Acessibilidade / Reportar erro

Floristic patterns of alluvial forests in Atlantic Forest and Pampa: Climate and geographic insertion as determining factors

Abstract

The aims of this study were to identify floristic assemblages for alluvial forests in the Atlantic Forest and Pampa regions in Brazil, assess the level of floristic similarity between assemblages, and determine environmental gradients and indicator species for these assemblages. Surveys carried out in alluvial forests in the Atlantic Forest and Pampa regions were selected, based on which a presence/absence matrix was built for tree species. A cluster analysis was performed to verify the existence of species assemblages. Floristic similarity was determined by means of the Sorensen Distance measure, from which a dendrogram was developed. The floristic matrix was ordinated by means of NMDS. A PCA was performed with climatic data from areas to determine environmental gradients. An assessment of indicator species was carried out afterwards. Two groups of areas not related to the separation of the regions became visible from the dendrogram and were corroborated by NMDS. Temperature, rainfall and altitude gradients were synthesized by the PCA. Gymnanthes klotzschiana and Andira fraxinifolia were the most relevant species, respectively, in the Paraná-Uruguay and Atlantic assemblages. Alluvial forests were gradually separated in two floristic assemblages associated with river basins and migration routes, while especially influenced by tropicality and altitude gradients.

Key words
Atlantic basin; indicator species; migratory routes; Paraná-Uruguay basin

INTRODUCTION

In the current scenario in which human activities lead to the rapid transformation of all ecosystems on the planet (Steffen et al. 2007STEFFEN W, CRUTZEN PJ & MCNEILL JR. 2007. The Anthropocene: Are humans now overhelming the great forces of nature? AMBIO 36(8): 614-621.), a better understanding of the factors that determine floristic patterns in forests on a regional scale is essential for the design of conservation strategies and the ecological restoration of remaining natural areas. Despite a growing effort of work under such approach in the neotropics, knowledge on areas subject to recurrent flooding is still scarce (e.g., Silva et al. 2007SILVA AC, VAN DEN BERG R, HIGUCHI P & OLIVEIRA-FILHO AT. 2007. Comparação florística de florestas inundáveis das regiões Sudeste e Sul do Brasil. Rev Bras Bot 30(2): 257-269., Wittmann et al. 2017WITTMANN F ET AL. 2017. The Brazilian freshwater wetscape: Changes in tree community diversity and composition on climatic and geographic gradients. PLoS ONE 12(4): e0175003.) such as alluvial forests, which represent the areas along rivers, on plains and terraces where flood pulses and hydric saturation periodically occur (IBGE 2012IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2012. Manual técnico da vegetação brasileira. Rio de Janeiro: Fundação Instituto Brasileiro de Geografia e Estatística, 2a ed., 271 p.).

Alluvial forests function as a protective cover for natural resources by maintaining the hydrological cycle and protecting soils (Melo et al. 2011). These environments are highly relevant in the context of climate change, especially in areas tending to savanization (i.e., the Amazon and northern areas of Atlantic Forest), considering they may function as humid refuges in a future macroclimate of increased rainfall seasonality (Wittmann et al. 2017WITTMANN F ET AL. 2017. The Brazilian freshwater wetscape: Changes in tree community diversity and composition on climatic and geographic gradients. PLoS ONE 12(4): e0175003.). Regardless of their ecological relevance, alluvial areas have been highly impacted by human activities (van den Berg & Oliveira-Filho 2000VAN DEN BERG E & OLIVEIRA-FILHO AT. 2000. Composição florística e estrutura fitossociológica de uma floresta ripária em Itutinga, MG, e comparação com outras áreas. Rev Bras Bot 23(3): 231-253.).

Environmental selectivity resulting from hydric stress in areas subject to flooding require plants to adapt morphologically, anatomically and physiologically (Koslowski 2002KOSLOWSKI TT. 2002. Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetl 22: 550-561.). The ability of plants to withstand hydric stress along with existing biotic interactions (Kraft et al. 2015KRAFT NJB, ADLER PB, GODOY O, JAMES EC, FULLER S & LEVINE JM. 2015. Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29(5): 592-599.) defines the floristic composition and structure of plant communities (Silva et al. 2012SILVA AC, HIGUCHI P, VAN DEN BERG E, NUNES MH & CARVALHO DA. 2012. Florestas inundáveis: Ecologia, Florística e Adaptação das espécies. Lavras: Ed, UFLA, 1a ed., 170 p., Cruz & Campos 2013CRUZ MP & CAMPOS JB. 2013. Regime de inundação e a regeneração arbórea em duas áreas florestais na planície alagável do alto Rio Paraná. Biotemas 26(3): 71-82., Carvalho et al. 2016CARVALHO J, GALVÃO F, RIOS RC & VELAZCO SJE. 2016. Monospecific dominance in an alluvial mixed ombrophyllous forest in southern Brazil. Aust J Basic & Appl Sci 10(10): 38-44.), while the differences in flood pulses influence species establishment and diversity (Lobo & Joly 2009LOBO PC & JOLY CA. 2009. Aspectos ecofisiológicos da vegetação de mata ciliar do Sudeste do Brasil. In: RODRIGUES RR & LEITÃO-FILHO HF (Eds), Matas ciliares: conservação e recuperação, São Paulo: EDUSP/FAPESP, São Paulo, 2a ed., p. 143-157.). As a result, a smaller number of species is functionally able to thrive on floodplains by rivers compared to areas not subject to flooding. These species are adapted to and dependent on flood dynamics. Under this perspective, the relevance of alluvial environments is undisputable, especially considering the provision of ecosystem services such as the protection of water resources and the conservation of biodiversity and gene flows, as alluvial environments form ecological corridors for animals and for plant dispersal (Van Den Berg et al. 2007VAN DEN BERG E, SANTOS M, CASTRO GC & FERREIRA CAF. 2007. Estrutura do Componente arbóreo de uma floresta de galeria aluvial em Poços de Caldas, MG. R Bras Bioci 5(1): 150-152., Lima & Zakia 2009LIMA WP & ZAKIA MJB. 2009. Hidrologia de matas ciliares. In: RODRIGUES RR & LEITÃO-FILHO HF (Eds), Matas ciliares: conservação e recuperação, São Paulo: EDUSP/FAPESP, São Paulo, 2a ed., p. 33-44.).

Notwithstanding the relevant contribution of studies already conducted on alluvial habitats (Oliveira-Filho et al. 1997OLIVEIRA-FILHO AT, CURI N, VILELA EA & CARVALHO DA. 1997. Tree species distribution along soil catenas in a riverside semideciduous forest in southeastern Brazil. Flora 192(1): 47-64., Silva et al. 2007SILVA AC, VAN DEN BERG R, HIGUCHI P & OLIVEIRA-FILHO AT. 2007. Comparação florística de florestas inundáveis das regiões Sudeste e Sul do Brasil. Rev Bras Bot 30(2): 257-269., 2016, Carvalho et al. 2016CARVALHO J, GALVÃO F, RIOS RC & VELAZCO SJE. 2016. Monospecific dominance in an alluvial mixed ombrophyllous forest in southern Brazil. Aust J Basic & Appl Sci 10(10): 38-44., Rodrigues et al. 2016RODRIGUES AL, WATZLAWICK LF, GENU AM, HESS AF & EBLING AA. 2016. Atributos de um solo florestal em uma topossequência e relações com a comunidade arbórea. Floresta 46(2): 145-154., Kanieski et al. 2017KANIESKI MR, GALVÃO F, LONGHI-SANTOS T, MILANI JEF & BOTOSSO PC. 2017. Parâmetros climáticos e incremento diamétrico de espécies florestais em florestal aluvial no Sul do Brasil. Floresta Ambient 24: e00124814., Cruz et al. 2018CRUZ MP, CAMPOS JB & TOREZAN JMD. 2018. Influência da topografia e da abertura do dossel na estrutura do componente herbáceo-arbustivo em dois fragmentos florestais na planície de inundação do alto rio Paraná. Cienc Florest 28(1): 191-205., Gonçalves et al. 2018GONÇALVES DA ET AL. 2018. Heterogeneity of a tree species community in an alluvial area of Santa Catarina, Brazil. Floresta Ambient 25(2): e00096514.), there is a scarcity of large scale assessments that contemplate the identification of patterns in areas subject to periodic flooding considering their regional insertion in different vegetation types. Wittmann et al. (2017)WITTMANN F ET AL. 2017. The Brazilian freshwater wetscape: Changes in tree community diversity and composition on climatic and geographic gradients. PLoS ONE 12(4): e0175003. only recently carried out a study using this approach, demonstrating that Brazilian alluvial forests have similar phytogeographic patterns to equivalent non-alluvial forests, with floristic assemblages determined by macroecological factors associated with climate and evolutionary factors related to long distance dispersal. Considering that some ecological factors are spatially structured, complementary studies on different regional scales are relevant to increase the understanding of floristic patterns.

This study aimed to contribute to a better understanding of floristic and phytogeographic patterns of alluvial areas in the Atlantic Forest and Pampa, regions where forest fragmentation is renowned. These regions were selected because they are characterized by distinct climatic contingents, therefore allowing for a joint and complementary approach of the tropical and subtropical domains. Similar climatic conditions occur where Atlantic Forest and Pampa are geographically close, in southern Brazil, resulting in shared species of the flora due to the fact that climate is one of the most important factors in species distribution (Buriol et al. 2007BURIOL GA, ESTEFANEL V, CHAGAS AC & EBERHARDT D. 2007. Climate and natural vegetation in the state of Rio Grande do Sul according to the Walter and Lieth climatic diagram. Cienc Florest 17(2): 91-100.). We expected that the separation of biomes were not determinant in the formation of floristic assemblages despite the floristic similarity between Atlantic Forest and Pampa, due especially to the high diversity of vegetation types in the Atlantic Forest domain. We also expected alluvial environments to be associated with temperature and rainfall gradients.

