number of pods per plant, number of grains per pod, and grain weight per plant (GMP, g) were obtained at that time. Stem diameter was measured at its base using a digital caliper. Grain yield (kg ha−1) and thousand-grain weight (TGW, g) were determined by sampling the useful area of each plot, and the plants were threshed on a stationary threshing machine to determine the weight on a digital scale. The variables yield, TGW, and GMP were corrected to a moisture of 13%.

The data of soil physical attributes were subjected to analysis of variance for each soil layer individually. Polynomial regression analysis as a function of tractor traffic intensities was carried out when statistical significance of at least 5% probability was observed. The same analysis procedure was performed for soybean yield components, with regression models selected based on the values of the coefficient of determination and significance (p≤0.01) of the equation parameters. The analyses were performed using the statistical software AGROESTAT (Barbosa & Maldonado Junior, 2015Barbosa JC, Maldonado Junior W (2015) AgroEstat - sistema para análises estatísticas de ensaios agronômicos. Jaboticabal, FCAV/UNESP, 396p.).

RESULTS AND DISCUSSION

Regarding soil physical attributes, after the induction of tractor traffic intensities in the 0.00–0.10 and 0.10–0.20 m layer, a significant effect was observed for macroporosity (Ma), microporosity (Mi), total porosity (Pt), soil density (Ds), and soil penetration resistance (PR) only in the 0.00–0.10 m layer (Table 2).

TABLE 2
F-values, significance, coefficient of variation (CV, %), and mean of physical attributes in the soil layers as a function of tractor traffic intensity.

The 0.00–0.10 m layer showed low mean values of macroporosity with 6 and 12 passes (0.07 and 0.08 m3 m−3), which is lower than the minimum adequate for liquid and gas exchange between the external environment and soil (0.10 m3 m−3) and considered critical for root growth in most crops. In this sense, Rossetti & Centurion (2013)Rossetti KV, Centurion JF (2013) Sistemas de manejo e atributos físico-hídricos de um Latossolo Vermelho cultivado com milho. Revista Brasileira de Engenharia Agrícola e Ambiental 17(5):472-479., Valadão et al. (2015)Valadão FCA, Weber OL, Valadão Júnior DD, Scarpinelli A, Deina FR, Bianchini A (2015) Adubação fosfatada e compactação do solo: sistema radicular da soja e do milho e atributos físicos do solo. Revista Brasileira de Ciência do Solo 39(1):243-255. DOI: http://dx.doi.org/10.1590/01000683rbcs20150144
http://dx.doi.org/10.1590/01000683rbcs20...
, and Valadão et al. (2017)Valadão FCA, Weber OLS, Valadão Júnior DD, Santin MFM, Scapinelli A (2017) Teor de macronutrientes e produtividade da soja influenciados pela compactação do solo e adubação fosfatada. Revista de Ciências Agrárias 40(1):183-195. DOI: http://dx.doi.org/10.19084/RCA15092
http://dx.doi.org/10.19084/RCA15092...
, in studies carried out on clayey dystrophic Red Latosol, and Bergamin et al. (2010)Bergamin AC, Vitorino ACT, Franchini JC, Souza CMA, Souza FR (2010) Compactação de um Latossolo Vermelho Distroférrico e suas relações com o crescimento radicular do milho. Revista Brasileira de Ciência do Solo 34(3):681-691. DOI: http://dx.doi.org/10.1590/S0100-06832010000300009
http://dx.doi.org/10.1590/S0100-06832010...
, with a clayey dystroferric Red Latosol, found macroporosity values of 0.08 and 0.09 m3 m−3, respectively, after 6 tractor passes in the 0.00–0.10 m layer.

