Acessibilidade / Reportar erro

Microhabitat selection of the poorly known lizard Tropidurus lagunablanca (Squamata: Tropiduridae) in the Pantanal, Brazil

Abstract

Understanding how different environmental factors influence species occurrence is a key issue to address the study of natural populations. However, there is a lack of knowledge on how local traits influence the microhabitat use of tropical arboreal lizards. Here, we investigated the microhabitat selection of the poorly known lizard Tropidurus lagunablanca (Squamata: Tropiduridae) and evaluated how environmental microhabitat features influence animal’s presence. We used a Resource Selection Function approach, in a case/control design where we analyzed the effect of substrate temperature and tree’s diameter at breast height (DBH) in the probability of presence of lizards using mixed Conditional Logistic Regression. We found that T. lagunablanca uses trees with DBH from 0.40 m to 4 m and substrate temperatures ranging from 25.9°C to 42°C. Moreover, we showed that thickness of the trees and substrate temperatures significantly increased the probability of presence of T. lagunablanca individuals, being the probability of presence higher than 50% for trees up to 1.5 m DBH and temperature of substrate up to 37.5°C. Our study probed that T. lagunablanca individuals choose trees non-randomly, selecting thicker and warmer tree trunks. This information advances the knowledge of the spatial ecology of Neotropical arboreal lizards and is relevant for conservation, putting an emphasis on preserving native vegetation in the Pantanal.

Keywords.
Microhabitat use; Thermal biology; Activity patterns; Substrate temperature; Thermoregulation; Lizards; Wetlands

INTRODUCTION

Understanding how different environmental variables affect species’ occurrence is of great importance for the study of natural populations and a central topic of organismal biology (Schwenk et al., 2009Schwenk, K.; Padilla, D.K.; Bakken, G.S. & Full, R.J. 2009. Grand challenges in organismal biology. Integrative and Comparative Biology, 49(1): 7-14. http://doi.org/10.1093/icb/icp034
http://doi.org/10.1093/icb/icp034...
; Ehrlén & Morris, 2015Ehrlén, J. & Morris, W.F. 2015. Predicting changes in the distribution and abundance of species under environmental change. Ecology Letters, 18(3): 303-314. http://doi.org/10.1111/ele.12410
http://doi.org/10.1111/ele.12410...
). Although other mechanisms can also influence the occurrence of species (e.g., competition, coexistence, predation; Chesson, 2000Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31: 343-366. http://doi.org/10.1146/annurev.ecolsys.31.1.343
http://doi.org/10.1146/annurev.ecolsys.3...
; HilleRisLambers et al., 2012HilleRisLambers, J.; Adler, P.B.; Harpole, W.S.; Levine, J.M. & Mayfield, M.M. 2012. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43: 227-248. http://doi.org/10.1146/annurev-ecolsys-110411-160411
http://doi.org/10.1146/annurev-ecolsys-1...
; Cadotte & Tucker, 2017Cadotte, M.W. & Tucker, C.M. 2017. Should environmental filtering be abandoned? Trends in Ecology & Evolution, 32(6): 429-437. http://doi.org/10.1016/j.tree.2017.03.004
http://doi.org/10.1016/j.tree.2017.03.00...
), locally, environmental filters can determine the presence of individuals. In this context, one of the most important factors for the spatial organization of population is how individuals select the resources in the environment (Pianka, 1973Pianka, E.R. 1973. The structure of lizard communities. Annual Review of Ecology, Evolution, and Systematics, 4: 53-74. http://doi.org/10.1146/annurev.es.04.110173.000413
http://doi.org/10.1146/annurev.es.04.110...
; Nogueira et al., 2005Nogueira, C.; Valdujo, P.H. & França, F.G. 2005. Habitat variation and lizard diversity in a Cerrado area of Central Brazil. Studies on Neotropical Fauna and Environment, 40(2): 105-112. http://doi.org/10.1080/01650520500129901
http://doi.org/10.1080/01650520500129901...
; Rocha & Anjos, 2007Rocha, C.F.D. & Anjos, L.A. 2007. Feeding ecology of a nocturnal invasive alien lizard species, Hemidactylus mabouia Moreau de Jonnès, 1818 (Gekkonidae), living in an outcrop rocky area in southeastern Brazil. Brazilian Journal of Biology, 67(3): 485-491. http://doi.org/10.1590/S1519-69842007000300013
http://doi.org/10.1590/S1519-69842007000...
; Gonçalves-Sousa et al., 2019Gonçalves-Sousa, J.G.; Mesquita, D.O. & Ávila, R.W. 2019. Structure of a lizard assemblage in a semiarid habitat of the Brazilian Caatinga. Herpetologica, 75(4): 301-314. http://doi.org/10.1655/herpetologica-D-19-00026.1
http://doi.org/10.1655/herpetologica-D-1...
; Peixoto et al., 2020Peixoto, M.G.; De Fraga, R.; Araújo, M.C.; Kaefer, I.L. & Lima, A.P. 2020. Hierarchical effects of historical and environmental factors on lizard assemblages in the upper Madeira River, Brazilian Amazonia. PLoS ONE, 15(6): e0233881. http://doi.org/10.1371/journal.pone.0233881
http://doi.org/10.1371/journal.pone.0233...
). However, within their habitats, animals deal with many environmental constraints that directly influence their activity patterns and microhabitat selection (Rutherford & Gregory, 2003Rutherford, P.L. & Gregory, P.T. 2003. Habitat Use and Movement Patterns of Northern Alligator Lizards (Elgaria coerulea) and Western Skinks (Eumeces skiltonianus) in Southeastern British Columbia. Journal of Herpetology, 37(1): 98-106. http://doi.org/10.1670/0022-1511(2003)037%5b0098:HUAMPO%5d2.0.CO;2
http://doi.org/10.1670/0022-1511(2003)03...
; Domenici et al., 2007Domenici, P.; Claireaux, G. & McKenzie, D.J. 2007. Environmental constraints upon locomotion and predator-prey interactions in aquatic organisms: an introduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1487): 1929-1936. http://doi.org/10.1098/rstb.2007.2078
http://doi.org/10.1098/rstb.2007.2078...
; Ariano-Sánchez et al., 2020Ariano-Sánchez, D.; Mortensen, R.M.; Reinhardt, S. & Rosell, F. 2020. Escaping drought: Seasonality effects on home range, movement patterns and habitat selection of the Guatemalan Beaded Lizard. Global Ecology and Conservation, 23: e01178. http://doi.org/10.1016/j.gecco.2020.e01178
http://doi.org/10.1016/j.gecco.2020.e011...
; Ortega et al., 2019Ortega, Z.; Mencía, A.; Martins, K.; Soares, P.; Ferreira, V.L. & Oliveira-Santos, L.G. 2019. Disentangling the role of heat sources on microhabitat selection of two Neotropical lizard species. Journal of Tropical Ecology, 35(4): 149-156. http://doi.org/10.1017/S0266467419000099
http://doi.org/10.1017/S0266467419000099...
).