The Atlantic Forest region is known for its high proportion of endemic species and considered one of the most important biodiversity hotspots on the planet. It is therefore a priority for the conservation of several habitat types (Myers et al. 2000MYERS N, MITTERMEIER RA, MITTERMEIER CG, FONSECA GAB & KENT J. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772): 853-858., Mantovani 2003MANTOVANI W. 2003. A degradação dos biomas brasileiros. In: RIBEIRO W (Org), Patrimônio ambiental brasileiro, São Paulo: Editora da Universidade de São Paulo e Imprensa Oficial, São Paulo, 1a ed., p. 367-442., Varjabedian 2010VARJABEDIAN R. 2010. Lei da Mata Atlântica: retrocesso ambiental. Estud av 24(68): 147-160.) which result from an extensive distribution range. The Atlantic Forest is increasingly constrained and fragmented despite conservation efforts. It has currently been reduced to only 12.5% of the original cover (SOS Mata Atlântica, INPE 2018INPE - INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. 2018. Fundação SOS Mata Atlântica, Atlas dos Remanescentes Florestais da Mata Atlântica: mapeamento dos sistemas costeiros. São Paulo: Fundação SOS Mata Atlântica e Instituto Nacional de Pesquisas Espaciais. 1a ed., 43 p.) and contains the highest number of species officially threatened with extinction in Brazil (Tabarelli et al. 2003TABARELLI M, PINTO LP, SILVA JMC & COSTA CMR. 2003. Endangered species and conservation planning. In: GALINDO-LEAL C & CAMARA IG (Eds), state of the hotspots: The Atlantic Forest of South America, Washington: Island Press, Washington, 1a ed., p. 86-94.). The Pampa, on the other hand, is limited to one Brazilian state and has been largely altered by agriculture, grazing and the introduction and spread of invasive alien species (Echer et al. 2015ECHER R, CRUZ JAW, ESTRELA CC, MOREIRA M & GRAVATO F. 2015. Usos da terra e ameaças para a conservação da biodiversidade do bioma Pampa, Rio Grande do Sul. Rev Thema 12(2): 4-13.). Formed by highly diverse ecosystems in terms of animals and plants, the Pampa is characterized by a peculiar floristic composition (Araujo et al. 2018ARAUJO ACB, ARAUJO HJB & LONGHI SJ. 2018. Caracterização da vegetação e espécies para a recuperação de florestas ribeirinhas na campanha gaúcha, bioma Pampa. Iheringia Ser Bot 73(3): 342-352., Marchi et al. 2018MARCHI MM, BARBIERI RL, SALLES JM & COSTA FA. 2018. Flora herbácea e subarbustiva associada a um ecossistema de butiazal no bioma Pampa. Rodriguésia 69(2): 553-560.). This diversity is, however, threatened, while studies on its genetic heritage and conservation status are scarce (Santos & Silva 2011SANTOS S & SILVA LG. 2011. Remote sensing image mapping evidence Brazilian Pampa biome under threat. Bol Geogr 29(2): 49-57., Echer et al. 2015ECHER R, CRUZ JAW, ESTRELA CC, MOREIRA M & GRAVATO F. 2015. Usos da terra e ameaças para a conservação da biodiversidade do bioma Pampa, Rio Grande do Sul. Rev Thema 12(2): 4-13.).

This paper aimed to provide answers to the following questions: i) which are the main floristic assemblages in alluvial forests in the central-southern part of the Atlantic Forest and Pampa regions, and what determines these assemblages? ii) Is there floristic similarity between alluvial forests in Atlantic Forest and Pampa? iii) Which species are indicators of the main assemblages in alluvial forests in the central-southern part of the Atlantic Forest and Pampa? iv) What are the environmental gradients associated with the main floristic assemblages of alluvial forests in Atlantic Forest and Pampa?

MATERIALS AND METHODS

Data collection

Studies on floristic or phytosociological surveys carried out in alluvial forests in the Atlantic Forest and Pampa were selected from searches on Google Scholar as a base for this assessment. Studies in transitional areas between these regions were included. The Atlantic Forest has a diverse physiographic composition that includes pioneer (initial colonization by plants) and forest formations: Dense Ombrophilous Forest (Atlantic coast forests), Mixed Ombrophilous Forest (Araucaria forests), Decidual and Semidecidual Seasonal Forests (IBGE 2012IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2012. Manual técnico da vegetação brasileira. Rio de Janeiro: Fundação Instituto Brasileiro de Geografia e Estatística, 2a ed., 271 p.). The Pampa, on the other hand, is mainly characterized by grasslands classified as Steppe or Savanna intermixed with pioneer and forest formations of Mixed Ombrophilous Forest (Araucaria forests), Decidual Seasonal Forests and Semidecidual Seasonal Forests (IBGE 2012IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2012. Manual técnico da vegetação brasileira. Rio de Janeiro: Fundação Instituto Brasileiro de Geografia e Estatística, 2a ed., 271 p.). The Dense Ombrophilous Forest (DOF), also defined as Tropical Rain Forest, is associated with high temperatures and high rainfall. It is characterized by lush evergreen vegetation composed of large trees, a high number of exclusive species and diverse life forms. It is subdivided in alluvial, lowland, submontane, montane and high montane formations due to altitudinal variation, with significant decrease in richness in higher altitudes (IBGE 2012IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2012. Manual técnico da vegetação brasileira. Rio de Janeiro: Fundação Instituto Brasileiro de Geografia e Estatística, 2a ed., 271 p.). Araucaria Forest is the common name for Mixed Ombrophilous Forests (MOF), which is marked by the occurrence of Araucaria angustifolia in the canopy and intense replacement of angiosperms in the undergrowth. The term “mixed” refers to the coexistence of Tropical (Afro-Brazilian) and Temperate (Austral Brazilian) forests, where elements of the ancient orders Pinales and Laurales characterize the physiognomy (Roderjan et al. 2002RODERJAN CV, GALVÃO F, KUNIYOSHI YS & HATSCHBACH GG. 2002. As unidades fitogeográficas do estado do Paraná. Cienc Amb 24(13): 75-92.). These forests are subject to high rainfall (therefore Ombrophilous), but temperatures are lower because they occur in areas of higher altitudes (IBGE 2012IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2012. Manual técnico da vegetação brasileira. Rio de Janeiro: Fundação Instituto Brasileiro de Geografia e Estatística, 2a ed., 271 p.). Seasonal Decidual (SDF) and Semidecidual Forests (SSDF) occur in areas conditioned to climatic seasonality where a portion of the trees in the canopy drop their leaves in the unfavorable season. These forests are classified as Semidecidual when 20 to 50% of the canopy trees drop their leaves, and as Decidual when the percentage is higher than 50%. Seasonality is associated with the dry period in the tropical area of Brazil, and with the cold period in the subtropics (IBGE 2012IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2012. Manual técnico da vegetação brasileira. Rio de Janeiro: Fundação Instituto Brasileiro de Geografia e Estatística, 2a ed., 271 p.). Diversity in Seasonal Forests is lower than in Ombrophilous Forests even on soils of high fertility (Roderjan et al. 2002RODERJAN CV, GALVÃO F, KUNIYOSHI YS & HATSCHBACH GG. 2002. As unidades fitogeográficas do estado do Paraná. Cienc Amb 24(13): 75-92.).

Given the varying nomenclature attributed to areas associated with water bodies, as clarified by Rodrigues (2009)RODRIGUES RR. 2009. Florestas Ciliares? Uma discussão nomenclatura das formações ciliares. In: RODRIGUES RR & LEITÃO-FILHO HF (Eds), Matas ciliares: conservação e recuperação, São Paulo: EDUSP/FAPESP, São Paulo, 2a ed., p. 91-99., we only selected studies in which periodic flooding or alluvial soils were characterized. Forest surveys along structurally controlled river margins, as those set in geological faults, were not considered. The association of each area with Atlantic Forest or Pampa was derived from the IBGE vegetation map (2017).

The data was organized in a species presence/absence matrix. A total of 56 areas (Table SI- Supplementary Material) located in the states of Santa Catarina (01), Paraná (20), Rio Grande do Sul (16), São Paulo (05), Rio de Janeiro (02), Minas Gerais (08), Mato Grosso do Sul (03) and Espírito Santo (01) were selected. Species were grouped by families in accordance with the APG IV system (2016). Synonyms were refined based on the Brazilian Flora 2020 Database (2017). Non-identified taxa were excluded. Only species occurring in alluvial formations were considered from studies that covered other vegetation types.

Study areas

The areas considered in our study cover eight states in five geographic regions in Brazil, and are generally well conserved despite past disturbance in the respective biomes. The areas are mainly flat and subject to periodic flooding of variable frequency and duration. The soils on the floodplain are marked by varying levels of hydromorphy, classified as Gleysol or Fulvic Neosol. All drainage basins are inserted in the Atlantic and Paraná-Uruguay basins.

The Prata River basin is the second largest drainage basin in Brazil, formed by the rivers Paraná, Paraguay and Uruguay (Tucci 2006TUCCI CEM. 2006. Visão dos recursos hídricos na bacia do Prata. REGA 3(2): 43-63.). The Paraná basin includes the Paraná river basin up to the mouth of the Iguaçu river. A tropical climate predominates in the area, with a subtropical variant mainly in the states of Paraná and Santa Catarina. The Uruguay basin covers the entire area of the Uruguay river, which is formed by the confluence of the Pelotas and Canoas rivers that flow into the Prata river estuary. The Uruguay river marks the border between Brazil and Argentina, as well as between the states of Rio Grande do Sul and Santa Catarina, in Brazil. The climate in this area is subtropical. Rainfall is distributed throughout the year and more intense in the summer months (Kettelhut & Pereira 2006KETTELHUT JTS & PEREIRA PRG. 2006. Gestão de recursos hídricos transfronteiriços: experiência brasileira da bacia do rio da Prata. REGA 3(2): 5-12.). The Atlantic basin is formed by a number of coastal basins that flow into the ocean, in five drainage regions: Western Northeast Atlantic, Eastern Northeast Atlantic, Eastern Atlantic, Southeastern Atlantic and Southern Atlantic. The Southeastern Atlantic drainage is formed by the water basins that flow into the Brazilian southeastern coast, including part of the eastern region and the Zona da Mata in the state of Minas Gerais. The rugged terrain favors the occurrence of orographic rains and marked climatic diversity always associated with high temperatures (MMA 2006aMMA – MINISTÉRIO DO MEIO AMBIENTE: SECRETARIA DE RECURSOS HÍDRICOS. 2006a. Caderno da região hidrográfica Atlântico Sudeste. Disponível em: <http://www.mma.gov.br/estrutras/161/_publicacao03032011024223.pdf>. Acesso em: 14 Mai. 2019.
http://www.mma.gov.br/estrutras/161/_pub...
, ANA 2015ANA - AGÊNCIA NACIONAL DE ÁGUAS. 2015. Conjuntura dos recursos hídricos no Brasil: regiões hidrográficas brasileiras. Disponível em: <http://www.snirh.gov.br/portal/snirh/centrais-de-conteudos/conjuntura-dos-recursos hidricos/regioeshidrograficas2014.pdf>. Acesso em: 14 Mai. 2019.
http://www.snirh.gov.br/portal/snirh/cen...
). The Southern Atlantic drainage covers the southernmost region of the coastal mountain range. The climate is predominantly subtropical with high rainfall and no dry period, with summers varying from hot to mild depending on the altitude (MMA 2006bMMA – MINISTÉRIO DO MEIO AMBIENTE: SECRETARIA DE RECURSOS HÍDRICOS. 2006b. Caderno da região hidrográfica Atlântico Sul. Disponível em: <http://www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024106.pdf>. Acesso em: 14 Mai. 2019.
http://www.mma.gov.br/estruturas/161/_pu...
).

