Acessibilidade / Reportar erro

Reproductive biology of Erythrolamprus jaegeri coralliventris (Serpentes: Dipsadidae) in the Brazilian Coastal Pampa

Abstract

We analyzed reproductive biology of Erythrolamprus jaegeri coralliventris, a snake from the Brazilian Pampa. Females presented larger snout-vent length than males, while no significant differences were found in tail length/snout-vent length ratios between sexes. Females attain sexual maturity in larger sizes than males. The reproductive cycle of females presented a seasonal pattern, with advanced vitellogenesis occurring from middle winter to middle spring and oviductal eggs occurring from middle winter to middle summer. The real fecundity ranged from two to eigth eggs and the expected fecundity varied from one to 12 secondary follicles. No significant correlation was found between females body size and the following parameters: real fecundity, length of the largest egg and potential fecundity. Therefore, E. j. coralliventris presents a seasonal reproductive pattern, which seems to follow the rainfall profile observed for the studied region. This may represent a strategy of energy gain associated to the reproductive cycle, considering that the food resources most explored by this species are anurans that present higher activity during rainy periods.

Key words
fecundity; seasonality; sexual dimorphism; sexual maturity; Xenodontinae

INTRODUCTION

Erythrolamprus Boie 1826 sensu lato is one of the most diverse genera of Neotropical dipsadids, comprising 50 species of small to medium-sized oviparous snakes, widely distributed in Central and South America, as well as the Antilles archipelago (Dixon 1989DIXON JR. 1989. A key and checklist to the Neotropical snake genus Liophis with country lists and maps. Smith Herpetol Inf Serv 56: 1-28., Lema 2002LEMA T. 2002. Os répteis do Rio Grande do Sul: atuais e fósseis - biogeografia - ofidismo. Porto Alegre: EDIPUCRS, 264 p., Uetz & Hošek 2018UETZ J & HOŠEK J. 2018. The Reptilia Database. http://www.reptile-database.org./ accessed on February 02, 2019.
http://www.reptile-database.org./...
). The Jaeger’s Ground Snake Erythrolamprus jaegeri Günther 1858 is a small-sized semi-aquatic species, included in the Erythrolamprus typhlus group (Dixon 1987DIXON JR. 1987. Taxonomy and geographic variation of Liophis typhlus and related “green” species of South America (Serpentes: Colubridae). Ann Carnegie Museum 56: 173-191.). In the coastal region of southern Brazil, E. jaegeri is the one of the most abundant snake species (Quintela & Loebmann 2009QUINTELA FM & LOEBMANN D. 2009. Guia ilustrado: Os répteis da região costeira do extremo sul do Brasil. Pelotas: USEB, 82 p.). Two subspecies are recognized, the nominal E. j. jaegeri and E. j. coralliventris (Dixon 1987DIXON JR. 1987. Taxonomy and geographic variation of Liophis typhlus and related “green” species of South America (Serpentes: Colubridae). Ann Carnegie Museum 56: 173-191.).

Erythrolamprus jaegeri coralliventris is the southernmost distributed subpecies, ranging from Paraguay to Argentina (Giraudo 2001GIRAUDO A. 2001. Serpientes de la Selva Paranaense y del Chaco Húmedo. Buenos Aires: L.O.L.A., 328 p., Uetz & Hošek 2018UETZ J & HOŠEK J. 2018. The Reptilia Database. http://www.reptile-database.org./ accessed on February 02, 2019.
http://www.reptile-database.org./...
). Erythrolamprus jaegeri coralliventris inhabits mainly open areas near to water bodies (Quintela & Loebmann 2009) and feeds preferentially on small anurans, although it may occasionally preys on fish, small lizards and insects (Carreira-Vidal 2002CARREIRA-VIDAL S. 2002. Alimentación de los ofidios de Uruguay. Barcelona: Asociación Herpetologica Española, 127 p., Corrêa et al. 2016CORRÊA DN, QUINTELA FM & LOEBMANN D. 2016. Feeding ecology of Erythrolamprus jaegeri jaegeri (Günther, 1858) and Erythrolamprus poecilogyrus sublineatus (Cope, 1860) in the coastal zone of Subtropical Brazil (Serpentes, Dipsadidae). An Acad Bras Cienc 88: 293-308.).