Soil density values are below the range of 1.51 to 1.59 Mg m−3 considered maximum by Sá et al. (2016)Sá MAC, Santos Junior JDG, Franz CAB, Rein TA (2016) Qualidade física do solo e produtividade da cana-de-açúcar com uso da escarificação entre linhas de plantio. Pesquisa Agropecuária Brasileira 51(9):1610-1622. DOI: http://dx.doi.org/10.1590/s0100-204x2016000900061
http://dx.doi.org/10.1590/s0100-204x2016...
and Oliveira et al. (2012)Oliveira PR, Centurion JF, Centurion APC, Franco HBJ, Pereira FS, Bárbaro Júnior LS, Rossetti KV (2012) Qualidade física de um Latossolo vermelho cultivado com soja submetido a níveis de compactação e de irrigação. Revista Brasileira de Ciência do Solo 36(1):587-59. DOI: http://dx.doi.org/10.1590/S0100-06832012000200028
http://dx.doi.org/10.1590/S0100-06832012...
when evaluating the compaction in clayey to very clayey Oxisols, and 1.55 Mg m−3, considered critical by Camargo & Alleoni (1997)Camargo OA, Alleoni LRF (1997) Compactação do solo e o desenvolvimento das plantas. Piracicaba, Escola Superior de Agricultura Luiz de Queiroz. in clay loam to clay soils.

According to Bergamin et al. (2010)Bergamin AC, Vitorino ACT, Franchini JC, Souza CMA, Souza FR (2010) Compactação de um Latossolo Vermelho Distroférrico e suas relações com o crescimento radicular do milho. Revista Brasileira de Ciência do Solo 34(3):681-691. DOI: http://dx.doi.org/10.1590/S0100-06832010000300009
http://dx.doi.org/10.1590/S0100-06832010...
, clay soils usually present surface compaction up to 0.10 m, with increased density and reduced macroporosity, which are attributes significantly influenced by machinery traffic (Valadão et al., 2015Valadão FCA, Weber OL, Valadão Júnior DD, Scarpinelli A, Deina FR, Bianchini A (2015) Adubação fosfatada e compactação do solo: sistema radicular da soja e do milho e atributos físicos do solo. Revista Brasileira de Ciência do Solo 39(1):243-255. DOI: http://dx.doi.org/10.1590/01000683rbcs20150144
http://dx.doi.org/10.1590/01000683rbcs20...
; Arcoverde et al., 2019aArcoverde SNS, Souza CMA, Suarez AHT, Colman BA, Nagahama HJ (2019a) Atributos físicos do solo cultivado com cana-de-açúcar em função do preparo e época de amostragem. Revista de Agricultura Neotropical 6(1):41-47. DOI: http://dx.doi.org/10.32404/rean.v6i1.2761
http://dx.doi.org/10.32404/rean.v6i1.276...
). It is caused by the first tractor passes, promoting higher breakage of soil aggregates and favoring particle approximation (Valicheski et al., 2012Valicheski RR, Grossklaus Stürmer FSLK, Tramontin AL, Baade ESAS (2012) Desenvolvimento de plantas de cobertura e produtividade da soja conforme atributos físicos em solo compactado. Revista Brasileira de Engenharia Agrícola e Ambiental 16(9):969-977.).

Soil microporosity presented a reduction in the 0.00–0.10 m layer with 8 passes when compared to zero passes (Figure 3). However, these treatments did not differ from the others, which suggests a higher effect of intrinsic soil factors, agreeing with Bergamin et al. (2010)Bergamin AC, Vitorino ACT, Franchini JC, Souza CMA, Souza FR (2010) Compactação de um Latossolo Vermelho Distroférrico e suas relações com o crescimento radicular do milho. Revista Brasileira de Ciência do Solo 34(3):681-691. DOI: http://dx.doi.org/10.1590/S0100-06832010000300009
http://dx.doi.org/10.1590/S0100-06832010...
, Arcoverde et al. (2019a)Arcoverde SNS, Souza CMA, Suarez AHT, Colman BA, Nagahama HJ (2019a) Atributos físicos do solo cultivado com cana-de-açúcar em função do preparo e época de amostragem. Revista de Agricultura Neotropical 6(1):41-47. DOI: http://dx.doi.org/10.32404/rean.v6i1.2761
http://dx.doi.org/10.32404/rean.v6i1.276...
, and Arcoverde et al. (2019b)Arcoverde SNS, Souza CMA, Cortez JW, Maciak PAG, Suarez AHT (2019b) Soil physical atributes and production components of sugarcane cultivars in conservationist tillage systems. Engenharia Agrícola 39(2):216-224. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v39n2p216-224/2019
http://dx.doi.org/10.1590/1809-4430-Eng....
, who attributed it to the mineralogy of the clay fraction in a dystroferric Red Latosol.