Data analysis

A Cluster analysis was performed based on the tree species presence/absence matrix to assess the existence of species assemblages (Valli 2002VALLI M. 2002. Análise de Cluster. Augu Guzz Rev Acad 1(4): 77-87.) between the communities considered in this study. Floristic similarity was determined by means of the Sorensen Distance measure. A dendrogram was generated with a clustering method using the UPGMA (Unweighted Pair Group Method with Arithmetic Mean) algorithm.

The floristic data matrix was ordinated by means of Non-Metrical Multidimensional Scaling (NMDS) multivariate analysis using Sorensen Distance as the floristic dissimilarity measure (Minchin 1987MINCHIN PR. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Plant Ecol 69: 89-107.). In this ordination method, the areas are plotted on a dispersal graph, with distances between them proportional to the respective dissimilarities (Clarke & Warmick 1994, Babweteera & Brown 2009BABWETEERA F & BROWN N. 2009. Can remnant frugivore species effectively disperse tree seeds in secondary tropical rain forests? Biodivers Conserv 18(6): 1611-1627.). The use of this method in the study of communities has advantages such as not assuming linear relations between variables, being less sensitive to distortion, and less influenced by outliers. Besides, it can be applied to several types of ecological circumstances (Clarke & Warmick 1994, Mcgarigal et al. 2000MCGARIGAL K, CUSHMAN S & STAFFORD SG. 2000. Multivariate statistics for wildlife and ecology research. New York: Springer, 1a ed., 283 p.). The adequacy of NMDS ordination for data interpretation was evaluated by means of “stress” values (standardized residual sum of squares) considering values lower than 0.2 as appropriate, as established by Kruskal (1964)KRUSKAL JB. 1964. Nonmetric Multidimensional Scaling: A numerical method. Psychometrika 29(2): 115-129.. “Stress” refers to the distortion between the similarity or dissimilarity matrix and the ordination generated in the graphic representation of axes (Ferreira & Casatti 2006FERREIRA CP & CASATTI L. 2006. Influência da estrutura do habitat sobre a ictiofauna de um riacho em uma micro-bacia de pastagem, São Paulo, Brasil. Rev Bras Zool 23(3): 642-651.). The geographic coordinates of the different areas were plotted on a map with an indication of the floristic assemblages to which they belonged in order to spatialize the results.

A Principal Component Analysis (PCA) was performed with climatic data from WorldClim (Hijmans et al. 2005HIJMANS RJ, CAMERON SE, PARRA JL, JONES PG & JARVIS A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15): 1965-1978.) to determine environmental gradients. A multicollinearity analysis by means of VIF (Variance Inflation Factor) was executed to identify redundant variables. Variables with high multicollinearity (VIF>10) were removed.

An analysis of indicator species was then conducted to determine which species best represented each assemblage. A significance level of p<0.05 was defined as a reference. This method allows for the identification of species strongly associated with a certain dataset. Indicative values for each species are independent of the relative abundance of other species (Dufrêne & Legendre 1997DUFRÊNE M & LEGENDRE P. 1997. Species assemblages and indicator species: the need for flexible asymmetrical approach. Ecol Monogr 67(3): 345-366.).

The analyses were processed using R Statistics Software, version 3.4.1 (R Development Core Team 2017R DEVELOPMENT CORE TEAM. 2017. R: A language and environment for statistical computing. Viena: R Foundation for Statistical Computing. Available at: <http://www.r-project.org>. Accessed on: 10 Oct. 2017.
http://www.r-project.org...
), using the vegan (Oksanen et al. 2017OKSANEN J ET AL. 2017. Vegan: community ecology package. R package version 2.4-3. Available at: <https://CRAN.R-project.org/package=vegan>. Accessed on: 22 Jan. 2018.
https://CRAN.R-project.org/package=vegan...
), labdsv (Roberts 2016ROBERTS DW. 2016. LABDSV: Ordination and multivariate analysis for ecology. R package version 1.8-0. Available at: < https://CRAN.R-project.org/package=labdsv> Accessed on: 22 Jan. 2018.
https://CRAN.R-project.org/package=labds...
), dendextend (Galili 2015GALILI T. 2015. Dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31(22): 3718-3720.), maptools (Bivand & Lewin-Koh 2017BIVAND R & LEWIN-KOH N. 2017. Maptools: Tools for reading and handling spatial objects. R package version 0.9-2. Available at: <https://CRAN.R-project.org/package=maptools> Accessed on: 22 Jan 2018.
https://CRAN.R-project.org/package=mapto...
) and USDM (Naimi et al. 2014NAIMI B, HAMM NAS, GROEN TA, SKIDMORE AK & TOXOPEUS AG. 2014. Where is positional uncertainty a problem for species distribution modelling? Ecography 37(2): 191-203.) packages.

RESULTS

The dissimilarity dendrogram (Figure 1) clearly showed the existence of two distinct floristic assemblages predominantly associated with the river basins in which the surveyed areas were inserted. The Atlantic basin (blue) and Paraná-Uruguay (red) basin covered eight and 48 areas, respectively. The Atlantic basin group was mainly concentrated along the Atlantic Forest coast (Figure 2), with a tendency of areas in more tropical climate. The Paraná-Uruguay group was continentally distributed in both regions (Atlantic Forest and Pampa) over a larger geographic range, predominantly in subtropical climate.

Figure 1
Dendrogram generated by means of Sorensen Distance and UPGMA for alluvial forest areas in Atlantic Forest and Pampa. Areas in the Paraná-Uruguay basin are shown in red. Areas in the Atlantic basin are shown in blue.
Figure 2
Geographic distribution of alluvial forests in Atlantic Forest and Pampa. Areas in the Paraná-Uruguay basin are shown in red. Areas in the Atlantic basin are shown in blue.

The highest floristic similarity of all the areas considered in this study (approximately 20% dissimilarity) was observed between two watersheds in the Paraná-Uruguay basin (Dani and Rodr), while areas with the highest floristic similarity in the Atlantic basin had approximately 40% dissimilarity (Rena and Sand). The areas selected for the present study with respective identification codes and complementary data are listed in (Table SI).

A list of 776 tree species in 145 botanical families was compiled from the 56 areas reviewed in this study (Table SII). The number of species varied between 8 in the area of lowest richness to 157 in the area of highest richness, with an average of 52 species. The group formed by alluvial forests in the Atlantic basin included 394 species distributed in 68 families, of which Fabaceae (55 species), Myrtaceae (52 species), Lauraceae (23 species) and Rubiaceae (20 species) were best represented. While 55 families were represented by less than 10 species, 22 families were represented by only one species. The four best represented families in the group amounted to 150 species, equivalent to 38.07% of the total number of species. The group formed by alluvial forests in the Paraná-Uruguay basin included 538 species in 83 families, of which Myrtaceae (91 species), Fabaceae (72 species), Lauraceae (30 species) and Rubiaceae (29 species) were best represented. While 69 families were represented by less than 10 species, 32 families were represented by only one species. The best represented families amounted to 222 species, equivalent to 41.26% of the total number of species in the group.

The occurrence of two distinct floristic assemblages was complementarily verified from the ordination of areas by NMDS (Figure 3). This ordination showed a “stress” level of 0.15, which indicates its appropriateness for the interpretation of results. The Atlantic group was more cohesive, with areas less dispersed, inferring higher similarity. The Paraná-Uruguay group showed higher dispersal of areas by NMDS, reflecting lower floristic similarity.

Figure 3
Ordination by means of Non-Metric Multidimensional Scaling (NMDS, stress = 0.15) for alluvial forests in Atlantic Forest and Pampa. Areas in the Paraná-Uruguay basin are shown in red. Areas in the Atlantic basin are shown in blue.

The PCA (Figure 4) showed that Axis 1, with total explained inertia of 39.85%, was strongly correlated with the variables temperature in the wettest quarter (bio 8) and rainfall in the coldest quarter (bio 19), with loadings of 0.46 and -0.46, respectively. Therefore, while areas with wet winters and lower temperatures in the period of highest rainfall are shown to the left side of the ordination, areas with antagonistic climatic conditions, drier winters and higher temperatures in the period of highest rainfall, are shown to the right of the ordination. Axis 2, which explained 22.44% of the total variation, was strongly correlated with the variables temperature in the warmest quarter (bio 10), temperature in driest quarter (bio 9) and isothermality (bio 3), with loadings of -0.56, 0.52 and 0.50, respectively. The lower part of the ordination shows areas with less warm summers and higher isothermality (diurnal temperature range rather similar to annual temperature range), while the upper part shows areas with warmer summers and lower isothermality (diurnal temperature range lower than annual temperature range). The upper right quadrat includes the areas where the driest quarters are hotter, while the lower left quadrat includes the areas with low temperature in the driest quarter.

Figure 4
Climatic ordination of alluvial forests in Atlantic Forest and Pampa by means of Principal Component Analysis (PCA). (bio 3 = isothermality; bio 7 = annual temperature; bio 8 = temperature in wettest quarter no; bio 9 = temperature in driest quarter; bio 10 = temperature in hottest quarter; bio 12 = annual rainfall; bio 19 = rainfall in coldest quarter; Dark blue = Paraná; Green = Santa Catarina; Dark green = Rio Grande do Sul; Black = Minas Gerais; Orange = São Paulo; Dark violet = Rio de Janeiro; Gray = Espírito Santo; Red = Mato Grosso do Sul).

The analysis of indicator species showed that the group formed by alluvial forests in the Paraná-Uruguay basin contained 13 species considered indicators (Table I). These species were distributed in nine families, Euphorbiaceae and Myrtaceae being dominant with three species each. The group formed by alluvial forests in the Atlantic basin contained 69 indicator species (Table I) distributed in 31 families. Fabaceae and Myrtaceae stand out with 10 and 8 species, respectively. The highest indicator value was attributed to Gymnanthes klotzschiana Müll. Arg.. This is the species with the highest affinity with the first assemblage. Allophylus edulis (A.St.-Hil., Cambess & A. Juss.) and Vitex megapotamica (Spreng.) Moldenke also stand out in the same assemblage, while Andira fraxinifolia Benth. had the highest value in the second assemblage, followed by Pera glabrata (Schott) Poepp. ex Baill. and Aniba firmula (Nees & Mart.) Mez.

Table I
Analysis of indicator species for alluvial forests in Atlantic Forest and Pampa.