Lizards exhibit a diverse set of lifestyles and inhabit a variety of habitats, ranging from tropical forests to sandy deserts (Vitt & Pianka, 1994Vitt, L.I. & Pianka, E.R. 1994. Lizard ecology, historical and experimental perspectives. New Jersey, Princeton University Press.). In Brazil, there are high levels of species richness and endemism (Costa & Bérnils, 2018Costa, H.C. & Bérnils, R.S. 2018. Répteis do Brasil e suas Unidades Federativas: Lista de espécies. Herpetologia Brasileira, 7(1): 11-57.), and a high diversity of forms with striking adaptations, as psammophilous and fossorial species (e.g., Calyptommatus, Nothobachia and Ophiodes), with vestigial legs or even limbless (Rodrigues, 1996Rodrigues, M.T. 1996. Lizards, snakes, and amphisbaenians from the quaternary sand dunes of the middle Rio São Francisco, Bahia, Brazil. Journal of Herpetology, 30(4): 513-523.; Recoder & Rodrigues, 2020Recoder, R.S. & Rodrigues, M.T. 2020. Diversification processes in lizards and snakes from the middle São Francisco river dune region, Brazil. In: Rull, V. & Carnaval, A. (Eds.). Neotropical diversification: patterns and processes. Cham, Springer. p. 713-740. http://doi.org/10.1007/978-3-030-31167-4_26
http://doi.org/10.1007/978-3-030-31167-4...
). Because lizards are ectoterms, body temperature regulation is essential for the development of all activities such as foraging, anti-predatory behaviors, and mating strategies (Adolph, 1990Adolph, S.C. 1990. Influence of behavioral thermoregulation on microhabitat use by two Sceloporus lizards. Ecology, 71(1): 315-327. http://doi.org/10.2307/1940271
http://doi.org/10.2307/1940271...
; Angilletta, 2009Angilletta, M.J. 2009. Thermal adaptation: A theoretical and empirical synthesis. Oxford, Oxford University Press.). Microhabitat selection is, with some contribution of changes in body posture and adjustment of activity periods, the main thermoregulatory strategy of small lizards (Adolph & Porter, 1993Adolph, S.C. & Porter, W.P. 1993. Temperature, activity, and lizard life histories. The American Naturalist, 142(2): 273-295. http://doi.org/10.1086/285538
http://doi.org/10.1086/285538...
; Bauwens et al., 1996Bauwens, D.; Hertz, P.E. & Castilla, A.M. 1996. Thermoregulation in a lacertid lizard: the relative contributions of distinct behavioral mechanisms. Ecology, 77(6): 1818-1830. http://doi.org/10.2307/2265786
http://doi.org/10.2307/2265786...
; Ortega et al., 2019Ortega, Z.; Mencía, A.; Martins, K.; Soares, P.; Ferreira, V.L. & Oliveira-Santos, L.G. 2019. Disentangling the role of heat sources on microhabitat selection of two Neotropical lizard species. Journal of Tropical Ecology, 35(4): 149-156. http://doi.org/10.1017/S0266467419000099
http://doi.org/10.1017/S0266467419000099...
), including in species from deserts (e.g., Phrynosoma platyrhinos;Newbold & MacMahon, 2014Newbold, T.S. & MacMahon, J.A. 2014. Determinants of habitat selection by desert horned lizards (Phrynosoma platyrhinos): the importance of abiotic factors associated with vegetation structure. Journal of Herpetology, 48(3): 306-316. http://doi.org/10.1670/10-141
http://doi.org/10.1670/10-141...
), temperate areas (e.g., Podarcis guadarramae;Ortega & Pérez-Mellado, 2016Ortega, Z. & Pérez-Mellado, V. 2016. Seasonal patterns of body temperature and microhabitat selection in a lacertid lizard. Acta Oecologica, 77: 201-206. http://doi.org/10.1016/j.actao.2016.08.006
http://doi.org/10.1016/j.actao.2016.08.0...
), as well as in Neotropical region (Ameivula aff. ocellifera and Tropidurus oreadicus;Ortega et al., 2019Ortega, Z.; Mencía, A.; Martins, K.; Soares, P.; Ferreira, V.L. & Oliveira-Santos, L.G. 2019. Disentangling the role of heat sources on microhabitat selection of two Neotropical lizard species. Journal of Tropical Ecology, 35(4): 149-156. http://doi.org/10.1017/S0266467419000099
http://doi.org/10.1017/S0266467419000099...
).

In general, lizards are abundant, occur in almost all types of environments, and respond strongly to local variables, thus being good models for studies focusing on habitat selection and its ecophysiological consequences in different spatial scales (Smith & Ballinger, 2001Smith, G.R. & Ballinger, R.E. 2001. The ecological consequences of habitat and microhabitat use in lizards: a review. Contemporary Herpetology, 3: 1-37. http://doi.org/10.17161/ch.vi1.11957
http://doi.org/10.17161/ch.vi1.11957...
; de Andrade, 2020de Andrade, A.C. 2020. Metropolitan lizards? Urbanization gradient and the density of lagartixas (Tropidurus hispidus) in a tropical city. Ecology and Evolution, 10(4): 1740-1750. http://doi.org/10.1002/ece3.5518
http://doi.org/10.1002/ece3.5518...
). A growing body of knowledge about microhabitat use and the understanding of their relations with local environmental variables has recently been produced (e.g.,Cosendey et al., 2019Cosendey, B.N.; Rocha, C.F.D. & Menezes, V.A. 2019. Habitat structure and their influence in lizard’s presence. Papéis Avulsos de Zoologia, 59(59): 1-10, e20195959. http://doi.org/10.11606/1807-0205/2019.59.59
http://doi.org/10.11606/1807-0205/2019.5...
; Franzini et al., 2019Franzini, L.D.; Teixeira, A.A.M.; Tavares-Bastos, L.; Vitt, L.J. & Mesquita, D.O. 2019. Autecology of Kentropyx calcarata (Squamata: Teiidae) in a Remnant of Atlantic Forest in Eastern South America. Journal of Herpetology, 53(3): 209-217. http://doi.org/10.1670/17-184
http://doi.org/10.1670/17-184...
; Xavier et al., 2019Xavier, M.A.; da Silva, T.L. & Dias, E.J.D.R. 2019. Habitat use and diet of the endemic lizard Ameivula nigrigula (Squamata: Teiidae) in Caatinga domain, Northeastern Brazil. Journal of Natural History, 53(29-30): 1787-1797. http://doi.org/10.1080/00222933.2019.1668979
http://doi.org/10.1080/00222933.2019.166...
). However, there is still a lack of knowledge about microhabitat selection for various lizard species and habitats, as is the case of the Pantanal (Brazil), where organisms experience complex climatic changes and flood dynamics (Alho et al., 2001Alho, C.J.R.; Strüssmann, C. & Vasconcellos, L.A.S. 2001. Indicadores da magnitude da diversidade e abundância de vertebrados silvestres do Pantanal num mosaico de hábitats sazonais. In: do III Simpósio sobre Recursos Naturais e Sócio-Econômicos do Pantanal, 3º. Anais. 2000. Corumbá, EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (Ed.). p. 1-54. [CD-ROM]). Until now, and recently, only three studies evaluated the microhabitat use and/or selection of lizards in the Pantanal (i.e.,Terra et al., 2018Terra, J.S.; Ortega, Z. & Ferreira, V.L. 2018. Thermal ecology and microhabitat use of an arboreal lizard in two different Pantanal wetland phytophysionomies (Brazil). Journal of Thermal Biology, 75: 81-87. http://doi.org/10.1016/j.jtherbio.2018.06.004
http://doi.org/10.1016/j.jtherbio.2018.0...
; Benício et al., 2019Benício, R.A.; Ortega, Z.; Mencia, A. & Passos, D.C. 2019. Microhabitat selection of Ameiva ameiva (Linnaeus, 1758), in the Brazilian Pantanal. Herpetozoa, 31(3-4): 211-218.; Ortega et al., 2019Ortega, Z.; Mencía, A.; Martins, K.; Soares, P.; Ferreira, V.L. & Oliveira-Santos, L.G. 2019. Disentangling the role of heat sources on microhabitat selection of two Neotropical lizard species. Journal of Tropical Ecology, 35(4): 149-156. http://doi.org/10.1017/S0266467419000099
http://doi.org/10.1017/S0266467419000099...
). In this particular biome, the dynamic of organisms is primarily driven by flood and dry cycles that are quite variable in terms of recurrence and duration (Gonçalves et al., 2011Gonçalves, H.C.; Mercante, M.A. & Santos, E.T. 2011. Hydrological cycle. Brazilian Journal of Biology, 71(1): 241-253. http://doi.org/10.1590/S1519-69842011000200003
http://doi.org/10.1590/S1519-69842011000...
; Mercante et al., 2011Mercante, M.A.; Rodrigues, S.C. & Ross, J.L.S. 2011. Geomorphology and habitat diversity in the Pantanal. Brazilian Journal of Biology, 71(1): 233-240. http://doi.org/10.1590/S1519-69842011000200002
http://doi.org/10.1590/S1519-69842011000...
; Souza et al., 2017Souza, F.L.; Prado, C.P.A.; Sugai, J.L.M.M.; Ferreira, V.L.; Aoki, C.; Landgref-Filho, P.; Strüssmann, C.; Ávila, R.W.; Rodrigues, D.J.; Albuquerque, N.R.; Terra, J.; Uetanabaro, M.; Béda, A.F.; Piatti, L.; Kawashita-Ribeiro, R.A.; Delatorre, M.; Faggioni, G.P.; Demczuk, S.D.B. & Duleba, S. 2017. Diversidade de anfíbios do Estado de Mato Grosso do Sul, Brasil. Iheringia, Série Zoologia, 107(Suppl.): 1-10, e2017152. http://doi.org/10.1590/1678-4766e2017152
http://doi.org/10.1590/1678-4766e2017152...
). Thus, both flooding extension and extended droughts may limit the occurrence of species and shape local patterns of microhabitat use, reinforcing the necessity to better understand the habitat selection processes in this environment.