FIGURE 3
Soil microporosity in the 0.00–0.10 m layer as a function of the number of tractor passes. **Significant (p≤0.01).

A higher increase in soil penetration resistance was observed with 12 passes (2.31 MPa) in the 0.00–0.10 m layer when compared to 6 (2.0 MPa), 8 (1.86 MPa), 4 passes (1.81 MPa), and 0 passes (1.51 MPa) (Figure 4). Increases in soil penetration resistance of 52.90, 27.62, 24.19, and 15.50% were observed when comparing 12 with 0, 4, 8, and 6 passes, respectively, which is possibly related to the high density (1.51 Mg m−3) and low macroporosity values (0.08 m3 m−3).

FIGURE 4
Soil penetration resistance in the 0.00–0.10 m layer as a function of the number of tractor passes. **Significant (p≤0.01).

Significant changes in density and total porosity, caused after 4 passes, resulted in a significant increase in soil penetration resistance in the topsoil, similar to that found by Valicheski et al. (2012)Valicheski RR, Grossklaus Stürmer FSLK, Tramontin AL, Baade ESAS (2012) Desenvolvimento de plantas de cobertura e produtividade da soja conforme atributos físicos em solo compactado. Revista Brasileira de Engenharia Agrícola e Ambiental 16(9):969-977. and Bergamin et al. (2010)Bergamin AC, Vitorino ACT, Franchini JC, Souza CMA, Souza FR (2010) Compactação de um Latossolo Vermelho Distroférrico e suas relações com o crescimento radicular do milho. Revista Brasileira de Ciência do Solo 34(3):681-691. DOI: http://dx.doi.org/10.1590/S0100-06832010000300009
http://dx.doi.org/10.1590/S0100-06832010...
, who verified increased soil penetration resistance up to 0.10 m depth after 4 tractor passes.

A highly significant effect of soil compaction was observed on soybean agronomic traits, except for the number of grains per pod (NGP) (Table 3).

TABLE 3
F values, significance, coefficient of variation (CV, %) for growth and yield variables of the soybean crop.

Stem diameter showed an increase with 6 (6.20 mm), 8 (6.00 mm), and 12 passes (7.00 mm) compared to 0 passes (4.79 mm), which corresponded to an increase of 29.44, 25.11, and 46.14%, respectively (Figure 5). However, 2 (5.55 mm) and 4 (5.54 mm) passes showed a similar effect when compared to those of 0, 6, and 8 passes, but lower only than with 12 passes.

FIGURE 5
Stem diameter of soybean plants as a function of the number of tractor passes. **Significant (p≤0.01).

The highest values of the number of pods per plant, grain weight per plant, and grain yield were obtained with 12 passes, reaching values of 57.0, 9.73 g, and 3,448.0 kg ha−1, respectively, followed by 6 passes, with values of 49.0, 9.34 g, and 3,173.0 kg ha−1, respectively (Figures 6, 7, and 9).

FIGURE 6
Number of pods per soybean plant as a function of the number of tractor passes. **Significant (p≤0.01).
FIGURE 7
Grain weight per soybean plant as a function of the number of tractor passes. **Significant (p≤0.01).

Thousand-grain weight showed lower values with intermediate tractor passes (2, 4, 6, and 8) than 0 and 12 passes (Figure 8). In addition, no water deficit was observed in the soil under no-tillage during the final stage of soybean filling (Figure 2).