DISCUSSION

An average of 52 tree species (between 8 and 157 species, with a standard deviation of 30) occur in alluvial forests considered in this study. However, higher numbers have been observed in non-alluvial forests in the Atlantic Forest region, corroborating the fact that flood pulses create selective conditions that reduce the number of species capable of establishing in this environment. Higuchi et al. (2018)HIGUCHI P ET AL. 2018. Elementos da paisagem como fonte de heterogeneidade florístico-estrutural do componente arbóreo em área de floresta ombrófila mista. Cienc Florest 28(2): 661-673., for example, registered 84 tree species in Mixed Ombrophilous Forest, while Caglioni et al. (2018)CAGLIONI E, UHLMANN A, CURCIO GR, RAMOS MR, BONNET A & JUNCKES AR. 2018. Altitude e solos determinam variações abruptas da vegetação em gradiente altitudinal de Mata Atlântica. Rodriguésia 69(4): 2055-2068. registered 183 species in Dense Ombrophilous Forest, both of them forest types inserted in the Atlantic Forest region. The number of tree species was also higher in transitional areas between the Atlantic Forest and Pampa regions not subject to flooding than in alluvial environments, with species numbers varying between 53 (Costa et al. 2018COSTA MP, LONGHI SJ & FÁVERO AA. 2018. Arquitetura e estrutura vertical da comunidade arbórea de uma floresta estacional subtropical. Cienc Florest 28(4): 1443-1454.) and 107 (Possebom et al. 2017POSSEBOM G, PADILHA DG, SASSO VM & FIORAVANÇO LP. 2017. Forest inventory of a small hydroelectric plant in Pinhal Grande, Rio Grande do Sul. Espacios 38(32): 28-38.). It is important to stress the relevance of ecosystem services provided by alluvial forests, which extend beyond floristic differences: regulation of drainage flow, reduction of siltation in rivers, streams and wetlands, maintenance of water quality and the hydrological cycle, conservation of biodiversity, and climate regulation (Aguiar Junior & Parron 2015AGUIAR JUNIOR TB & PARRON LM. 2015. Indicadores de serviços ambientais hídricos e a contribuição da vegetação ripária para a qualidade de água. In: PARRON LM, GARCIA JR, OLIVEIRA EB, BROWN GG & PRADO RB (Eds.), Serviços ambientais em sistemas agrícolas e florestas do bioma Mata Atlântica, Brasília: EMBRAPA, 1a ed., p. 183-190., Marenzi & Longarete 2018MARENZI RC & LONGARETE C. 2018. As áreas protegidas no Brasil e os serviços ecossistêmicos ante as inundações: finalidade ou casualidade? Colomb Geogr 27(2): 313-322.). The possibility of occupation of wetlands as climate refuges in a scenario of global climate change and changes in rainfall patterns (Viadana & Cavalcanti 2006VIADANA AG & CAVALCANTI APB. 2006. A teoria dos refúgios florestais aplicado ao estado de São Paulo. RCGS 8/9(1): 61-80., Sobral-Souza & Lima-Ribeiro 2017SOBRAL-SOUZA T & LIMA-RIBEIRO MS. 2017. De volta ao passado: revisitando a história biogeográfica das florestas neotropicais úmidas. OA 21(2): 93-107.) along with the increased vulnerability of endemic species established in biologically impoverished communities in fragmented habitats (Medeiros et al. 2013MEDEIROS MB, CARDOSO MS, ALBUQUERQUE RW & NORONHA SE. 2013. Redução de incertezas em análise de vulnerabilidade às mudanças climáticas para Dicksonia sellowiana. Pesq Flor Bras 33(75): 299-308.) stress the importance of conservation of alluvial areas in the Atlantic Forest and Pampa biomes, essential for the maintenance of ecosystem services (Ferraz et al. 2014FERRAZ SFB, FERRAZ KMPMB, CASSIANO CC, BRANCALION PHS, LUZ DTA, AZEVEDO TN, TAMBOSI LR & METZGER JP. 2014. How good are tropical forest patches for ecosystem services provisioning? Landscape Ecol 29(2): 187-200.) and the conservation of biological diversity (Sobral-Souza & Lima-Ribeiro 2017SOBRAL-SOUZA T & LIMA-RIBEIRO MS. 2017. De volta ao passado: revisitando a história biogeográfica das florestas neotropicais úmidas. OA 21(2): 93-107.).

The total number of species found in all the studies assessed, 776, is close to estimates derived from other studies in areas subject to flooding. Silva et al. (2007)SILVA AC, VAN DEN BERG R, HIGUCHI P & OLIVEIRA-FILHO AT. 2007. Comparação florística de florestas inundáveis das regiões Sudeste e Sul do Brasil. Rev Bras Bot 30(2): 257-269. registered 510 species in 23 alluvial areas in the southern and southeastern regions in Brazil. Giehl et al. (2011)GIEHL ELH, BUDKE JC, JARENKOW JA & OLIVEIRA-FILHO AT. 2011. Variações florísticas e relação com variáveis geográficas e climáticas em florestas ribeirinhas do sudeste da América do Sul. In: FELFILI JM, EISENLOHR PV, MELO MMRF, ANDRADE LA & MEIRA-NETO JAA (Orgs), Fitossociologia no Brasil: métodos e estudos de caso, Viçosa: Editora UFV, Viçosa, 1a ed., p. 504-519. found higher numbers, 1,093 species in 58 areas subject to flooding, but in this case the study area was larger than the one in the present study, involving the southern, southeastern and central-western regions in Brazil as well as Argentina and Uruguay. Rodrigues & Nave (2009)RODRIGUES RR & NAVE AG. 2009. Heterogeneidade florística das matas ciliares. In: RODRIGUES RR & LEITÃO-FILHO HF (Eds), Matas ciliares: conservação e recuperação, São Paulo: EDUSP/FAPESP, São Paulo, 2ª ed., p. 45-71. recorded the occurrence of 947 species in 43 areas in a study that compared riparian forests in Brazil outside the Amazon region, covering flooding and non-flooding environments in the states of São Paulo, Minas Gerais, Paraná, Mato Grosso do Sul, Mato Grosso and the Federal District. Wittmann et al. (2017)WITTMANN F ET AL. 2017. The Brazilian freshwater wetscape: Changes in tree community diversity and composition on climatic and geographic gradients. PLoS ONE 12(4): e0175003. registered 904 species in 58 areas in Atlantic Forest and 183 in 13 areas in Pampa in a study on areas subject to different levels of flooding. Variations in species richness may be explained by the differences in the extent and approach of these studies, and most of all because areas not subject to flooding were included in some of them. In these cases, it was not possible to compare results or draw further conclusions. Alluvial forests imply the existence of floodplains, but this condition is not always taken into consideration in studies on these environments. The floristic results obtained corroborate the conclusions by Forzza et al. (2010)FORZZA RC ET AL. 2010. As angiospermas do Brasil. In: FORZZA RC ET AL (Org), Catálogo de Plantas e Fungos do Brasil, Rio de Janeiro: Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 1ª ed., p. 78-89. that indicate Fabaceae, Myrtaceae and Rubiaceae as part of the group of ten most diverse families in Brazil in terms of numbers of species.

The studies in the Atlantic basin included areas in Dense Ombrophilous Forest and Semidecidual Seasonal Forest, with more areas in the first type. The Paraná-Uruguay studies included areas in Atlantic Forest and Pampa of all vegetation types with higher representativity of Decidual and Semidecidual Seasonal Forests followed by Mixed Ombrophilous Forest.

The highest floristic similarity in the Atlantic basin was observed between geographically proximate areas (Guaraqueçaba and Paranaguá, both in Paraná state) in Dense Ombrophilous Forest. The highest similarity in the Paraná-Uruguay basin was between Semidecidual Seasonal Forests in the Atlantic Forest in the same municipality (Ipeúna, São Paulo state). The Atlantic basin included six of the seven stricto sensu areas in the Atlantic Forest region, suggesting a lower level of shared species between Dense Ombrophilous Forest and the other forest types in the region, Mixed Ombrophilous Forest and Seasonal Forests. Higuchi et al. (2013)HIGUCHI P, SILVA AC, BUDKE JC, MANTOVANI A, BORTOLUZZI RLC & ZIGER AA. 2013. Influência do clima e de rotas migratórias de espécies arbóreas sobre o padrão fitogeográfico de florestas na região Sul do Brasil. Cienc Florest 23(4): 539-553. reviewed studies on forest formations in southern Brazil in which they noted higher similarity between Mixed Ombrophilous Forest and Decidual Seasonal Forest, which are therefore more dissimilar from Dense Ombrophilous Forest, corroborating the results of this study. Although the areas of highest similarity in both basins were geographically close, geography does not fully explain the groups formed, as shown in the distribution map of the areas considered in this study (Figure 2).

The floristic organization of tree species derived by means of NMDS corroborated the results shown in the dendrogram. They indicate the existence of two separate groups of areas and denote that alluvial environments are not homogeneous, although they may occur in the same region or be geographically proximate. Fiaschi & Pirani (2009)FIASCHI P & PIRANI JR. 2009. Review of plant biogeographic studies in Brazil. J Syst Evol 47(5): 477-496. noted the existence of distinct groups in the Atlantic Forest domain, represented by southern and northern areas, upon a review of biogeographic studies. As a smaller number of studies was available for the Atlantic basin, mainly in Dense Ombrophilous Forest, this may have influenced the formation of a more cohesive, denser group. The Paraná-Uruguay group, which included more areas and higher phytogeographic heterogeneity, is more dispersed in terms of NMDS and more broadly distributed in Brazil, with more diverse environmental conditions in terms of climate, geology, geomorphology and soils.