Here, we characterize the microhabitat use of the poorly known lizard Tropidurus lagunablanca (Squamata: Tropiduridae) and test hypotheses on the influence of environmental traits on microhabitat selection of this arboreal species. Tropidurus lagunablanca (Fig. 1) is a recently described lizard, medium-sized (SLV = 101.22 mm), diurnal, heliothermic and arboreal, sit-and-wait forager, that occurs predominantly in open formations (Carvalho, 2016Carvalho, A.L.G. 2016. Three New Species of the Tropidurus spinulosus Group (Squamata: Tropiduridae) from Eastern Paraguay. American Museum Novitates, 3853: 1-44. http://doi.org/10.1206/3853.1
http://doi.org/10.1206/3853.1...
). Although T. lagunablanca has not been yet evaluated by any red list, Carvalho (2016Carvalho, A.L.G. 2016. Three New Species of the Tropidurus spinulosus Group (Squamata: Tropiduridae) from Eastern Paraguay. American Museum Novitates, 3853: 1-44. http://doi.org/10.1206/3853.1
http://doi.org/10.1206/3853.1...
) suggests that, according to the rules proposed by IUCN (2001International Union for Conservation of Nature and Natural Resources (IUCN). 2001. IUCN Red List Categories and Criteria: Version 3.1. IUCN Species Survival Commission. Gland, Switzerland, IUCN.), the species could be classified as “critically endangered”, mainly because of the conversion of its natural habitat into agricultural areas. Furthermore, little information is available regarding the ecology of this species (Colli et al., 1992Colli, G.R.; Araújo, A.F.B.; Silveira, R. & Roma, F. 1992. Niche partitioning and morphology of two syntopic Tropidurus (Sauria: Tropiduridae) in Mato Grosso, Brazil. Journal of Herpetology, 26(1): 66-69. http://doi.org/10.2307/1565023
http://doi.org/10.2307/1565023...
; Ávila et al., 2010Ávila, R.W.; Souza, F.L. & Da Silva, R.J. 2010. Helminths from seven species of lizards (Reptilia: Squamata) at the Cerrado of Mato Grosso do Sul State, Brazil. Comparative Parasitology, 77(1): 67-71. http://doi.org/10.1654/4414.1
http://doi.org/10.1654/4414.1...
; Terra et al., 2018Terra, J.S.; Ortega, Z. & Ferreira, V.L. 2018. Thermal ecology and microhabitat use of an arboreal lizard in two different Pantanal wetland phytophysionomies (Brazil). Journal of Thermal Biology, 75: 81-87. http://doi.org/10.1016/j.jtherbio.2018.06.004
http://doi.org/10.1016/j.jtherbio.2018.0...
).

Figure 1
Adult individual of Tropidurus lagunablanca, Base de Estudos do Pantanal, Corumbá, Mato Grosso do Sul, Brazil.

Our specific aims were to describe microhabitat use and investigate microhabitat selection by T. lagunablanca in the Pantanal (Brazil), assessing the influence of environmental traits on the probability of presence of the individual lizards in the available microhabitats. Since different trees can provide different opportunities for thermoregulation, feeding, defense and mating, we formulated two major hypotheses about microhabitat selection of this species (Fig. 2): (i) T. lagunablanca individuals would select their microhabitats depending on their thermal properties, which would enhance thermoregulation (H1); and (ii) T. lagunablanca individuals would choose thicker trees, since they would offer more food and shelter, and, consequently more mating opportunities (H2).

Figure 2
Hypotheses on the microhabitat selection of Tropidurus lagunablanca in Pantanal, Brazil. H1: T. lagunablanca individuals would choose trees with thermally suitable conditions for thermoregulation; H2: T. lagunablanca individuals would choose thicker trees, which offer more trophic and shelter resources.

MATERIAL AND METHODS

We conducted the study in the Pantanal region of Miranda-Abrobal, near the Base de Estudos do Pantanal (19°34′37″S, 57°00′42″W) of the Federal University of Mato Grosso do Sul (Corumbá, Mato Grosso do Sul, Brazil), in September 2017 (dry season). This article is the result of a research project of the 20th course Pantanal Ecology Course (EcoPan2017) of the Universidade Federal of Mato Grosso do Sul. The Pantanal is located in one of the most distinct macroregions formed from relief variations: the floodplain (Prado et al., 1992Prado, D.E.; Gibbs, P.E.; Pott, A. & Pott, V.J. 1992. The Chaco-Pantanal transition in southern Mato Grosso, Brazil. In: Furley, P.A.; Proctor, J. & Ratter, J.A. (Eds.). Nature and dynamics of forest-savanna boundaries. London, Chapman and Hall. p. 451-470.; Lourival et al., 2000Lourival, R.; Harris, M. & Montambault, J.R. 2000. Introdução ao Pantanal, Mato Grosso do Sul, Brasil. In: Willink, P.W.; Chernoff, B.; Alonso, L.E.; Montambault, J.R. & Lourival, R. (Eds.). A biological assessment of the aquatic ecosystems of the Pantanal, Mato Grosso do Sul, Brasil. Washington, D.C., Conservation International. p. 146-151. (RAP Bulletin of Biological Assessment, № 18)). The Pantanal occupies an area of approximately 195.000 km², which makes it one of the largest wetlands of the world (Ferreira et al., 2017Ferreira, V.L.; Terra, J.S.; Piatti, L.; Delatorre, M.; Strüssmann, C.; Béda, A.F.; Kawashita-Ribeiro, R.A.; Landgref-Filho, P.; Aoki, C.; Campos, Z.; Souza, F.L.; Ávila, R.W.; Duleba, S.; Martins, K.S.; Rita, P.H.S. & Albuquerque, N.R. 2017. Répteis do Mato Grosso do Sul, Brasil. Iheringia, Série Zoologia, 107(Supl.): 1-13, e2017153. http://doi.org/10.1590/1678-4766e2017153
http://doi.org/10.1590/1678-4766e2017153...
).