FIGURE 8
Thousand-grain weight of soybean as a function of the number of tractor passes. **Significant (p≤0.01).

This increase in stem diameter and agronomic performance of soybean with 12 passes suggest that a possible compaction with traffic intensification could increase water retention, especially under water restriction, without risk of faster drying of the soil surface, preventing seedlings from deepening the roots and absorbing water in the soil profile (Valadão et al., 2017Valadão FCA, Weber OLS, Valadão Júnior DD, Santin MFM, Scapinelli A (2017) Teor de macronutrientes e produtividade da soja influenciados pela compactação do solo e adubação fosfatada. Revista de Ciências Agrárias 40(1):183-195. DOI: http://dx.doi.org/10.19084/RCA15092
http://dx.doi.org/10.19084/RCA15092...
).

Twelve 12 passes led to increases of 63.05, 54.55, 38.65, 35.07, and 8.57% in the yield when compared to 0, 2, 4, 8, and 6 passes, respectively (Figure 9). Yields related to 6 and 12 passes are in agreement with Valicheski et al. (2012)Valicheski RR, Grossklaus Stürmer FSLK, Tramontin AL, Baade ESAS (2012) Desenvolvimento de plantas de cobertura e produtividade da soja conforme atributos físicos em solo compactado. Revista Brasileira de Engenharia Agrícola e Ambiental 16(9):969-977., while the other passes ranged from 2114.53 (0 passes) to 2552.5280 kg ha−1 (8 passes).

FIGURE 9
Yield of soybean grains as a function of the number of tractor passes. **Significant (p≤0.01).

Losses to soybean yield were expected with 12 tractor passes, as there were low mean values of macroporosity (0.08 m3 m−3) and high values of density (1.51 Mg m−3) and penetration resistance (2.31 MPa) in the 0.00–0.10 m layer. However, density values have not been considered limiting to crop development in clay soils (Camargo & Alleoni, 1997Camargo OA, Alleoni LRF (1997) Compactação do solo e o desenvolvimento das plantas. Piracicaba, Escola Superior de Agricultura Luiz de Queiroz.; Oliveira et al., 2012Oliveira PR, Centurion JF, Centurion APC, Franco HBJ, Pereira FS, Bárbaro Júnior LS, Rossetti KV (2012) Qualidade física de um Latossolo vermelho cultivado com soja submetido a níveis de compactação e de irrigação. Revista Brasileira de Ciência do Solo 36(1):587-59. DOI: http://dx.doi.org/10.1590/S0100-06832012000200028
http://dx.doi.org/10.1590/S0100-06832012...
; Sá et al., 2016Sá MAC, Santos Junior JDG, Franz CAB, Rein TA (2016) Qualidade física do solo e produtividade da cana-de-açúcar com uso da escarificação entre linhas de plantio. Pesquisa Agropecuária Brasileira 51(9):1610-1622. DOI: http://dx.doi.org/10.1590/s0100-204x2016000900061
http://dx.doi.org/10.1590/s0100-204x2016...
). Moreover, density was very close to 1.48 Mg m−3 after 12 passes, which is the value that maximizes soybean grain yield in the 0.00–0.10 m layer (Figure 10). The optimum density for yield was 1.37 Mg m−3 in the 0.10–0.20 m layer, suggesting that soil compaction not restrictive to root growth may be beneficial for soybean yield.

FIGURE 10
Yield of soybean grains as a function of soil density in the 0.00–0.10 and 0.10–0.20 m layers.