The floristic assemblages determined in the present study may be explained in part by the concept of migratory dispersal routes which give emphasis to fluvial canals for species dispersal from tropical areas in the North-South direction and vice-versa. Under this perspective, the floristic profile of areas in the Paraná-Uruguay watersheds is more influenced by an interior dispersal route in the West. Diversely, the Atlantic basin is more influenced by a dispersal route along the Brazilian coast in the East, with elements typical of Dense Ombrophilous Forest covering the coastal plains and slopes of the coast range (Rambo 1961RAMBO B. 1961. Migration routes of the South Brazilian rain forest. Pesq Bot 12(1): 1-54.). Jarenkow & Waechter (2001)JARENKOW JA & WAECHTER JL. 2001. Composição, estrutura e relações florísticas do componente arbóreo de uma floresta estacional no Rio Grande do Sul, Brasil. Rev Bras Bot 24(3): 263-272. indicated the transposition of these migratory events in the high plains in Southern Brazil. Rambo (1951)RAMBO B. 1951. A imigração da silva higrófila no Rio Grande do Sul. In: Anais Botânicos do Herbário. Bot Herb Barbosa Rodrigues 3(3): 55-91. suggested that the “door of Torres” (“Porta de Torres”), a coastal strip between the municipalities of Torres and Osório, allowed the entry of species of the Atlantic domain into the state of Rio Grande do Sul. Although the Atlantic corridor reaches the state of Rio Grande do Sul at the “door of Torres”, some species of the Atlantic contingent spread West, while others extended to the South and mixed with deciduous forests that reach the coast of Rio Grande do Sul due to the absence of geographical barriers, forming a gradient of specific richness (Jarenkow & Waechter 2001JARENKOW JA & WAECHTER JL. 2001. Composição, estrutura e relações florísticas do componente arbóreo de uma floresta estacional no Rio Grande do Sul, Brasil. Rev Bras Bot 24(3): 263-272., Higuchi et al. 2013HIGUCHI P, SILVA AC, BUDKE JC, MANTOVANI A, BORTOLUZZI RLC & ZIGER AA. 2013. Influência do clima e de rotas migratórias de espécies arbóreas sobre o padrão fitogeográfico de florestas na região Sul do Brasil. Cienc Florest 23(4): 539-553.). Although distributed on the coastal plain, the alluvial areas closer to the coast in Rio Grande do Sul differed from other coastal areas in Brazil and were included in the Paraná-Uruguay group. The absence of the Atlantic component along the Rio Grande do Sul coastline south of Osório occurs due to different climatic conditions marked by subtropical characteristics of the state and the absence of geographic barriers, an essential element for the formation of orographic precipitation. As explained by Roldão et al. (2012)ROLDÃO AF, SANTOS JG & OLIVEIRA LA. 2012. Correlação entre as variáveis climáticas (altitude, temperatura e precipitação) na mesorregião Sul e Sudoeste de Minas Gerais – MG. Rev Geonorte 1(5): 515-525., the frequent orographic rains in the coast range (Serra do Mar) and general range (Serra Geral) are formed due to geographic isolation, a particular condition of mountain ranges.

The Campos dos Goytacazes gap (Oliveira-Filho & Fontes 2000OLIVEIRA-FILHO AT & FONTES MA. 2000. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32(4): 793-810.) produces an area of discontinuity of Dense Ombrophilous Forest between the states of Rio de Janeiro and Espírito Santo. The seasonal component reaches the coast in this area, highlighting the irregularity of rainfall throughout the year (Prata et al. 2018PRATA EMB, TEIXEIRA AP, JOLY CA & ASSIS MA. 2018. The role of climate on floristic composition in a latitudinal gradient in the Brazilian Atlantic Forest. Pl Ecol Evol 151(3): 303-313.). This is justified by the absence of the coast range (Serra do Mar) and aggravated by the texture of soils derived of Barreiras sandstone, which creates more intense drainage. The floristic profile of forests in the region, however, is somewhat similar to Dense Ombrophilous Forests in southern Bahia (called “Hileia Baiana”) (Saiter et al. 2016SAITER FZ, ROLIM SG & OLIVEIRA-FILHO AT. 2016. A floresta de Linhares no contexto fitogeográfico do leste do Brasil. In: ROLIM SG, MENEZES LFT & SRBEK-ARAUJO AC (Eds), Floresta Atlântica de Tabuleiro: Diversidade e Endemismos na Reserva Natural Vale, Editora Rupestre, 1a ed., p. 61-69.). It is therefore plausible that species physiologically incompatible with climatic seasonality have survived, especially in areas where soils retain more humidity throughout the entire year, as in the case of river margins. It can therefore be inferred that, even in periods of restricted rainfall in the months when the Intertropical Convergence Zone does not affect the Southern Hemisphere, species of the Atlantic contingent may use alluvial plains as dispersal corridors to the interior of the continent because there is more water available, as was also suggested by Saiter et al. (2016)SAITER FZ, ROLIM SG & OLIVEIRA-FILHO AT. 2016. A floresta de Linhares no contexto fitogeográfico do leste do Brasil. In: ROLIM SG, MENEZES LFT & SRBEK-ARAUJO AC (Eds), Floresta Atlântica de Tabuleiro: Diversidade e Endemismos na Reserva Natural Vale, Editora Rupestre, 1a ed., p. 61-69.. In this line of reasoning, as exemplified by the “door of Torres” in southern Brazil, it is viable to consider that this region can also function as entry point for tropical humid species to integrate the flora of continental high plain forests.

Axis 1 of the PCA explained 39.85% of the data and showed that nearly all the areas to the left of the ordination were located in southern Brazil. Dense Ombrophilous Forest areas were clustered in the lower quadrat, while Decidual Seasonal Forest areas were clustered in the upper quadrat. These forests occur in subtropical conditions with no dry season in winter (bio 19) and lowest temperatures in the period of higher rainfall (bio8). Contrarily, part of the areas to the right of the ordination, mostly in Dense Ombrophilous Forest and some in Decidual Seasonal Forest, in the lower quadrat, are subject to higher rainfall seasonality. On this side of the ordination, the areas in Espiríto Santo (ES) and Rio de Janeiro (RJ) were more highly dispersed from the others and more densely clustered among themselves, which may be attributed to drier winters in the absence of orographic precipitation that supports the occurrence of Semidecidual Seasonal Forest. The vectors representing the variables temperature (b8, b9 and b10) point in the opposite direction of the vectors representing rainfall (bio 12 and bio 19), showing a negative correlation between these variables. Axis 1 therefore synthesized a gradient of tropicality, as the variables that best explain the data are related with temperature (bio 8) and rainfall (bio 19).

The interpretation of Axis 2 showed that the areas in the states of Minas Gerais (MG) and São Paulo (SP) are clustered in the lower part of the right quadrat, while the areas in Rio Grande do Sul (RS) are in the upper part of the left quadrat. The seasonal domain is therefore present above and below Axis 2 as a result of differences in seasonality due to the unfavorable dry season in the tropical region (lower right quadrat) and cold season in the subtropical region (upper left quadrat) (Athayde et al. 2013ATHAYDE ED, GIEHL ELH, BUDKE JC, GESING JPA & EISINGER SM. 2013. Fenologia de espécies arbóreas em uma floresta ribeirinha em Santa Maria, sul do Brasil. R Bras Bioci 7(1): 43-51.). The areas in MG occur at lower latitudes but at higher altitudes, as they are mostly located in the southern part of the state. The areas in RS, in Pampa, occur at higher latitudes and lower altitudes and are associated with the regularity of rainfall (bio 19) originated by cold fronts uniformly distributed throughout the year. Axis 2 of the PCA therefore synthesized a gradient of altitude, as the variables that best explain the data are related with temperature (bio 10 and bio 9) and isothermality (bio 3). The altitudinal gradient is in fact evident from top to bottom when evaluating all areas in the graph, with areas closer to sea level in the upper part of the graph and to higher altitudes in the lower part. Isothermality may be related to altitude, between other factors, as lower areas closer to the sea level are usually subject to smaller diurnal amplitude (lower isothermality) than higher altitude areas (higher isothermality). Besides, isothermality is inversely proportional to latitude, also indicating a gradient of tropicality, as areas at higher latitudes undergo higher variation in annual temperature and are subject to lower isothermality (e.g. RS), while areas at lower latitudes are subject to higher isothermality (e.g. MG).

The analysis of indicator species corroborated the existence of floristic-structural differences between the assemblages formed. The Atlantic coast assemblage included more indicator species, which is probably due to the predominance of areas in Dense Ombrophilous Forest in the group. This forest formation contains a higher number of exclusive species than the other forest types considered in the present study, therefore resulting in higher dissimilarity (Mattei et al. 2007MATTEI G, MULLER SC & PORTO ML. 2007. Corredores de imigração e distribuição de espécies arbóreas no Rio Grande do Sul. R Bras Bioci 5(2): 12-14.). None of the three species of highest value in the Paraná-Uruguay group - G. klotzschiana, A. edulis e V. megapotamica - are endemic in Brazil. These are species of wide distribution that occur in different vegetation types practically in all regions in Brazil. A. edulis is indicated as the second species with widest geographic distribution in the country (Flora do Brasil 2020FLORA DO BRASIL. 2020. Em construção . Jardim Botânico do Rio de Janeiro. Disponível em: <http://floradobrasil.jbrj.gov.br/>. Acesso em: 15 Aug. 2017.
http://floradobrasil.jbrj.gov.br/...
). These species occur throughout the subtropical domain, especially in habitats associated with water in different forest types. Nevertheless, two of the three species of highest association with the Atlantic group are endemic to Brazil (Andira fraxinifolia and Aniba firmula). These species are widely distributed both in terms of biome and geographic region. Considering all states, Pera glabrata, for example, does not occur only in Piauí state. Despite the wide distribution range, these species are mainly present in tropical (Flora do Brasil 2020FLORA DO BRASIL. 2020. Em construção . Jardim Botânico do Rio de Janeiro. Disponível em: <http://floradobrasil.jbrj.gov.br/>. Acesso em: 15 Aug. 2017.
http://floradobrasil.jbrj.gov.br/...
). Eight of the 13 indicator species in the Paraná-Uruguay group were considered as preferring alluvial forests by Silva et al. (2007)SILVA AC, VAN DEN BERG R, HIGUCHI P & OLIVEIRA-FILHO AT. 2007. Comparação florística de florestas inundáveis das regiões Sudeste e Sul do Brasil. Rev Bras Bot 30(2): 257-269., a result coherent with the evaluation conducted in this study. Species in the families Euphorbiaceae, Fabaceae, Lauraceae, Malvaceae, Myrtaceae and Sapindaceae were present in both floristic assemblages, which suggests a stronger affinity of these families with alluvial environments than the other families.

CONCLUSION

Alluvial forests in Atlantic Forest and Pampa were divided in two floristic assemblages mainly associated with river basins and migratory routes. The separation of ecological regions (Atlantic Forest and Pampa) was not a determinant in the formation of these assemblages. Andira fraxinifolia was the main indicator species in the Atlantic basin, which had a higher number of indicator species than the Paraná-Uruguay basin, where the main indicator species was Gymnanthes klotzschiana. The main gradients associated with the habitat types considered were temperature, precipitation and altitude.

ACKNOWLEGMENTS

The authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial assistance and to the authors of the studies used to form our database for providing more detailed information on their work.