We sampled lizards along three consecutive days through active visual search (Crump & Scott Jr., 1994Crump, M.A. & Scott Jr., N.J. 1994. Visual Encounter Surveys. In: Heyer, W.R.; Donnelly, M.A.; Mcdiarmid, R.W.L.; Hayek, A.C. & Foster, M.S. (Eds.). Measuring and monitoring biological diversity: standard methods for amphibians. Washington, Smithsonian Institution Press. p. 84-92.) from 07:00 h to 17:00 h (local time) on two transects of 1 km each, both close to Base de Estudos do Pantanal. To avoid pseudoreplicates, we divided each transect into parts, sampling each of them sequentially each day. In this way, each part of the transect was sampled only once. To avoid the effect of the observer’s perception capacity, only one researcher sampled the individuals during the three days. The active visual search is effective in habitats with good visibility (such as the Pantanal), useful for presence/absence data and appropriate for monitoring populational trends, while the sampling bias is consistent over space and time (Crump & Scott Jr., 1994Crump, M.A. & Scott Jr., N.J. 1994. Visual Encounter Surveys. In: Heyer, W.R.; Donnelly, M.A.; Mcdiarmid, R.W.L.; Hayek, A.C. & Foster, M.S. (Eds.). Measuring and monitoring biological diversity: standard methods for amphibians. Washington, Smithsonian Institution Press. p. 84-92.).

When a lizard was observed, we registered the hour (local time) and the substrate temperature (Ts, in °C ) of its exact location, with a laser infrared thermometer (Benetech® Model Number GS320; Distance-to-spot ratio: 12:1; Resolution: 0.1°C) from 1 m (maintaining a constant distance in order to maximize the accuracy of the measurement). In addition, we measured the height of the point where the individual was observed and the diameter at breast height (DBH, in cm, measured always by the same observer at 1.20 m height) of the tree. We established a case/control design in order to assess the influence of these habitat traits on microhabitat selection. Thus, we simultaneously measured the environmental variables (Ts and DBH) in the four (unused) closer trees to the tree where the individual was observed. In order to understand microhabitat selection, it is important to consider unused points that could be ponentially used by the target species (keep in mind its ecology and behavior), at the temporal and spatial scale of the study. Thus, while sampling the unused trees, we excluded those trees with DBH < 7 cm, that are out of the range used by the species (see details in Terra et al., 2018Terra, J.S.; Ortega, Z. & Ferreira, V.L. 2018. Thermal ecology and microhabitat use of an arboreal lizard in two different Pantanal wetland phytophysionomies (Brazil). Journal of Thermal Biology, 75: 81-87. http://doi.org/10.1016/j.jtherbio.2018.06.004
http://doi.org/10.1016/j.jtherbio.2018.0...
). Thus, for each observed lizard we gathered data of one used microhabitat VS four available (unused) ones. The study was purely observational, so we did not capture any individual, minimizing animal stress. However, many specimens of T. lagunablanca from the studied area are available at the Coleção Zoológica da Universidade Federal de Mato Grosso do Sul (Brazil).

To test the hypotheses of microhabitat selection, we used a Resource Selection Function (RSF) approach (Manly et al., 2007Manly, B.F.L.; McDonald, L.; Thomas, D.L.; McDonald, T.L. & Erickson, W.P. 2007. Resource selection by animals: statistical design and analysis for field studies. Springer Science & Business Media. http://doi.org/10.1007/0-306-48151-0
http://doi.org/10.1007/0-306-48151-0...
). Resource Selection Functions calculate, by fitting a function on the probability of presence of the individual, the odds ratio of an individual to use a certain resource relative to its availability in the environment. We solved the RSF through a mixed Conditional Logistic Regression (mixed-CLR) analysis. The mixed-CLR was conditioned by the identity of each individual lizard, to guarantee that values of the explicative variables of each used microhabitat were paired with those available to a given individual (Duchesne et al., 2010Duchesne, T.; Fortin, D. & Courbin, N. 2010. Mixed conditional logistic regression for habitat selection studies. Journal of Animal Ecology, 79(3): 548-555. http://doi.org/10.1111/j.1365-2656.2010.01670.x
http://doi.org/10.1111/j.1365-2656.2010....
; Liedke et al., 2018Liedke, A.M.; Bonaldo, R.M.; Segal, B.; Ferreira, C.E.; Nunes, L.T.; Burigo, A.P.; Buck, S.; Oliveira-Santos, L.G.R. & Floeter, S.R. 2018. Resource partitioning by two syntopic sister species of butterflyfish (Chaetodontidae). Journal of the Marine Biological Association of the United Kingdom, 98(7): 1767-1773. http://doi.org/10.1017/S0025315417001321
http://doi.org/10.1017/S0025315417001321...
). In this way, the RSF allows comparing the availability of the environmental variables for each individual simultaneously to the moment when the animal is observed in the used point. This method provides a more mechanistic and powerful approach to understand microhabitat selection than considering the general availability for all individuals of a population (Liedke et al., 2018Liedke, A.M.; Bonaldo, R.M.; Segal, B.; Ferreira, C.E.; Nunes, L.T.; Burigo, A.P.; Buck, S.; Oliveira-Santos, L.G.R. & Floeter, S.R. 2018. Resource partitioning by two syntopic sister species of butterflyfish (Chaetodontidae). Journal of the Marine Biological Association of the United Kingdom, 98(7): 1767-1773. http://doi.org/10.1017/S0025315417001321
http://doi.org/10.1017/S0025315417001321...
). We used Generalized Linear Mixed Models (GLMM) to fit the mixed-CLR, built with a binomial distribution, a logit link function, and the ID of individuals as a random factor (i.e., random intercepts). The predictor variables were substrate temperature (Ts, in ℃) and diameter at breast height (DBH, in cm), and the response variable was the presence of the individual (binomial: 0 = absence, 1 = presence). Thus, the model is as follows: Presence ~ DBH + Ts + (1|ID). We performed all analyses in the software R, version 3.5.2 (R Core Team, 2020R Core Team. 2020. R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Disponível em: https://www.R-project.org.
https://www.R-project.org...
) using the “lme4” package (Bates et al., 2015Bates, D.; Maechler, M.; Bolker, B. & Walker, S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67: 1-48.).

RESULTS

We gathered data on 26 adult individuals of T. lagunablanca. The first active individual of T. lagunablanca was observed at approximately 07:30 h, and the last one was observed at approximately 17:00 h (Fig. 3). The pattern of Ts at which T. lagunablanca were observed varied widely throughout the day (Fig. 3), being that the average temperature of the used places was 32.06°C (ranging from 25.9°C to 42°C, SD = 4.26). Individuals of T. lagunablanca occurred in trees with mean DBH of 40.50 cm (ranging from 12.73 cm to 68.44 cm, SD = 15.14).

Figure 3
Substrate temperatures (Ts) of the sites where Tropidurus lagunablanca were observed along daily activity period (local time) at the Base de Estudos do Pantanal, Corumbá, Mato Grosso do Sul, Brazil.

The mixed-CLR analysis showed that both Ts and DBH of the trees significantly influenced the presence of T. lagunablanca individuals (P = 0.002 and P < 0.001, respectively; Table 1). The probability of presence of T. lagunablanca is less than 30% for the mean temperature (32.06°C) (Fig. 4A) and higher than 50% for the mean DBH (40.50 m) of the trees (Fig. 4B). The probability of presence of T. lagunablanca is higher than the 50% for trees up to 40 cm DBH (an increase of 1 cm in DBH is associated with an increase of 0.07 units in the expected log odds of presence; that is, the probability of presence is 1.08 times higher for each cm that the DBH increases, within the studied limits). The probability of a lizard to be recorded is higher than the 50% for Ts above 34°C (an increase of 1°C implies 0.25 higher log odds of presence; that is, the probability of presence increases in ~ 1.3 times for each 1°C, within the studied limits).