These results are in accordance with Foloni et al. (2006)Foloni JSS, Lima SL, Büll LT (2006) Crescimento aéreo e radicular da soja e de plantas de cobertura em camadas compactadas de solo. Revista Brasileira de Ciência do Solo 30(1):49-57. DOI: http://dx.doi.org/10.1590/S0100-06832006000100006
http://dx.doi.org/10.1590/S0100-06832006...
, who concluded that an increase in soil penetration resistance in the surface layer could stimulate lateral root proliferation, which is thinner and capable of growing in small diameter soil pores, reaching higher depths. It occurs especially in consolidated no-tillage areas, where there is the natural formation of biopores that allows for higher root growth and, consequently, access to water in deeper and wetter soil layers, mainly in those more compact and less conductive (Landl et al., 2019Landl M, Schnepf A, Uteau D, Peth S, Athmann M, Kautz T, Perkons U, Vereecken H, Vanderborght J (2019) Modeling the Impact of Biopores on Root Growth and Root Water Uptake. Vadose Zone Journal 18(1):0-20. DOI: http://dx.doi.org/10.2136/vzj2018.11.0196
http://dx.doi.org/10.2136/vzj2018.11.019...
).

Under this condition, tractor traffic intensification caused soil compaction states not harmful to soybean plants, maintaining satisfactory physical and hydraulic conditions to the crop performance (Moraes et al., 2018Moraes MT, Bengough AG, Debiasi H, Franchini JC, Levien R, Schnepf A, Leitner D (2018) Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil. Plant and Soil 428(1-2):67-92. DOI: http://dx.doi.org/10.1007/s11104-018-3656-z
http://dx.doi.org/10.1007/s11104-018-365...
).

CONCLUSIONS

Tractor traffic intensification changed soil physical attributes, which were not limiting factors to soybean yield under the no-tillage system, providing higher stem diameter, number of pods per plant, grain weight per plant, and grain yield after 12 passes.

ACKNOWLEDGMENTS

To CAPES for granting the postdoctoral scholarship to the first author. To the Federal University of Grande Dourados for providing the facilities and support for this research.