Studies describing aspects of the reproductive biology of the genus Erythrolamprus are still scarce (e.g. Vitt 1983VITT LJ. 1983. Ecology of an anuran-eating guild of terrestrial tropical snakes. Herpetologica 39: 52-66., Marques 1996MARQUES OAV. 1996. Biologia reprodutiva da cobra-coral Erythrolamprus aesculapii Linnaeus (Colubridae), no sudeste do Brasil. Rev Bras Zool 13: 747-753., Pinto & Fernandes 2004PINTO RR & FERNANDES R. 2004. Reproductive biology and diet of Liophis poecilogyrus poecilogyrus (Serpentes, Colubridae) from southeastern Brazil. Phyllomedusa 3: 9-14., Pizzatto & Marques 2006aPIZZATTO L & MARQUES OAV. 2006a. Interpopulational variation in reproductive cycles and activity of the water snake Liophis miliaris (Colubridae) in Brazil. Herpetol J 16: 353-362., b, López et al. 2009LÓPEZ SM, GIRAUDO AR, ARZAMENDIA V & CHIARAVIGLIO M. 2009. Biología reproductiva de la serpiente semiacuática Liophis semiaureus (Serpentes, Colubridae) en el nordeste de Argentina. Rev Chil Hist Nat 82: 233-244., Prieto et al. 2012PRIETO YA, GIRAUDO AR & LÓPEZ MS. 2012. Diet and sexual dimorphism of Liophis poecilogyrus (Serpentes, Dipsadidae) from the wet regions of Northeast Argentina. J Herpetol 46: 402-406., Quintela et al. 2017QUINTELA FM, MARQUES WC & LOEBMANN D. 2017. Reproductive biology of the Green Ground Snake Erythrolamprus poecilogyrus sublineatus (Serpentes: Dipsadidae) in Subtropical Brazil. An Acad Bras Cienc 89: 2189-2197., Rojas et al. 2017ROJAS CA, BARROS VA & ALMEIDA-SANTOS SM. 2017. A histological and ultrastructural investigation of the female reproductive system of the water snake (Erythrolamprus miliaris): Oviductal cycle and sperm storage. Acta Zool: azo.12234). However, knowledge about the reproductive aspects of species represents an useful tool for understanding evolutionary strategies in the natural history of snakes, since the perpetuation of a species is a result of the reproductive success (Seigel & Ford 1987SEIGEL RA & FORD NB. 1987. Reproductive ecology. In: Seigel RA et al. (Eds), Ecology and Evolutionary Biology, New York: MacMillan Publishers Company, New York, USA, p. 210-252.). In the temperate zone regions, the reproductive cycle of snakes tends to be limited by temperature variations caused by seasonality (Shine 1985SHINE R. 1985. Reproductive biology of Australian reptiles: a search for general patterns. In: Grigg G et al. (Eds), Biology of Australasian frogs and reptiles, Sydney: Royal Zoological Society of NSW, New South Wales, Australia, p. 297-303.). Therefore, one can a priori assume that environmental variables such as temperature, precipitation and other present different effects over the reproductive activity of snake species. Within this context, snakes from genus Erythrolamprus can use different reproductive strategies as adaptations to environmental factors, such as the synchronization of reproductive cycle and the period of higher prey availability (Vitt 1983VITT LJ. 1983. Ecology of an anuran-eating guild of terrestrial tropical snakes. Herpetologica 39: 52-66., Marques 1996MARQUES OAV. 1996. Biologia reprodutiva da cobra-coral Erythrolamprus aesculapii Linnaeus (Colubridae), no sudeste do Brasil. Rev Bras Zool 13: 747-753., Pinto & Fernandes 2004PINTO RR & FERNANDES R. 2004. Reproductive biology and diet of Liophis poecilogyrus poecilogyrus (Serpentes, Colubridae) from southeastern Brazil. Phyllomedusa 3: 9-14.) and the occurrence of constraints imposed by thermal requirements (Pizzatto & Marques 2006aPIZZATTO L & MARQUES OAV. 2006a. Interpopulational variation in reproductive cycles and activity of the water snake Liophis miliaris (Colubridae) in Brazil. Herpetol J 16: 353-362., Quintela et al. 2017QUINTELA FM, MARQUES WC & LOEBMANN D. 2017. Reproductive biology of the Green Ground Snake Erythrolamprus poecilogyrus sublineatus (Serpentes: Dipsadidae) in Subtropical Brazil. An Acad Bras Cienc 89: 2189-2197.). Bellini et al. (2016)BELLINI GP, ARZAMENDIA V & GIRAUDO AR. 2016. Is xenodontine snake reproduction shaped by ancestry, more than by ecology? Ecol Evol 7: 263-271., however, indicate that phylogenetic relationships are more determinant in the reproductive cycle in Xenodontinae snakes than ecological factors. Thus, different xenodontine species may have reproductive patterns controlled by evolutive or environmental factors.