Figure 4
Result of the mixed Conditional Logistic Regression model for the presence of Tropidurus lagunablanca as a function of predictor variables: substrate temperature, in °C (A) and diameter at breast height (DBH, in cm) of the trees (B). The solid line represents the probability predicted by the model and the dashed lines represent the respective confidence intervals. The circles are the observed values measured in the points of presence (used microhabitats) and availability (the four respective unused microhabitats paired to each used one). As we included the ID of the observation (one ID for one used site, plus the correspondent four available microhabitats) in the model as a random factor, we colored the circles in the plot by ID, so one can have an idea of what used value corresponds to each available value. Please note that the location of the circles was vertically jittered to enhance visualization, but all points of availability correspond to the exact same probability of 0 and all points of presence correspond to the exact same probability of 1.

Table 1
Results of the mixed Conditional Logistic Regression analysis on substrate temperature (Ts, in °C) and diameter at breast height (DBH, in cm) of the trees on the probability of presence of Tropidurus lagunablanca individuals, including the individual identity as a random factor. AIC = 588.5; log likelihood = -290.3; df residual = 496.

DISCUSSION

We showed that the poorly known lizard T. lagunablanca uses trees with a mean temperature of 32.06 °C and a mean thickness of 40.5 cm in the Pantanal of Brazil. By assessing microhabitat selection using a Resource Selection Function approach, we also demonstrated that lizard’s presence is determined by substrate temperature and thickness of the tree. Particularly, T. lagunablanca lizards are selecting thicker trees than randomly available on their habitats and, within those trees, select slightly warmer places than randomly available on their surroundings. Our results evidence that T. lagunablanca is a thermoregulator species, since they are choosing microhabitats non-randomly regarding substrate temperature. Besides, these findings are relevant for conservation, indicating the importance of preserving thicker trees for the conservation of this species. Finally, our results also have a practical component for field biologists, providing data on where the chances of finding these arboreal lizards are maximized, helping to save time and money in sampling efforts.

The choice for a particular warmer location in the tree in relation to the others, confirm the information suggested by Carvalho (2016Carvalho, A.L.G. 2016. Three New Species of the Tropidurus spinulosus Group (Squamata: Tropiduridae) from Eastern Paraguay. American Museum Novitates, 3853: 1-44. http://doi.org/10.1206/3853.1
http://doi.org/10.1206/3853.1...
) that the species is heliophilous and the frequency of specimens encountered apparently depends on environmental temperature and amount of sunlight. A recent study disentangling the effect of heat sources and structural components of the habitat found that microhabitat selection of other two Neotropical lizard species (Tropidurus oreadicus and Ameivula aff. ocellifera) is independent of substrate temperature, but are strongly dependent on solar radiation (Ortega et al., 2019Ortega, Z.; Mencía, A.; Martins, K.; Soares, P.; Ferreira, V.L. & Oliveira-Santos, L.G. 2019. Disentangling the role of heat sources on microhabitat selection of two Neotropical lizard species. Journal of Tropical Ecology, 35(4): 149-156. http://doi.org/10.1017/S0266467419000099
http://doi.org/10.1017/S0266467419000099...
). In addition, neither substrate temperature nor sun exposure affect the microhabitat selection by Ameiva ameiva at the same location of this study (Benício et al., 2019Benício, R.A.; Ortega, Z.; Mencia, A. & Passos, D.C. 2019. Microhabitat selection of Ameiva ameiva (Linnaeus, 1758), in the Brazilian Pantanal. Herpetozoa, 31(3-4): 211-218.). However, it is important to remember that A. ameiva is a ground-dwelling active forager that moves constantly through space (Rocha et al., 2009Rocha, C.F.; Van Sluys, M.; Vrcibradic, D.; Kiefer, M.C.; de Menezes, V.A. & da Costa Siqueira, C. 2009. Comportamento de termorregulação em lagartos brasileiros. Oecologia brasiliensis, 13(1): 115-131.), whilst T. lagunablanca is an arboreal ambush forager.

Our results on T. lagunablanca showed a clear influence of substrate temperature on microhabitat selection. This finding suggests thermoregulation, although further studies comparing the preferred thermal range of the species with operative and body temperatures can provide details on the accuracy and effectiveness of thermoregulation in T. lagunablanca (Hertz et al., 1993Hertz, P.E.; Huey, R.B. & Stevenson, R.D. 1993. Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. The American Naturalist, 142(5): 796-818. http://doi.org/10.1086/285573
http://doi.org/10.1086/285573...
; Vickers et al., 2011Vickers, M.; Manicom, C. & Schwarzkopf, L. 2011. Extending the cost-benefit model of thermoregulation: high-temperature environments. The American Naturalist, 177(4): 452-461. http://doi.org/10.1086/658150
http://doi.org/10.1086/658150...
). Despite environmental temperature is high at the Pantanal, forests act as thermal buffers (De Frenne et al., 2019De Frenne, P.; Zellweger, F.; Rodríguez-Sánchez, F.; Scheffers, B.R.; Hylander, K.; Luoto, M.; Vellend, M.; Verheyen, K. & Lenoir, J. 2019. Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 3(5): 744-749. http://doi.org/10.1038/s41559-019-0842-1
http://doi.org/10.1038/s41559-019-0842-1...
). Thus, thermal ecology of tropical arboreal lizards may differ from that of species inhabiting open areas. It is possible that T. lagunablanca lizards search for warmer substrates on their surroundings to raise their body temperatures and enhance performance. A similar pattern, of an increasing presence of lizards with increasing air temperature, has been found in another arboreal tropidurid, Uracentron azureum (formerly Tropidurus azureus) in the Amazon forest of Venezuela (Ellinger et al., 2001Ellinger, N.; Schlatte, G.; Jerome, N. & Hödl, W. 2001. Habitat use and activity patterns of the neotropical arboreal lizard Tropidurus (= Uracentron) azureus werneri (Tropiduridae). Journal of Herpetology, 35(3): 395-402. http://doi.org/10.2307/1565957
http://doi.org/10.2307/1565957...
). Thus, we suggest that microhabitat selection can be a relevant driver for thermoregulation of tropical arboreal lizards.

Adult T. lagunablanca actively select trees that are thicker than available. This may be due to the larger area that those trunks provide for thermoregulation, foraging and shelter. An increase in the trunk area would be related to a higher availability of arthropods (e.g.,Gonçalves et al., 2005Gonçalves, T.T.; Souza, O.F.F.D.; Reis-Júnior, R. & Ribeiro, S.P. 2005. Effect of tree size and growth form on the presence and activity of arboreal termites (Insecta: Isoptera) in the Atlantic Rain Forest. Sociobiology, 46(2): 421-431. http://doi.org/10.13102/sociobiology.v59i3.556
http://doi.org/10.13102/sociobiology.v59...
; Horak, 2013Horak, J. 2013. Effect of Site Level Environmental Variables, Spatial Autocorrelation and Sampling Intensity on Arthropod Communities in an Ancient Temperate Lowland Woodland Area. PLoS ONE, 8(12): e81541. http://doi.org/10.1371/journal.pone.0081541
http://doi.org/10.1371/journal.pone.0081...
), resulting in better quality home ranges. This pattern of selection for thicker trees is in tune with the typical foraging pattern observed for several other species (e.g., Christinus marmoratus, Enyalioides laticeps, Polychrus marmoratus, Uracentron flaviceps;Garda et al., 2013Garda, A.A.; Wiederhecker, H.C.; Gainsbury, A.M.; Costa, G.C.; Pyron, R.A.; Vieira, G.H.C.; Werneck, F.P. & Colli, G.R. 2013. Microhabitat variation explains local-scale distribution of terrestrial Amazonian lizards in Rondônia, Western Brazil. Biotropica, 45(2): 245-252. http://doi.org/10.1111/j.1744-7429.2012.00906.x
http://doi.org/10.1111/j.1744-7429.2012....
; Taylor et al., 2016Taylor, D.; Daniels, C.B. & Johnston, G. 2016. Habitat selection by an arboreal lizard in an urban parkland: not just any tree will do. Urban Ecosystems, 19(1): 243-255. http://doi.org/10.1007/s11252-015-0480-6
http://doi.org/10.1007/s11252-015-0480-6...
). The clear selection of trees with a higher DBH has important implications for conservation, since the removal of these trees can compromise the structure of the habitat and consequently the survival of the species.