REFERENCES

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22(6):711-728. DOI: http://dx.doi.org/10.1127/0941-2948/2013/0507
    » http://dx.doi.org/10.1127/0941-2948/2013/0507
  • Arcoverde SNS, Souza CMA, Cortez JW, Maciak PAG, Suarez AHT (2019b) Soil physical atributes and production components of sugarcane cultivars in conservationist tillage systems. Engenharia Agrícola 39(2):216-224. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v39n2p216-224/2019
    » http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v39n2p216-224/2019
  • Arcoverde SNS, Souza CMA, Suarez AHT, Colman BA, Nagahama HJ (2019a) Atributos físicos do solo cultivado com cana-de-açúcar em função do preparo e época de amostragem. Revista de Agricultura Neotropical 6(1):41-47. DOI: http://dx.doi.org/10.32404/rean.v6i1.2761
    » http://dx.doi.org/10.32404/rean.v6i1.2761
  • Barbosa JC, Maldonado Junior W (2015) AgroEstat - sistema para análises estatísticas de ensaios agronômicos. Jaboticabal, FCAV/UNESP, 396p.
  • Becerra AT, Botta GF, Bravo XL, Tourn M, Melcon FB, Vasquez J, Rivero D, Linares P, Nardon G (2010) Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchad in Alméria España. Soil and Tillage Research 107(1):49-56. DOI: http://dx.doi.org/10.1016/j.still.2010.02.001
    » http://dx.doi.org/10.1016/j.still.2010.02.001
  • Bergamin AC, Vitorino ACT, Franchini JC, Souza CMA, Souza FR (2010) Compactação de um Latossolo Vermelho Distroférrico e suas relações com o crescimento radicular do milho. Revista Brasileira de Ciência do Solo 34(3):681-691. DOI: http://dx.doi.org/10.1590/S0100-06832010000300009
    » http://dx.doi.org/10.1590/S0100-06832010000300009
  • Camargo OA, Alleoni LRF (1997) Compactação do solo e o desenvolvimento das plantas. Piracicaba, Escola Superior de Agricultura Luiz de Queiroz.
  • Cortez JW, Olszevski N, Pimenta WA, Patrocínio Filho AP, Souza EB, Nagahama HJ (2014) Avaliação da intensidade de tráfego de tratores em alguns atributos de um argissolo amarelo. Revista Brasileira de Ciência do solo 38(3):1000-1010. DOI: http://dx.doi.org/10.1590/S0100-06832014000300032
    » http://dx.doi.org/10.1590/S0100-06832014000300032
  • Cunha JPAR, Cascão VN, Reis EF (2009) Compactação causada pelo tráfego de trator em diferentes manejos Compactação causada pelo tráfego de trator em diferentes manejos. Acta Scientiarum. Agronomy 31(3):371-375. DOI: http://dx.doi.org/10.4025/actasciagron.v31i3.819
    » http://dx.doi.org/10.4025/actasciagron.v31i3.819
  • Donagema GK, Campos DVB, Calderano SB, Teixeira WG, Viana JHM (2011) Manual de métodos de análise de solos. Rio de Janeiro, Embrapa Solos, 230p.
  • Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2013) Sistema brasileiro de classificação de solos. Brasília, Embrapa Solos, 353p.
  • Foloni JSS, Lima SL, Büll LT (2006) Crescimento aéreo e radicular da soja e de plantas de cobertura em camadas compactadas de solo. Revista Brasileira de Ciência do Solo 30(1):49-57. DOI: http://dx.doi.org/10.1590/S0100-06832006000100006
    » http://dx.doi.org/10.1590/S0100-06832006000100006
  • Kirnak H, Gokalp Z, Dogan E, Çopur O (2016) Effects of irrigation, soil compaction and fertilization treatments on physiological – vegetative characteristics and root development of soybean. Legume Research 39(1):52-60. DOI: http://dx.doi.org/10.18805/lr.v39i1.8864
    » http://dx.doi.org/10.18805/lr.v39i1.8864
  • Kirnak H, Gokalp Z, Dogan E, Çopur O (2017) Soil characteristics of soybean fields as effected by compaction, irrigation and fertilization. Legume Research 40(4):691-697. DOI: http://dx.doi.org/10.18805/lr.v0i0.8407
    » http://dx.doi.org/10.18805/lr.v0i0.8407
  • Landl M, Schnepf A, Uteau D, Peth S, Athmann M, Kautz T, Perkons U, Vereecken H, Vanderborght J (2019) Modeling the Impact of Biopores on Root Growth and Root Water Uptake. Vadose Zone Journal 18(1):0-20. DOI: http://dx.doi.org/10.2136/vzj2018.11.0196
    » http://dx.doi.org/10.2136/vzj2018.11.0196
  • Marasca I, Oliveira CAA, Guimarães EC, Cunha JPAR, Assis RL, Perin A, Menezes LAS (2011) Variabilidade espacial da resistência do solo à penetração e teor de agua em sistema de plantio direto na cultura da soja. Bioscience Journal 27(2):239-246.