Aspects of reproduction of E. jaegeri were investigated across a wide latitudinal range, covering population from tropical and subtropical climatic domains (J.G. Frota, unpublished data). Here in, we analyzed the reproductive biology of Erytholamprus jaegeri coralliventris in the Pampa biome, in subtropical domains of southern Brazil. We examined sexual dimorphism, reproductive cycle in females, fecundity and size at sexual maturity. In view of the seasonal pattern found in all dipsadids so far studied in subtropical domains of Pampa biome and surrounding Atlantic Forest (Aguiar & Di-Bernardo 2005AGUIAR LFS & DI-BERNARDO M. 2005. Reproduction of the water snake Helicops infrataeniatus (Colubridae) in southern Brazil. Amphibia-Reptilia 26: 527-533., Balestrin & Di-Bernardo 2005BALESTRIN RL & DI-BERNARDO M. 2005. Reproductive biology of Atractus reticulatus (Boulanger, 1885) (Serpentes: Colubridae) in Southern Brazil. Herpetol J 15: 195-199., Zanella & Cechin 2010ZANELLA N & CECHIN SZ. 2010. Reproductive biology of Echinanthera cyanopleura (Serpentes: Dipsadidae) in southern Brazil. Zoologia 27: 30-34., Mesquita et al. 2013MESQUITA PCMD, SÁ-POLIDORO GL & CECHIN SZ. 2013. Reproductive biology of Philodryas olfersii (Serpentes, Colubridae) in a subtropical region of Brazil. Herpetol J 23: 39-44., Panzera & Maneyro 2013PANZERA A & MANEYRO R. 2013. Reproductive biology of the snake Liophis anomalus (Günther, 1858, Dipsadidae, Xenodontinae). Herpetol J 23: 81-87., Rebelato et al. 2016REBELATO MM, PONTES GMF & TOZETTI AM. 2016. Reproductive biology of Thamnodynastes hypoconia (Serpentes: Dipsadidae) in Brazilian subtemperate wetlands. An Acad Bras Cienc 88: 1699-1709., Loebens et al. 2016LOEBENS SL, CECHIN SZ, THEIS TF, MOURA LB & ALMEIDA-SANTOS SM. 2016. Reproductive biology of Philodryas patagoniensis (Snakes: Dipsadidae) in South Brazil: male reproductive cycle. Acta Zool 2016: 1-11., 2017, Quintela et al. 2017QUINTELA FM, MARQUES WC & LOEBMANN D. 2017. Reproductive biology of the Green Ground Snake Erythrolamprus poecilogyrus sublineatus (Serpentes: Dipsadidae) in Subtropical Brazil. An Acad Bras Cienc 89: 2189-2197.), we hypothesize that E. j. coralliventris will also exhibit a reproductive pattern characterized by marked seasonality.