REFERENCES

  • ADENESKY-FILHO E, GALVÃO F & BOTOSSO PC. 2017. Floristic richness in a transitional area between mixed and semideciduous forests in the middle Tibagi River region, southern Brazil. Espacios 38(28): 18-39.
  • AGUIAR JUNIOR TB & PARRON LM. 2015. Indicadores de serviços ambientais hídricos e a contribuição da vegetação ripária para a qualidade de água. In: PARRON LM, GARCIA JR, OLIVEIRA EB, BROWN GG & PRADO RB (Eds.), Serviços ambientais em sistemas agrícolas e florestas do bioma Mata Atlântica, Brasília: EMBRAPA, 1a ed., p. 183-190.
  • ALMEIDA CG. 2013. A estrutura arbórea na investigação sobre borda florestal da Mata do Araldo, Porto Rico, PR, Brasil. Tese (Doutorado em Ciências Ambientais), Universidade Estadual de Maringá, Maringá, 67 p.
  • ANA - AGÊNCIA NACIONAL DE ÁGUAS. 2015. Conjuntura dos recursos hídricos no Brasil: regiões hidrográficas brasileiras. Disponível em: <http://www.snirh.gov.br/portal/snirh/centrais-de-conteudos/conjuntura-dos-recursos hidricos/regioeshidrograficas2014.pdf>. Acesso em: 14 Mai. 2019.
    » http://www.snirh.gov.br/portal/snirh/centrais-de-conteudos/conjuntura-dos-recursos hidricos/regioeshidrograficas2014.pdf
  • APG IV - ANGIOSPERM PHILOGENY GROUP. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181(1): 1-20.
  • ARAUJO ACB, ARAUJO HJB & LONGHI SJ. 2018. Caracterização da vegetação e espécies para a recuperação de florestas ribeirinhas na campanha gaúcha, bioma Pampa. Iheringia Ser Bot 73(3): 342-352.
  • ARAUJO MM, LONGHI SJ, BRENA DA, BARROS PLC & FRANCO S. 2004. Análise de agrupamento da vegetação de um fragmento de floresta estacional decidual aluvial, Cachoeira do Sul, RS, Brasil. Cienc Florest 14(1): 133-147.
  • ASSIS MA. 1991. Fitossociologia de um remanescente de mata ciliar do rio Invinheima, MS. Dissertação (Mestrado em Biologia Vegetal), Universidade Estadual de Campinas, Campinas, 172 p.
  • ATHAYDE ED, GIEHL ELH, BUDKE JC, GESING JPA & EISINGER SM. 2013. Fenologia de espécies arbóreas em uma floresta ribeirinha em Santa Maria, sul do Brasil. R Bras Bioci 7(1): 43-51.
  • BABWETEERA F & BROWN N. 2009. Can remnant frugivore species effectively disperse tree seeds in secondary tropical rain forests? Biodivers Conserv 18(6): 1611-1627.
  • BALBUENO RA & OLIVEIRA PL. 2000. Estrutura e composição florística de dois fragmentos florestais na região do baixo Jacuí, RS, Brasil. Biotemas 13(2): 23-46.
  • BARDDAL ML, RODERJAN CV, GALVÃO F & CURCIO GR. 2003. Caracterização florística e fitossociológica de um trecho sazonalmente inundável de floresta aluvial, em Araucária, PR. Cienc Florest 14(2): 37-50.
  • BERTANI DF, RODRIGUES RR, BATISTA JLF & SHEPHERD GJ. 2001. Análise temporal da heterogeneidade florística e estrutural em uma floresta ribeirinha. Rev Bras Bot 24(1): 11-23.
  • BERTONI JEA & MARTINS FR. 1987. Composição florística de uma floresta ripária na Reserva Estadual de Porto Ferreira, SP. Acta Bot Bras 1(1): 17-26.
  • BIANCHIN JE & BELLÉ PA. 2013. Fitossociologia e estrutura de um fragmento de Floresta Estacional Decidual Aluvial em Santa Maria – RS. RAGRO 7(3): 322-330.
  • BIANCHINI E, POPOLO RS, DIAS MC & PIMENTA JA. 2003. Diversidade e estrutura de espécies arbóreas em área alagável do município de Londrina, sul do Brasil. Acta Bot Bras 17(3): 405-419.
  • BIVAND R & LEWIN-KOH N. 2017. Maptools: Tools for reading and handling spatial objects. R package version 0.9-2. Available at: <https://CRAN.R-project.org/package=maptools> Accessed on: 22 Jan 2018.
    » https://CRAN.R-project.org/package=maptools
  • BOTREL RT, OLIVEIRA-FILHO AT, RODRIGUES LA & CURI N. 2002. Influência do solo e topografia sobre as variações da composição florística e estrutura da comunidade arbóreo-arbustiva de uma floresta estacional semidecidual em Ingaí, MG. Rev Bras Bot 25(2): 195-213.
  • BRACKMANN CE & FREITAS EM. 2013. Florística arbórea e arbustiva de um fragmento de Mata Ciliar do arroio Boa Vista, Teutônia, RS, Brasil. Hoehnea 40(2): 365-372.
  • BUDKE JC, GIEHL ELH, ATHAYDE EA, EISINGER SM & ZÁCHIA RA. 2004. Florística e fitossociologia do componente arbóreo de uma floresta ribeirinha, arroio Passo das Tropas, Santa Maria, RS, Brasil. Acta Bot Bras 18(3): 581-589.
  • BUDKE JC, JARENKOW JA & OLIVEIRA-FILHO AT. 2007. Relationships between tree component structure, topography and soils of a riverside forest, Rio Botucaraí, Southern Brazil. Plan Ecol 189(2): 187-200.
  • BUDKE JC, JARENKOW JA & OLIVEIRA-FILHO AT. 2008. Tree community features of two stands of riverine forest under different flooding regimes in Southern Brazil. Flora 203(2): 163-174.
  • BURIOL GA, ESTEFANEL V, CHAGAS AC & EBERHARDT D. 2007. Climate and natural vegetation in the state of Rio Grande do Sul according to the Walter and Lieth climatic diagram. Cienc Florest 17(2): 91-100.
  • CAGLIONI E, UHLMANN A, CURCIO GR, RAMOS MR, BONNET A & JUNCKES AR. 2018. Altitude e solos determinam variações abruptas da vegetação em gradiente altitudinal de Mata Atlântica. Rodriguésia 69(4): 2055-2068.
  • CAMPOS JB, ROMAGNOLO MB & SOUZA MC. 2000. Structure, composition and spacial distribution of tree species in a remnant of the semideciduous seasonal alluvial forest of the Upper Paraná river floodplain. Braz Arch Biol Technol 43(2): 185-194.
  • CAMPOS JB & SOUZA MC. 2002. Arboreous vegetation of an aluvial riparian forest and their soil relations: Porto Rico Island, Paraná River, Brazil. Braz Arch Biol Technol 45(2): 137-149.
  • CARVALHO FA, BRAGA JMA, GOMES JML, SOUZA JS & NASCIMENTO MT. 2006. Comunidade arbórea de uma floresta de baixada aluvial no município de Campos dos Goytacazes, RJ. Cerne 12(2): 157-166.
  • CARVALHO J, AUER AM, SCHORN LA, GOMES NSB & FRICK ECL. 2014. Florística de um remanescente urbano de floresta ombrófila mista aluvial, Curitiba, Paraná. Revista Geografar 9(1): 142-158.
  • CARVALHO J, GALVÃO F, RIOS RC & VELAZCO SJE. 2016. Monospecific dominance in an alluvial mixed ombrophyllous forest in southern Brazil. Aust J Basic & Appl Sci 10(10): 38-44.
  • CLARKE KR & WARWICK RM. 1994. Change in marine communities: an approach to statistical analysis and interpretation, Plymouth: Plymouth Marine Laboratory, 2nd ed., 144 p.
  • COSTA MP, LONGHI SJ & FÁVERO AA. 2018. Arquitetura e estrutura vertical da comunidade arbórea de uma floresta estacional subtropical. Cienc Florest 28(4): 1443-1454.
  • CRUZ MP & CAMPOS JB. 2013. Regime de inundação e a regeneração arbórea em duas áreas florestais na planície alagável do alto Rio Paraná. Biotemas 26(3): 71-82.
  • CRUZ MP, CAMPOS JB & TOREZAN JMD. 2018. Influência da topografia e da abertura do dossel na estrutura do componente herbáceo-arbustivo em dois fragmentos florestais na planície de inundação do alto rio Paraná. Cienc Florest 28(1): 191-205.
  • DANIEL A. 1991. Estudo fitossociológico arbóreo/arbustivo da mata ripária da bacia hidrográfica do Rio dos Sinos, RS. Pesq Bot 42(1): 6-199.
  • DIAS MC, VIEIRA AOS, NAKAJIMA JN, PIMENTA JA & LOBO PC. 1998. Composição florística e fitossociologia do componente arbóreo das florestas ciliares do rio Iapó, na bacia do rio Tibagi, Tibagi, PR. Rev Bras Bot 21(2): 183-195.
  • DUFRÊNE M & LEGENDRE P. 1997. Species assemblages and indicator species: the need for flexible asymmetrical approach. Ecol Monogr 67(3): 345-366.
  • ECHER R, CRUZ JAW, ESTRELA CC, MOREIRA M & GRAVATO F. 2015. Usos da terra e ameaças para a conservação da biodiversidade do bioma Pampa, Rio Grande do Sul. Rev Thema 12(2): 4-13.
  • FERRAZ SFB, FERRAZ KMPMB, CASSIANO CC, BRANCALION PHS, LUZ DTA, AZEVEDO TN, TAMBOSI LR & METZGER JP. 2014. How good are tropical forest patches for ecosystem services provisioning? Landscape Ecol 29(2): 187-200.
  • FERREIRA CP & CASATTI L. 2006. Influência da estrutura do habitat sobre a ictiofauna de um riacho em uma micro-bacia de pastagem, São Paulo, Brasil. Rev Bras Zool 23(3): 642-651.
  • FIASCHI P & PIRANI JR. 2009. Review of plant biogeographic studies in Brazil. J Syst Evol 47(5): 477-496.
  • FLORA DO BRASIL. 2020. Em construção . Jardim Botânico do Rio de Janeiro. Disponível em: <http://floradobrasil.jbrj.gov.br/>. Acesso em: 15 Aug. 2017.
    » http://floradobrasil.jbrj.gov.br/
  • FORZZA RC ET AL. 2010. As angiospermas do Brasil. In: FORZZA RC ET AL (Org), Catálogo de Plantas e Fungos do Brasil, Rio de Janeiro: Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, 1ª ed., p. 78-89.
  • GALILI T. 2015. Dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31(22): 3718-3720.
  • GALVÃO F, KUNIYOSHI YS & RODERJAN CV. 1989. Levantamento fitossociológico das principais associações arbóreas da Floresta Nacional de Irati – PR. Floresta 19(1): 30-49.