We found a well-defined pattern of microhabitat selection by T. lagunablanca which may be related to its foraging, defensive, and mating strategies. Some Tropiduridae lizards (e.g., Tropidurus hispidus), due to their ambush foraging behavior, do not need to travel large areas to find food and mates, resulting in a relative restricted home range size (Melo et al., 2017Melo, G.C.; Pinheiro, L.T.; Passos, D.C. & Galdino, C.A.B. 2017. Spatial organisation of the Neotropical lizard Tropidurus hispidus (Squamata: Tropiduridae). Salamandra, 53(3): 435-438.). In this sense, the selection of T. lagunablanca for higher substrate temperature and thicker trees may also indicate, besides microhabitat selection, a possible site fidelity. However, behavioral studies on spatial and social organization are needed to better understand this issue. In any case, conservation efforts should be focused on preserving thicker trees in order to keep a suitable habitat for this species. The Pantanal is suffering from unprecedented bushfires in 2020, and the predictions estimate that bushfires will get worse in future years by climate change. Recent studies estimated a loss of more than 14.000 km² of native vegetation for 2,050 related to bushfires in the Pantanal (Guerra et al., 2020Guerra, A.; de Oliveira Roque, F.; Garcia, L.C.; Ochoa-Quintero, J.M.; de Oliveira, P.T.S.; Guariento, R.D. & Rosa, I.M. 2020. Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems. Land Use Policy, 91: 104388. http://doi.org/10.1016/j.landusepol.2019.104388
http://doi.org/10.1016/j.landusepol.2019...
). Therefore, this might constitute a great threat to T. lagunablanca, given its arboreal habits and selection for thicker trees.

In short, our results on microhabitat selection of T. lagunablanca showed how this species selects for microhabitats with higher substrate temperatures and thicker trees than randomly available in its habitat. This information provides knowledge on the habitat selection process of Neotropical arboreal lizards and can be used to maximize sampling efforts for the studied species. Finally, we reinforce the necessity to preserve the native vegetation in the Pantanal.

ACKNOWLEDGMENTS

This article is the result of a research project of the 20th Curso de Campo do Pantanal (EcoPan2017) of the Universidade Federal of Mato Grosso do Sul. R.A.B. thanks Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Proc. 2015/11821-0) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proc. 155556/2018-5) for financial support. Z.O. (Ref. 1694744) and A.M. thank CAPES for financial support (PNPD/CAPES postdoctoral fellowship). We thank Luiz Gustavo Oliveira-Santos for help with data analyses, and to two anonymous reviewers for the relevant suggestions and corrections in this manuscript.