MATERIALS AND METHODS

We analyzed 298 specimens of Erythrolamprus jaegeri coralliventris collected between 2008 and 2016 in the municipalities of Pelotas, Rio Grande and São José do Norte, all of them located at state of Rio Grande do Sul, Southern Brazil (31°42’29”S - 32°32’25”S, 52°32’21”W - 51º55’05”W). All specimens are deposited in the Herpetological Collection of Universidade Federal do Rio Grande (CHFURG) (Appendix APPENDIX Specimens examined from the herpetological collection of Universidade Federal do Rio Grande (CHFURG): Brasil: Rio Grande do Sul: Pelotas (CHFURG 4635, 4642, 4644, 4645, 4646, 4647, 4648, 4692, 4693, 4774, 5722); Rio Grande, Ilha do Leonídeo (CHFURG 4638, 4667, 4669), Parque Marinha (CHFURG 931), Senandes (CHFURG 1023, 1027, 1028, 1034, 1254, 1258, 1261, 1262), Área de Proteção Ambiental da Lagoa Verde (CHFURG 1577, 1580, 1586, 1590, 1592, 1593, 1594, 1596, 1599, 1602, 1605, 1648, 1651, 1652, 1655, 1664, 1720, 1785, 1790, 1795, 1796, 1798, 1803, 1805, 1806, 1807, 1809, 1813, 1817, 1824), Barra (CHFURG 3265), Bolaxa (CHFURG 1939, 3086, 3095, 3146, 3147, 3148, 3149, 3150, 3264, 3265), Cassino (CHFURG 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1582, 1589, 1649, 1778, 1950, 5228, 5470, 5474, 5486, 5493, 5499, 5603), Campus da Universidade Federal do Rio Grande – FURG (CHFURG 1583, 1940, 2821, 2911, 2912, 2912, 2974, 2974, 2991, 2993, 2994, 2995, 3238, 3238, 4670, 4715), Distrito Industrial da Barra (CHFURG 1576, 1578, 1587, 1595, 1606, 1647, 1650, 1653, 1654, 1656, 1797, 1801, 1808, 1814, 1935, 1936, 2018, 2960, 2970, 2973, 3084, 3085, 3086, 3087, 3092, 3093, 3094, 3096, 3210, 3253, 3262, 3263, 3271, 3272, 3304, 3307, 3308, 3309, 3310, 3311, 3312, 3313, 3314, 3315, 3316, 3317, 3318, 3319, 3333, 3334, 3335, 3336, 3337, 3338, 3375, 3376, 3377, 3378, 3434, 3995, 3996, 3997, 3998, 3999, 4000, 4001, 4002, 4003, 4004, 4005, 4006, 4007, 4008, 4009, 4010, 4011, 4012, 4013, 4014, 4042, 4043, 4044, 4045, 4046, 4047, 4048, 4049, 4050, 4051, 4402, 4406, 4414, 4422, 4423, 4424, 4425, 4430, 4431, 4432, 4433, 4434, 4435, 4436, 4437, 4438, 4439, 4440, 4441, 4634, 4636, 4637, 4639, 4649, 4651, 4652, 4654, 4653, 4655, 4656, 4657, 4658, 4659, 4660, 4661, 4662, 4664, 4672, 4673, 4675, 4676, 4677, 4678, 4681, 4682, 4683, 4684, 4685, 4690, 4695, 4696, 4698, 4699, 4735, 4736, 4737, 4739, 4793, 4794, 4795, 4806, 4807, 4838, 4839, 4840, 4892, 4903, 4915, 4916, 4917, 4984, 4992, 4999, 5000, 5001, 5061, 5085, 5062, 5365, 5590), Estação Ecológica do Taim (CHFURG 1077, 1271, 1272, 1736, 2506, 3241, 3242, 3243, 3244, 3562, 4717); São José do Norte (CHFURG: 5722, 5723). ). The study area is inserted in the Pampa biome (IBGE 2004IBGE. 2004. Mapa de biomas e de vegetação. http://www.ibge.gov.br/home. Acessado em 2 de novembro de 2017.
http://www.ibge.gov.br/home...
). The seasons are well marked and rainfall is concentrated mainly in winter and spring (Vieira 1984VIEIRA EF. 1984. Rio Grande do Sul: geografia física e vegetação. Porto Alegre: Sagra, 184 p.). The monthly averages of air temperatures and fluvial discharge (rainfall estimates) of the study area over the sampling period are shown in Figure 1. The predominant vegetation type are shrub grasslands; other phytophysiognomies with less coverage include the coastal peat and sandy forests (restinga forests), and the psammophyte formations of coastal dunes. All procedures adopted are in accordance with the institutional committee on ethics in the use of animals for research.