  • GIEHL ELH, BUDKE JC, JARENKOW JA & OLIVEIRA-FILHO AT. 2011. Variações florísticas e relação com variáveis geográficas e climáticas em florestas ribeirinhas do sudeste da América do Sul. In: FELFILI JM, EISENLOHR PV, MELO MMRF, ANDRADE LA & MEIRA-NETO JAA (Orgs), Fitossociologia no Brasil: métodos e estudos de caso, Viçosa: Editora UFV, Viçosa, 1a ed., p. 504-519.
  • GIEHL ELH & JARENKOW JA. 2008. Gradiente estrutural no componente arbóreo e relação com inundações em floresta ribeirinha, rio Uruguai, sul do Brasil. Acta Bot Bras 22(3): 741-753.
  • GOMES JML. 2006. Regeneração natural em uma floresta ombrófila densa aluvial sob diferentes usos do solo no delta do Rio Doce. Tese (Doutorado em Biociências e Biotecnologia), Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 110 p.
  • GONÇALVES DA ET AL. 2018. Heterogeneity of a tree species community in an alluvial area of Santa Catarina, Brazil. Floresta Ambient 25(2): e00096514.
  • GUEDES-BRUNI RR, NETO SJS, MORIM MP & MANTOVANI W. 2006. Composição florística e estrutura de trecho de floresta ombrófila densa atlântica aluvial na Reserva Biológica de Poço das Antas, Silva Jardim, Rio de Janeiro, Brasil. Rodriguésia 57(3): 413-428.
  • GUILHERMETI PCG. 2015. Composição florística e crescimento do branquilho em diferentes condições da floresta ombrófila mista aluvial. Dissertação (Mestrado em Ciências Florestais), Universidade Estadual do Centro-Oeste, Irati, 97 p.
  • HIGUCHI P ET AL. 2018. Elementos da paisagem como fonte de heterogeneidade florístico-estrutural do componente arbóreo em área de floresta ombrófila mista. Cienc Florest 28(2): 661-673.
  • HIGUCHI P, SILVA AC, BUDKE JC, MANTOVANI A, BORTOLUZZI RLC & ZIGER AA. 2013. Influência do clima e de rotas migratórias de espécies arbóreas sobre o padrão fitogeográfico de florestas na região Sul do Brasil. Cienc Florest 23(4): 539-553.
  • HIJMANS RJ, CAMERON SE, PARRA JL, JONES PG & JARVIS A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15): 1965-1978.
  • IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2012. Manual técnico da vegetação brasileira. Rio de Janeiro: Fundação Instituto Brasileiro de Geografia e Estatística, 2a ed., 271 p.
  • IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2017. Brasil: Mapas Físicos e Ambientais. Disponível em: <http://mapasinterativos.ibge.gov.br/sigibge/>. Acesso em: 01 Jul. 2017.
    » http://mapasinterativos.ibge.gov.br/sigibge/
  • INPE - INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. 2018. Fundação SOS Mata Atlântica, Atlas dos Remanescentes Florestais da Mata Atlântica: mapeamento dos sistemas costeiros. São Paulo: Fundação SOS Mata Atlântica e Instituto Nacional de Pesquisas Espaciais. 1a ed., 43 p.
  • IURK MC, SANTOS EP, DLUGOSZ FL & TARDIVO RC. 2009. Levantamento florístico de um fragmento de floresta ombrófila mista aluvial do Rio Iguaçu, município de Palmeira (PR). Floresta 39(3): 605-617.
  • JARENKOW JA & WAECHTER JL. 2001. Composição, estrutura e relações florísticas do componente arbóreo de uma floresta estacional no Rio Grande do Sul, Brasil. Rev Bras Bot 24(3): 263-272.
  • KANIESKI MR, GALVÃO F, LONGHI-SANTOS T, MILANI JEF & BOTOSSO PC. 2017. Parâmetros climáticos e incremento diamétrico de espécies florestais em florestal aluvial no Sul do Brasil. Floresta Ambient 24: e00124814.
  • KETTELHUT JTS & PEREIRA PRG. 2006. Gestão de recursos hídricos transfronteiriços: experiência brasileira da bacia do rio da Prata. REGA 3(2): 5-12.
  • KILKA RV, SOARES JCW, SOUZA AM, MEDEIROS EM & JARENKOW JA. 2012. Cambios florísticos y estructurales entre dos comunidades arbóreas de un bosque ripario bajo condiciones ambientales contrastantes en la Pampa sur brasileña. Iheringia Ser Bot 67(2): 165-175.
  • KOSLOWSKI TT. 2002. Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetl 22: 550-561.
  • KRAFT NJB, ADLER PB, GODOY O, JAMES EC, FULLER S & LEVINE JM. 2015. Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29(5): 592-599.
  • KRUSKAL JB. 1964. Nonmetric Multidimensional Scaling: A numerical method. Psychometrika 29(2): 115-129.
  • LEÃO GM. 2009. Florística e estrutura do componente arbóreo da floresta ribeirinha do Arroio Imbaá, Pampa brasileiro. Trabalho de Conclusão de Curso (Licenciatura em Ciências Biológicas), Pontifícia Universidade Católica do Rio Grande do Sul, Uruguaiana, 59 p.
  • LIMA TEO, HOSOKAWA RT & MACHADO SA. 2012. Fitossociologia do componente arbóreo de um fragmento de floresta ombrófila mista aluvial no município de Guarapuava, Paraná. Floresta 42(3): 553-564.
  • LIMA WP & ZAKIA MJB. 2009. Hidrologia de matas ciliares. In: RODRIGUES RR & LEITÃO-FILHO HF (Eds), Matas ciliares: conservação e recuperação, São Paulo: EDUSP/FAPESP, São Paulo, 2a ed., p. 33-44.
  • LOBO PC & JOLY CA. 2009. Aspectos ecofisiológicos da vegetação de mata ciliar do Sudeste do Brasil. In: RODRIGUES RR & LEITÃO-FILHO HF (Eds), Matas ciliares: conservação e recuperação, São Paulo: EDUSP/FAPESP, São Paulo, 2a ed., p. 143-157.
  • LOEBENS R ET AL. 2018. Partição da variação florístico-estrutural do componente arbóreo em uma floresta ombrófila mista aluvial no sul do Brasil. Cienc Florest 28(2): 554-566.
  • MANTOVANI W. 2003. A degradação dos biomas brasileiros. In: RIBEIRO W (Org), Patrimônio ambiental brasileiro, São Paulo: Editora da Universidade de São Paulo e Imprensa Oficial, São Paulo, 1a ed., p. 367-442.
  • MARCHI MM, BARBIERI RL, SALLES JM & COSTA FA. 2018. Flora herbácea e subarbustiva associada a um ecossistema de butiazal no bioma Pampa. Rodriguésia 69(2): 553-560.
  • MARCHI TC & JARENKOW JA. 2008. Estrutura do componente arbóreo de mata ribeirinha no rio Camaquã, município de Cristal, Rio Grande do Sul, Brasil. Iheringia Ser Bot 63(2): 241-248.
  • MARENZI RC & LONGARETE C. 2018. As áreas protegidas no Brasil e os serviços ecossistêmicos ante as inundações: finalidade ou casualidade? Colomb Geogr 27(2): 313-322.
  • MATTEI G, MULLER SC & PORTO ML. 2007. Corredores de imigração e distribuição de espécies arbóreas no Rio Grande do Sul. R Bras Bioci 5(2): 12-14.
  • MCGARIGAL K, CUSHMAN S & STAFFORD SG. 2000. Multivariate statistics for wildlife and ecology research. New York: Springer, 1a ed., 283 p.
  • MEDEIROS MB, CARDOSO MS, ALBUQUERQUE RW & NORONHA SE. 2013. Redução de incertezas em análise de vulnerabilidade às mudanças climáticas para Dicksonia sellowiana. Pesq Flor Bras 33(75): 299-308.
  • MEIRA-NETO JAA, SOUZA AL, SILVA AF & PAULA A. 1997. Estrutura de uma floresta estacional semidecidual aluvial em área diretamente afetada pela Usina Hidrelétrica de Pilar, Ponte Nova, zona da mata de Minas Gerais. R Árv 21(2): 213-219.
  • MELO ET, SALES MCL & OLIVEIRA JGB. 2011. Application of the normalized difference vegetation index (NDVI) in the analysis of the environmental degradation of the microbasin of Riacho dos Cavalos, Cratéus – CE. RAEGA 23: 520-533.
  • MENCACCI PC & SCHLITTLER FHM. 1992. Fitossociologia da vegetação arbórea da mata ciliar de Ribeirão Claro, município de Rio Claro – SP. Rev Inst Flor 4(1): 245-251.
  • MILANESI LS & LEITE LC. 2014. Fitossociologia de espécies arbóreas em dique marginal de floresta ribeirinha no Rio Grande do Sul, Brasil, e comparação com ambientes aluviais e não aluviais. R bras Bioci 12(2): 72-80.
  • MINCHIN PR. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Plant Ecol 69: 89-107.
  • MMA – MINISTÉRIO DO MEIO AMBIENTE: SECRETARIA DE RECURSOS HÍDRICOS. 2006a. Caderno da região hidrográfica Atlântico Sudeste. Disponível em: <http://www.mma.gov.br/estrutras/161/_publicacao03032011024223.pdf>. Acesso em: 14 Mai. 2019.
    » http://www.mma.gov.br/estrutras/161/_publicacao03032011024223.pdf
  • MMA – MINISTÉRIO DO MEIO AMBIENTE: SECRETARIA DE RECURSOS HÍDRICOS. 2006b. Caderno da região hidrográfica Atlântico Sul. Disponível em: <http://www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024106.pdf>. Acesso em: 14 Mai. 2019.
    » http://www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024106.pdf
  • MORO RS, SCHMITT J & DIEDRICHS LA. 2001. Estrutura de um fragmento da mata ciliar do rio Cará-Cará, Ponta Grossa, PR. Publ UEPG 7(1): 19-38.
  • MYERS N, MITTERMEIER RA, MITTERMEIER CG, FONSECA GAB & KENT J. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772): 853-858.
  • NAIMI B, HAMM NAS, GROEN TA, SKIDMORE AK & TOXOPEUS AG. 2014. Where is positional uncertainty a problem for species distribution modelling? Ecography 37(2): 191-203.
  • NOGUEIRA MKFS, CURCIO RB, MORO RS & GALVÃO F. 2010. Caracterização fitossociológica e pedológica dos estratos arbóreo e arbustivo em uma planície aluvial no município de Jaguariaíva, Paraná. Terra Plur 4(2): 179-192.