REFERENCES

  • Adolph, S.C. 1990. Influence of behavioral thermoregulation on microhabitat use by two Sceloporus lizards. Ecology, 71(1): 315-327. http://doi.org/10.2307/1940271
    » http://doi.org/10.2307/1940271
  • Adolph, S.C. & Porter, W.P. 1993. Temperature, activity, and lizard life histories. The American Naturalist, 142(2): 273-295. http://doi.org/10.1086/285538
    » http://doi.org/10.1086/285538
  • Alho, C.J.R.; Strüssmann, C. & Vasconcellos, L.A.S. 2001. Indicadores da magnitude da diversidade e abundância de vertebrados silvestres do Pantanal num mosaico de hábitats sazonais. In: do III Simpósio sobre Recursos Naturais e Sócio-Econômicos do Pantanal, 3º. Anais. 2000. Corumbá, EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (Ed.). p. 1-54. [CD-ROM]
  • de Andrade, A.C. 2020. Metropolitan lizards? Urbanization gradient and the density of lagartixas (Tropidurus hispidus) in a tropical city. Ecology and Evolution, 10(4): 1740-1750. http://doi.org/10.1002/ece3.5518
    » http://doi.org/10.1002/ece3.5518
  • Angilletta, M.J. 2009. Thermal adaptation: A theoretical and empirical synthesis. Oxford, Oxford University Press.
  • Ariano-Sánchez, D.; Mortensen, R.M.; Reinhardt, S. & Rosell, F. 2020. Escaping drought: Seasonality effects on home range, movement patterns and habitat selection of the Guatemalan Beaded Lizard. Global Ecology and Conservation, 23: e01178. http://doi.org/10.1016/j.gecco.2020.e01178
    » http://doi.org/10.1016/j.gecco.2020.e01178
  • Ávila, R.W.; Souza, F.L. & Da Silva, R.J. 2010. Helminths from seven species of lizards (Reptilia: Squamata) at the Cerrado of Mato Grosso do Sul State, Brazil. Comparative Parasitology, 77(1): 67-71. http://doi.org/10.1654/4414.1
    » http://doi.org/10.1654/4414.1
  • Bates, D.; Maechler, M.; Bolker, B. & Walker, S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67: 1-48.
  • Bauwens, D.; Hertz, P.E. & Castilla, A.M. 1996. Thermoregulation in a lacertid lizard: the relative contributions of distinct behavioral mechanisms. Ecology, 77(6): 1818-1830. http://doi.org/10.2307/2265786
    » http://doi.org/10.2307/2265786
  • Benício, R.A.; Ortega, Z.; Mencia, A. & Passos, D.C. 2019. Microhabitat selection of Ameiva ameiva (Linnaeus, 1758), in the Brazilian Pantanal. Herpetozoa, 31(3-4): 211-218.
  • Cadotte, M.W. & Tucker, C.M. 2017. Should environmental filtering be abandoned? Trends in Ecology & Evolution, 32(6): 429-437. http://doi.org/10.1016/j.tree.2017.03.004
    » http://doi.org/10.1016/j.tree.2017.03.004
  • Carvalho, A.L.G. 2016. Three New Species of the Tropidurus spinulosus Group (Squamata: Tropiduridae) from Eastern Paraguay. American Museum Novitates, 3853: 1-44. http://doi.org/10.1206/3853.1
    » http://doi.org/10.1206/3853.1
  • Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31: 343-366. http://doi.org/10.1146/annurev.ecolsys.31.1.343
    » http://doi.org/10.1146/annurev.ecolsys.31.1.343
  • Colli, G.R.; Araújo, A.F.B.; Silveira, R. & Roma, F. 1992. Niche partitioning and morphology of two syntopic Tropidurus (Sauria: Tropiduridae) in Mato Grosso, Brazil. Journal of Herpetology, 26(1): 66-69. http://doi.org/10.2307/1565023
    » http://doi.org/10.2307/1565023
  • Cosendey, B.N.; Rocha, C.F.D. & Menezes, V.A. 2019. Habitat structure and their influence in lizard’s presence. Papéis Avulsos de Zoologia, 59(59): 1-10, e20195959. http://doi.org/10.11606/1807-0205/2019.59.59
    » http://doi.org/10.11606/1807-0205/2019.59.59
  • Costa, H.C. & Bérnils, R.S. 2018. Répteis do Brasil e suas Unidades Federativas: Lista de espécies. Herpetologia Brasileira, 7(1): 11-57.
  • Crump, M.A. & Scott Jr., N.J. 1994. Visual Encounter Surveys. In: Heyer, W.R.; Donnelly, M.A.; Mcdiarmid, R.W.L.; Hayek, A.C. & Foster, M.S. (Eds.). Measuring and monitoring biological diversity: standard methods for amphibians. Washington, Smithsonian Institution Press. p. 84-92.
  • De Frenne, P.; Zellweger, F.; Rodríguez-Sánchez, F.; Scheffers, B.R.; Hylander, K.; Luoto, M.; Vellend, M.; Verheyen, K. & Lenoir, J. 2019. Global buffering of temperatures under forest canopies. Nature Ecology & Evolution, 3(5): 744-749. http://doi.org/10.1038/s41559-019-0842-1
    » http://doi.org/10.1038/s41559-019-0842-1
  • Domenici, P.; Claireaux, G. & McKenzie, D.J. 2007. Environmental constraints upon locomotion and predator-prey interactions in aquatic organisms: an introduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1487): 1929-1936. http://doi.org/10.1098/rstb.2007.2078
    » http://doi.org/10.1098/rstb.2007.2078
  • Duchesne, T.; Fortin, D. & Courbin, N. 2010. Mixed conditional logistic regression for habitat selection studies. Journal of Animal Ecology, 79(3): 548-555. http://doi.org/10.1111/j.1365-2656.2010.01670.x
    » http://doi.org/10.1111/j.1365-2656.2010.01670.x
  • Ehrlén, J. & Morris, W.F. 2015. Predicting changes in the distribution and abundance of species under environmental change. Ecology Letters, 18(3): 303-314. http://doi.org/10.1111/ele.12410
    » http://doi.org/10.1111/ele.12410
  • Ellinger, N.; Schlatte, G.; Jerome, N. & Hödl, W. 2001. Habitat use and activity patterns of the neotropical arboreal lizard Tropidurus (= Uracentron) azureus werneri (Tropiduridae). Journal of Herpetology, 35(3): 395-402. http://doi.org/10.2307/1565957
    » http://doi.org/10.2307/1565957
  • Ferreira, V.L.; Terra, J.S.; Piatti, L.; Delatorre, M.; Strüssmann, C.; Béda, A.F.; Kawashita-Ribeiro, R.A.; Landgref-Filho, P.; Aoki, C.; Campos, Z.; Souza, F.L.; Ávila, R.W.; Duleba, S.; Martins, K.S.; Rita, P.H.S. & Albuquerque, N.R. 2017. Répteis do Mato Grosso do Sul, Brasil. Iheringia, Série Zoologia, 107(Supl.): 1-13, e2017153. http://doi.org/10.1590/1678-4766e2017153
    » http://doi.org/10.1590/1678-4766e2017153
  • Franzini, L.D.; Teixeira, A.A.M.; Tavares-Bastos, L.; Vitt, L.J. & Mesquita, D.O. 2019. Autecology of Kentropyx calcarata (Squamata: Teiidae) in a Remnant of Atlantic Forest in Eastern South America. Journal of Herpetology, 53(3): 209-217. http://doi.org/10.1670/17-184
    » http://doi.org/10.1670/17-184
  • Garda, A.A.; Wiederhecker, H.C.; Gainsbury, A.M.; Costa, G.C.; Pyron, R.A.; Vieira, G.H.C.; Werneck, F.P. & Colli, G.R. 2013. Microhabitat variation explains local-scale distribution of terrestrial Amazonian lizards in Rondônia, Western Brazil. Biotropica, 45(2): 245-252. http://doi.org/10.1111/j.1744-7429.2012.00906.x
    » http://doi.org/10.1111/j.1744-7429.2012.00906.x
  • Gonçalves, H.C.; Mercante, M.A. & Santos, E.T. 2011. Hydrological cycle. Brazilian Journal of Biology, 71(1): 241-253. http://doi.org/10.1590/S1519-69842011000200003
    » http://doi.org/10.1590/S1519-69842011000200003
  • Gonçalves, T.T.; Souza, O.F.F.D.; Reis-Júnior, R. & Ribeiro, S.P. 2005. Effect of tree size and growth form on the presence and activity of arboreal termites (Insecta: Isoptera) in the Atlantic Rain Forest. Sociobiology, 46(2): 421-431. http://doi.org/10.13102/sociobiology.v59i3.556
    » http://doi.org/10.13102/sociobiology.v59i3.556
  • Gonçalves-Sousa, J.G.; Mesquita, D.O. & Ávila, R.W. 2019. Structure of a lizard assemblage in a semiarid habitat of the Brazilian Caatinga. Herpetologica, 75(4): 301-314. http://doi.org/10.1655/herpetologica-D-19-00026.1
    » http://doi.org/10.1655/herpetologica-D-19-00026.1
  • Guerra, A.; de Oliveira Roque, F.; Garcia, L.C.; Ochoa-Quintero, J.M.; de Oliveira, P.T.S.; Guariento, R.D. & Rosa, I.M. 2020. Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems. Land Use Policy, 91: 104388. http://doi.org/10.1016/j.landusepol.2019.104388
    » http://doi.org/10.1016/j.landusepol.2019.104388
  • Hertz, P.E.; Huey, R.B. & Stevenson, R.D. 1993. Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. The American Naturalist, 142(5): 796-818. http://doi.org/10.1086/285573
    » http://doi.org/10.1086/285573
  • HilleRisLambers, J.; Adler, P.B.; Harpole, W.S.; Levine, J.M. & Mayfield, M.M. 2012. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43: 227-248. http://doi.org/10.1146/annurev-ecolsys-110411-160411
    » http://doi.org/10.1146/annurev-ecolsys-110411-160411
  • Horak, J. 2013. Effect of Site Level Environmental Variables, Spatial Autocorrelation and Sampling Intensity on Arthropod Communities in an Ancient Temperate Lowland Woodland Area. PLoS ONE, 8(12): e81541. http://doi.org/10.1371/journal.pone.0081541