  • Moraes MT, Bengough AG, Debiasi H, Franchini JC, Levien R, Schnepf A, Leitner D (2018) Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil. Plant and Soil 428(1-2):67-92. DOI: http://dx.doi.org/10.1007/s11104-018-3656-z
    » http://dx.doi.org/10.1007/s11104-018-3656-z
  • Mujdeci M, Isildar AA, Uygur V, Alaboz P, Unlu H, Senol H (2017) Cooperative effects of field traffic and organic matter treatments on some compaction-related soil properties. Solid Earth 8(1):189-198. DOI: http://dx.doi.org/10.5194/se-8-189-2017
    » http://dx.doi.org/10.5194/se-8-189-2017
  • Oliveira PR, Centurion JF, Centurion APC, Franco HBJ, Pereira FS, Bárbaro Júnior LS, Rossetti KV (2012) Qualidade física de um Latossolo vermelho cultivado com soja submetido a níveis de compactação e de irrigação. Revista Brasileira de Ciência do Solo 36(1):587-59. DOI: http://dx.doi.org/10.1590/S0100-06832012000200028
    » http://dx.doi.org/10.1590/S0100-06832012000200028
  • O'sullivan MF, Hanshall JK, Dickson JWAA (1999) simplified method for estimating soil compaction. Soil and Tillage Research 49(4):325-335. DOI: http://dx.doi.org/10.1016/S0167-1987(98)00187-1
    » http://dx.doi.org/10.1016/S0167-1987(98)00187-1
  • Rossetti KV, Centurion JF (2013) Sistemas de manejo e atributos físico-hídricos de um Latossolo Vermelho cultivado com milho. Revista Brasileira de Engenharia Agrícola e Ambiental 17(5):472-479.
  • Sá MAC, Santos Junior JDG, Franz CAB, Rein TA (2016) Qualidade física do solo e produtividade da cana-de-açúcar com uso da escarificação entre linhas de plantio. Pesquisa Agropecuária Brasileira 51(9):1610-1622. DOI: http://dx.doi.org/10.1590/s0100-204x2016000900061
    » http://dx.doi.org/10.1590/s0100-204x2016000900061
  • Secco D, Reinert DJ, Reichert JM, Silva VR (2009) Atributos físicos e rendimento de grãos de trigo, soja e milho em dois Latossolos compactados e escarificados. Ciência Rural 39(1):58-64. DOI: http://dx.doi.org/10.1590/S0103-84782009000100010
    » http://dx.doi.org/10.1590/S0103-84782009000100010
  • Sivarajan S, Maharlooeia M, Bajwaa SG, Nowatzkia J (2018) Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil and Tillage Research 175:234-243. DOI: http://dx.doi.org/10.1016/j.still.2017.09.001
    » http://dx.doi.org/10.1016/j.still.2017.09.001
  • Trentin RG, Modolo AJ, Vargas TO, Campos JRR, Adami PF, Baesso MM (2018) Soybean productivity in Rhodic Hapludox compacted by the action of furrow openers. Acta Scientiarum. Agronomy 40(35015):1-9. DOI: http://dx.doi.org/10.4025/actasciagron.v40i1.35015
    » http://dx.doi.org/10.4025/actasciagron.v40i1.35015
  • Valadão FCA, Weber OL, Valadão Júnior DD, Scarpinelli A, Deina FR, Bianchini A (2015) Adubação fosfatada e compactação do solo: sistema radicular da soja e do milho e atributos físicos do solo. Revista Brasileira de Ciência do Solo 39(1):243-255. DOI: http://dx.doi.org/10.1590/01000683rbcs20150144
    » http://dx.doi.org/10.1590/01000683rbcs20150144
  • Valadão FCA, Weber OLS, Valadão Júnior DD, Santin MFM, Scapinelli A (2017) Teor de macronutrientes e produtividade da soja influenciados pela compactação do solo e adubação fosfatada. Revista de Ciências Agrárias 40(1):183-195. DOI: http://dx.doi.org/10.19084/RCA15092
    » http://dx.doi.org/10.19084/RCA15092
  • Valicheski RR, Grossklaus Stürmer FSLK, Tramontin AL, Baade ESAS (2012) Desenvolvimento de plantas de cobertura e produtividade da soja conforme atributos físicos em solo compactado. Revista Brasileira de Engenharia Agrícola e Ambiental 16(9):969-977.
  • Zambrana MOD, Ruiz HA, Silva TCA, Neves JCL, Corrêa GF, Eraso MHR (2010) A compactação de três materiais de solo, na redução da condutividade hidráulica, porosidade do solo e matéria seca de raiz nas culturas de soja e caupi. Revista de Agronomía 37(1):74-84.

Publication Dates

  • Publication in this collection
    17 Feb 2020
  • Date of issue
    Jan-Feb 2020

History

  • Received
    27 Apr 2019
  • Accepted
    23 Oct 2019
Associação Brasileira de Engenharia Agrícola SBEA - Associação Brasileira de Engenharia Agrícola, Departamento de Engenharia e Ciências Exatas FCAV/UNESP, Prof. Paulo Donato Castellane, km 5, 14884.900 | Jaboticabal - SP, Tel./Fax: +55 16 3209 7619 - Jaboticabal - SP - Brazil
E-mail: revistasbea@sbea.org.br