  • OLIVEIRA-FILHO AT, CURI N, VILELA EA & CARVALHO DA. 1997. Tree species distribution along soil catenas in a riverside semideciduous forest in southeastern Brazil. Flora 192(1): 47-64.
  • OLIVEIRA EA, RODERJAN CV, CURCIO GR & SILVA SM. 2003. Caracterização florística, fitossociológica e pedológica de um trecho de floresta ripária dos Campos Gerais do Paraná. Cad biodivers 4(1): 8-25.
  • OLIVEIRA-FILHO AT & FONTES MA. 2000. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32(4): 793-810.
  • OKSANEN J ET AL. 2017. Vegan: community ecology package. R package version 2.4-3. Available at: <https://CRAN.R-project.org/package=vegan>. Accessed on: 22 Jan. 2018.
    » https://CRAN.R-project.org/package=vegan
  • PASDIORA ET AL. 2003. Florística e fitossociologia de um trecho de floresta ripária em dois compartimentos ambientais do Rio Iguaçu, Paraná, Brasil. Dissertação (Mestrado em Ciências Florestais) – Setor de Ciências Agrárias, Universidade Federal do Paraná, Curitiba, 48 p.
  • PEREIRA IM, OLIVEIRA-FILHO AT, BOTELHA AS, CARVALHO WAC, FONTES MAL, SCHIAVINI I & SILVA AF. 2006. Composição florística do compartimento arbóreo de cinco remanescentes florestais do maciço do Itatiaia, Minas Gerais e Rio de Janeiro. Rodriguésia 57(1): 103-126.
  • POSSEBOM G, PADILHA DG, SASSO VM & FIORAVANÇO LP. 2017. Forest inventory of a small hydroelectric plant in Pinhal Grande, Rio Grande do Sul. Espacios 38(32): 28-38.
  • PRATA EMB, TEIXEIRA AP, JOLY CA & ASSIS MA. 2018. The role of climate on floristic composition in a latitudinal gradient in the Brazilian Atlantic Forest. Pl Ecol Evol 151(3): 303-313.
  • PRATA EMB, PINTO SAF & ASSIS MA. 2011. Fitossociologia e distribuição de espécies arbóreas em uma floresta ribeirinha secundária no Município de Rio Claro, SP, Brasil. Rev bras Bot 34(2): 159-168.
  • R DEVELOPMENT CORE TEAM. 2017. R: A language and environment for statistical computing. Viena: R Foundation for Statistical Computing. Available at: <http://www.r-project.org>. Accessed on: 10 Oct. 2017.
    » http://www.r-project.org
  • RAMBO B. 1951. A imigração da silva higrófila no Rio Grande do Sul. In: Anais Botânicos do Herbário. Bot Herb Barbosa Rodrigues 3(3): 55-91.
  • RAMBO B. 1961. Migration routes of the South Brazilian rain forest. Pesq Bot 12(1): 1-54.
  • ROBERTS DW. 2016. LABDSV: Ordination and multivariate analysis for ecology. R package version 1.8-0. Available at: < https://CRAN.R-project.org/package=labdsv> Accessed on: 22 Jan. 2018.
    » https://CRAN.R-project.org/package=labdsv
  • RODERJAN CV, GALVÃO F, KUNIYOSHI YS & HATSCHBACH GG. 2002. As unidades fitogeográficas do estado do Paraná. Cienc Amb 24(13): 75-92.
  • RODRIGUES AL, WATZLAWICK LF, GENU AM, HESS AF & EBLING AA. 2016. Atributos de um solo florestal em uma topossequência e relações com a comunidade arbórea. Floresta 46(2): 145-154.
  • RODRIGUES RR. 1991. Análise de um remanescente de vegetação natural às margens do Rio Passa Cinco, Ipeúna, SP. Tese (Doutorado em Biologia Vegetal), Universidade de Campinas, Campinas, 325 p.
  • RODRIGUES RR. 2009. Florestas Ciliares? Uma discussão nomenclatura das formações ciliares. In: RODRIGUES RR & LEITÃO-FILHO HF (Eds), Matas ciliares: conservação e recuperação, São Paulo: EDUSP/FAPESP, São Paulo, 2a ed., p. 91-99.
  • RODRIGUES RR & NAVE AG. 2009. Heterogeneidade florística das matas ciliares. In: RODRIGUES RR & LEITÃO-FILHO HF (Eds), Matas ciliares: conservação e recuperação, São Paulo: EDUSP/FAPESP, São Paulo, 2ª ed., p. 45-71.
  • ROLDÃO AF, SANTOS JG & OLIVEIRA LA. 2012. Correlação entre as variáveis climáticas (altitude, temperatura e precipitação) na mesorregião Sul e Sudoeste de Minas Gerais – MG. Rev Geonorte 1(5): 515-525.
  • ROMAGNOLO MB & SOUZA MC. 2000. Análise florística e estrutural de florestas ripárias do Alto Rio Paraná, Taquaruçu, MS. Acta Bot Bras 14(2): 163-174.
  • SAITER FZ, ROLIM SG & OLIVEIRA-FILHO AT. 2016. A floresta de Linhares no contexto fitogeográfico do leste do Brasil. In: ROLIM SG, MENEZES LFT & SRBEK-ARAUJO AC (Eds), Floresta Atlântica de Tabuleiro: Diversidade e Endemismos na Reserva Natural Vale, Editora Rupestre, 1a ed., p. 61-69.
  • SANTOS S & SILVA LG. 2011. Remote sensing image mapping evidence Brazilian Pampa biome under threat. Bol Geogr 29(2): 49-57.
  • SARAIVA DD. 2011. Composição e estrutura de uma floresta ribeirinha no sul do Brasil. Biotemas 24(4): 49-58.
  • SCIPIONI MC, GALVÃO F & LONGHI SJ. 2013. Composição florística e estratégias de dispersão e regeneração de grupos florísticos em florestas estacionais deciduais no Rio Grande do Sul. Floresta 43(2): 241-254.
  • SEGER CD ET AL. 2005. Levantamento florístico e análise fitossociológica de um remanescente de floresta ombrófila mista localizado no município de Pinhais, Paraná-Brasil. Floresta 35(2): 291-302.
  • SILVA AC ET AL. 2009. Florística e estrutura da comunidade arbórea em fragmentos de floresta aluvial em São Sebastião da Bela Vista, Minas Gerais, Brasil. Rev bras Bot 32(2): 283-297.
  • SILVA AC, HIGUCHI P, VAN DEN BERG E, NUNES MH & CARVALHO DA. 2012. Florestas inundáveis: Ecologia, Florística e Adaptação das espécies. Lavras: Ed, UFLA, 1a ed., 170 p.
  • SILVA AC, VAN DEN BERG R, HIGUCHI P & OLIVEIRA-FILHO AT. 2007. Comparação florística de florestas inundáveis das regiões Sudeste e Sul do Brasil. Rev Bras Bot 30(2): 257-269.
  • SILVA JO, SILVA AC, HIGUCHI P, MAFRA AL, LOEBENS R, RODRIGUES LC, ROSA AD, LIMA CL & BUZZI F. 2016. Environmental heterogeneity and natural regeneration in an alluvial mixed araucaria forest. Sci For 44(112): 787-797.
  • SILVA SM. 1998. As formações vegetais da planície litorânea da Ilha do Mel, Paraná, Brasil: composição florística e principais características estruturais. Tese (Doutorado em Ciências Biológicas), Universidade Estadual de Campinas, Campinas, 262 p.
  • SILVA SM, SILVA FC, VIEIRA AOS, NAKAJIMA JN, PIMENTA JA & COLLI S. 1992. Composição florística e fitossociológica do componente arbóreo das florestas ciliares da bacia do rio Tibagi, Paraná: 2. Várzea do rio Bitumirim, município de Ipiranga, PR. Rev Inst Flor 4(1): 192-198.
  • SOBRAL-SOUZA T & LIMA-RIBEIRO MS. 2017. De volta ao passado: revisitando a história biogeográfica das florestas neotropicais úmidas. OA 21(2): 93-107.
  • SOBRINHO FAP, CHRISTO AG, GUEDES-BRUNI RR & SILVA AF. 2009. Composição florística e estrutura de um fragmento de floresta estacional semidecidual aluvial em Viçosa (MG). Floresta 39(4): 793-805.
  • STEFFEN W, CRUTZEN PJ & MCNEILL JR. 2007. The Anthropocene: Are humans now overhelming the great forces of nature? AMBIO 36(8): 614-621.
  • TABARELLI M, PINTO LP, SILVA JMC & COSTA CMR. 2003. Endangered species and conservation planning. In: GALINDO-LEAL C & CAMARA IG (Eds), state of the hotspots: The Atlantic Forest of South America, Washington: Island Press, Washington, 1a ed., p. 86-94.
  • TUCCI CEM. 2006. Visão dos recursos hídricos na bacia do Prata. REGA 3(2): 43-63.
  • VALENTE ASM, GARCIA PO, SALIMENA FRG & OLIVEIRA-FILHO AT. 2011. Composição, estrutura e similaridade florística da Floresta Atlântica, na Serra Negra, Rio Preto – MG. Rodriguésia 62(2): 321-340.
  • VALLI M. 2002. Análise de Cluster. Augu Guzz Rev Acad 1(4): 77-87.
  • VAN DEN BERG E & OLIVEIRA-FILHO AT. 2000. Composição florística e estrutura fitossociológica de uma floresta ripária em Itutinga, MG, e comparação com outras áreas. Rev Bras Bot 23(3): 231-253.
  • VAN DEN BERG E, SANTOS M, CASTRO GC & FERREIRA CAF. 2007. Estrutura do Componente arbóreo de uma floresta de galeria aluvial em Poços de Caldas, MG. R Bras Bioci 5(1): 150-152.
  • VARJABEDIAN R. 2010. Lei da Mata Atlântica: retrocesso ambiental. Estud av 24(68): 147-160.
  • VIADANA AG & CAVALCANTI APB. 2006. A teoria dos refúgios florestais aplicado ao estado de São Paulo. RCGS 8/9(1): 61-80.
  • VILELA EA, OLIVERIA-FILHO AT, CARVALHO DA, GUILHERME FAG & APPOLINÁRIO V. 2000. Caracterização estrutural de floresta ripária do Alto Rio Grande, em Madre de Deus de Minas, MG. Cerne 6(2): 41-54.
  • WITTMANN F ET AL. 2017. The Brazilian freshwater wetscape: Changes in tree community diversity and composition on climatic and geographic gradients. PLoS ONE 12(4): e0175003.
  • ZACARIAS RR, BRITEZ RM, GALVÃO F & BOEGER MRT. 2012. Fitossociologia de dois trechos de floresta ombrófila densa aluvial em solos hidromórficos, Paraná, Brasil. Floresta 42(4): 769-782.

SUPPLEMENTARY MATERIAL

Tables SI, SII.

Publication Dates

  • Publication in this collection
    11 Dec 2020
  • Date of issue
    2020

History

  • Received
    1 Aug 2018
  • Accepted
    9 Sept 2019
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br