    » http://doi.org/10.1371/journal.pone.0081541
  • International Union for Conservation of Nature and Natural Resources (IUCN). 2001. IUCN Red List Categories and Criteria: Version 3.1. IUCN Species Survival Commission. Gland, Switzerland, IUCN.
  • Liedke, A.M.; Bonaldo, R.M.; Segal, B.; Ferreira, C.E.; Nunes, L.T.; Burigo, A.P.; Buck, S.; Oliveira-Santos, L.G.R. & Floeter, S.R. 2018. Resource partitioning by two syntopic sister species of butterflyfish (Chaetodontidae). Journal of the Marine Biological Association of the United Kingdom, 98(7): 1767-1773. http://doi.org/10.1017/S0025315417001321
    » http://doi.org/10.1017/S0025315417001321
  • Lourival, R.; Harris, M. & Montambault, J.R. 2000. Introdução ao Pantanal, Mato Grosso do Sul, Brasil. In: Willink, P.W.; Chernoff, B.; Alonso, L.E.; Montambault, J.R. & Lourival, R. (Eds.). A biological assessment of the aquatic ecosystems of the Pantanal, Mato Grosso do Sul, Brasil. Washington, D.C., Conservation International. p. 146-151. (RAP Bulletin of Biological Assessment, № 18)
  • Manly, B.F.L.; McDonald, L.; Thomas, D.L.; McDonald, T.L. & Erickson, W.P. 2007. Resource selection by animals: statistical design and analysis for field studies. Springer Science & Business Media. http://doi.org/10.1007/0-306-48151-0
    » http://doi.org/10.1007/0-306-48151-0
  • Melo, G.C.; Pinheiro, L.T.; Passos, D.C. & Galdino, C.A.B. 2017. Spatial organisation of the Neotropical lizard Tropidurus hispidus (Squamata: Tropiduridae). Salamandra, 53(3): 435-438.
  • Mercante, M.A.; Rodrigues, S.C. & Ross, J.L.S. 2011. Geomorphology and habitat diversity in the Pantanal. Brazilian Journal of Biology, 71(1): 233-240. http://doi.org/10.1590/S1519-69842011000200002
    » http://doi.org/10.1590/S1519-69842011000200002
  • Newbold, T.S. & MacMahon, J.A. 2014. Determinants of habitat selection by desert horned lizards (Phrynosoma platyrhinos): the importance of abiotic factors associated with vegetation structure. Journal of Herpetology, 48(3): 306-316. http://doi.org/10.1670/10-141
    » http://doi.org/10.1670/10-141
  • Nogueira, C.; Valdujo, P.H. & França, F.G. 2005. Habitat variation and lizard diversity in a Cerrado area of Central Brazil. Studies on Neotropical Fauna and Environment, 40(2): 105-112. http://doi.org/10.1080/01650520500129901
    » http://doi.org/10.1080/01650520500129901
  • Ortega, Z. & Pérez-Mellado, V. 2016. Seasonal patterns of body temperature and microhabitat selection in a lacertid lizard. Acta Oecologica, 77: 201-206. http://doi.org/10.1016/j.actao.2016.08.006
    » http://doi.org/10.1016/j.actao.2016.08.006
  • Ortega, Z.; Mencía, A.; Martins, K.; Soares, P.; Ferreira, V.L. & Oliveira-Santos, L.G. 2019. Disentangling the role of heat sources on microhabitat selection of two Neotropical lizard species. Journal of Tropical Ecology, 35(4): 149-156. http://doi.org/10.1017/S0266467419000099
    » http://doi.org/10.1017/S0266467419000099
  • Peixoto, M.G.; De Fraga, R.; Araújo, M.C.; Kaefer, I.L. & Lima, A.P. 2020. Hierarchical effects of historical and environmental factors on lizard assemblages in the upper Madeira River, Brazilian Amazonia. PLoS ONE, 15(6): e0233881. http://doi.org/10.1371/journal.pone.0233881
    » http://doi.org/10.1371/journal.pone.0233881
  • Pianka, E.R. 1973. The structure of lizard communities. Annual Review of Ecology, Evolution, and Systematics, 4: 53-74. http://doi.org/10.1146/annurev.es.04.110173.000413
    » http://doi.org/10.1146/annurev.es.04.110173.000413
  • Prado, D.E.; Gibbs, P.E.; Pott, A. & Pott, V.J. 1992. The Chaco-Pantanal transition in southern Mato Grosso, Brazil. In: Furley, P.A.; Proctor, J. & Ratter, J.A. (Eds.). Nature and dynamics of forest-savanna boundaries. London, Chapman and Hall. p. 451-470.
  • R Core Team. 2020. R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Disponível em: https://www.R-project.org
    » https://www.R-project.org
  • Recoder, R.S. & Rodrigues, M.T. 2020. Diversification processes in lizards and snakes from the middle São Francisco river dune region, Brazil. In: Rull, V. & Carnaval, A. (Eds.). Neotropical diversification: patterns and processes. Cham, Springer. p. 713-740. http://doi.org/10.1007/978-3-030-31167-4_26
    » http://doi.org/10.1007/978-3-030-31167-4_26
  • Rocha, C.F.; Van Sluys, M.; Vrcibradic, D.; Kiefer, M.C.; de Menezes, V.A. & da Costa Siqueira, C. 2009. Comportamento de termorregulação em lagartos brasileiros. Oecologia brasiliensis, 13(1): 115-131.
  • Rocha, C.F.D. & Anjos, L.A. 2007. Feeding ecology of a nocturnal invasive alien lizard species, Hemidactylus mabouia Moreau de Jonnès, 1818 (Gekkonidae), living in an outcrop rocky area in southeastern Brazil. Brazilian Journal of Biology, 67(3): 485-491. http://doi.org/10.1590/S1519-69842007000300013
    » http://doi.org/10.1590/S1519-69842007000300013
  • Rodrigues, M.T. 1996. Lizards, snakes, and amphisbaenians from the quaternary sand dunes of the middle Rio São Francisco, Bahia, Brazil. Journal of Herpetology, 30(4): 513-523.
  • Rutherford, P.L. & Gregory, P.T. 2003. Habitat Use and Movement Patterns of Northern Alligator Lizards (Elgaria coerulea) and Western Skinks (Eumeces skiltonianus) in Southeastern British Columbia. Journal of Herpetology, 37(1): 98-106. http://doi.org/10.1670/0022-1511(2003)037%5b0098:HUAMPO%5d2.0.CO;2
    » http://doi.org/10.1670/0022-1511(2003)037%5b0098:HUAMPO%5d2.0.CO;2
  • Schwenk, K.; Padilla, D.K.; Bakken, G.S. & Full, R.J. 2009. Grand challenges in organismal biology. Integrative and Comparative Biology, 49(1): 7-14. http://doi.org/10.1093/icb/icp034
    » http://doi.org/10.1093/icb/icp034
  • Smith, G.R. & Ballinger, R.E. 2001. The ecological consequences of habitat and microhabitat use in lizards: a review. Contemporary Herpetology, 3: 1-37. http://doi.org/10.17161/ch.vi1.11957
    » http://doi.org/10.17161/ch.vi1.11957
  • Souza, F.L.; Prado, C.P.A.; Sugai, J.L.M.M.; Ferreira, V.L.; Aoki, C.; Landgref-Filho, P.; Strüssmann, C.; Ávila, R.W.; Rodrigues, D.J.; Albuquerque, N.R.; Terra, J.; Uetanabaro, M.; Béda, A.F.; Piatti, L.; Kawashita-Ribeiro, R.A.; Delatorre, M.; Faggioni, G.P.; Demczuk, S.D.B. & Duleba, S. 2017. Diversidade de anfíbios do Estado de Mato Grosso do Sul, Brasil. Iheringia, Série Zoologia, 107(Suppl.): 1-10, e2017152. http://doi.org/10.1590/1678-4766e2017152
    » http://doi.org/10.1590/1678-4766e2017152
  • Taylor, D.; Daniels, C.B. & Johnston, G. 2016. Habitat selection by an arboreal lizard in an urban parkland: not just any tree will do. Urban Ecosystems, 19(1): 243-255. http://doi.org/10.1007/s11252-015-0480-6
    » http://doi.org/10.1007/s11252-015-0480-6
  • Terra, J.S.; Ortega, Z. & Ferreira, V.L. 2018. Thermal ecology and microhabitat use of an arboreal lizard in two different Pantanal wetland phytophysionomies (Brazil). Journal of Thermal Biology, 75: 81-87. http://doi.org/10.1016/j.jtherbio.2018.06.004
    » http://doi.org/10.1016/j.jtherbio.2018.06.004
  • Vickers, M.; Manicom, C. & Schwarzkopf, L. 2011. Extending the cost-benefit model of thermoregulation: high-temperature environments. The American Naturalist, 177(4): 452-461. http://doi.org/10.1086/658150
    » http://doi.org/10.1086/658150
  • Vitt, L.I. & Pianka, E.R. 1994. Lizard ecology, historical and experimental perspectives. New Jersey, Princeton University Press.
  • Xavier, M.A.; da Silva, T.L. & Dias, E.J.D.R. 2019. Habitat use and diet of the endemic lizard Ameivula nigrigula (Squamata: Teiidae) in Caatinga domain, Northeastern Brazil. Journal of Natural History, 53(29-30): 1787-1797. http://doi.org/10.1080/00222933.2019.1668979
    » http://doi.org/10.1080/00222933.2019.1668979
  • Published with the financial support of the "Programa de Apoio às Publicações Científicas Periódicas da USP"
Edited by: Carlos José Einicker Lamas

Publication Dates

  • Publication in this collection
    16 Apr 2021
  • Date of issue
    2021

History

  • Received
    11 Jan 2019
  • Accepted
    12 Jan 2021
  • Published
    18 Feb 2021
Museu de Zoologia da Universidade de São Paulo Av. Nazaré, 481, Ipiranga, 04263-000 São Paulo SP Brasil, Tel.: (55 11) 2065-8133 - São Paulo - SP - Brazil
E-mail: einicker@usp.br