Figure 1
Monthly means (grouped months) profiles of air temperatures (dashed line) and fluvial discharge (rainfall average estimates; straight line) obtained between January 2009 and August 2016 in the study area.

We determined the sex of specimes through a subcaudal incision and inspecting the presence or absence of a hemipenis. The measurements of snout-vent length (SVL), tail length (TL) and tail proportion in relation to SVL (TL/SVL ratio) were obtained from all specimens. Males were considered mature when showing ductus deferens coiled and opaque, which indicates the presence of sperm (Shine 1977SHINE R. 1977. Reproduction in Australian elapid snakes. I. Testicular cycles. Aust J Zool 25: 647-653., Almeida-Santos et al. 2014ALMEIDA-SANTOS S, BRAZ HB, SANTOS LC, SUEIRO LR, BARROS VA, ROJAS CA & KASPEROVICZUS NK. 2014. Biologia reprodutiva de serpentes: recomendações para a coleta e análise de dados. Herpetol Brasil 3: 14-24.). Females were considered sexually mature when presenting at least one of the following characteristics: 1) presence of secondary follicles; 2) presence of eggs in the oviducts; 3) presence of emptied incubation chambers, which indicates a recent oviposition (Blackburn 1998BLACKBURN DG. 1998. Structure, function, and evolution of the oviducts of squamate reptiles, with special reference to viviparity and placentation. J Exp Zool 282: 560-671.). We verified the existence of significant differences in the SVL of mature males (n=107) and females (n=124) through a t text (significance p < 0.05). The existence of significant differences in the proportion of tail in relation to body length between mature males (n=107) and females (n=124) was examined through an ANCOVA (Analysis of Covariance), using SVL as the covariate (significance p < 0.05) (Aguiar & Di-Bernardo 2005AGUIAR LFS & DI-BERNARDO M. 2005. Reproduction of the water snake Helicops infrataeniatus (Colubridae) in southern Brazil. Amphibia-Reptilia 26: 527-533., Mesquita et al. 2013MESQUITA PCMD, SÁ-POLIDORO GL & CECHIN SZ. 2013. Reproductive biology of Philodryas olfersii (Serpentes, Colubridae) in a subtropical region of Brazil. Herpetol J 23: 39-44.). All database was previously checked for normal distribution through Shapiro-Wilk test (p values between 0.0000123 and 0.0019).

In all specimens, we made a ventral incision from the esophageal to around 3 mm above the cloaca and the reproductive tract was externalized for analysis. The following data were obtained from females: 1) total number of ovarian follicles, 2) number of follicles in secondary vitellogenesis (secondary follicles; largest axis ≥ 5 mm, based on the annual scatterplot profile of the largest folicle of females; see Almeida-Santos et al. 2014ALMEIDA-SANTOS S, BRAZ HB, SANTOS LC, SUEIRO LR, BARROS VA, ROJAS CA & KASPEROVICZUS NK. 2014. Biologia reprodutiva de serpentes: recomendações para a coleta e análise de dados. Herpetol Brasil 3: 14-24.), 3) length of the largest axis of the largest ovarian follicle, 4) total number of eggs, 5) length of the largest egg. In order to identify seasonal variation on follicle development, the length of the the largest axis of the largest follicles of each female were plotted on a graph (Almeida-Santos et al. 2014ALMEIDA-SANTOS S, BRAZ HB, SANTOS LC, SUEIRO LR, BARROS VA, ROJAS CA & KASPEROVICZUS NK. 2014. Biologia reprodutiva de serpentes: recomendações para a coleta e análise de dados. Herpetol Brasil 3: 14-24.). Fecundity was obtained based on the number of eggs in the oviduct (real fecundity) and number of secondary follicles (potential fecundity) (Mesquita et al. 2013MESQUITA PCMD, SÁ-POLIDORO GL & CECHIN SZ. 2013. Reproductive biology of Philodryas olfersii (Serpentes, Colubridae) in a subtropical region of Brazil. Herpetol J 23: 39-44.). Through a Pearson correlation test, we verified the existence of correlation between SVL and the following parameters: 1) total number of eggs, 2) length of the largest egg, 3) number of secondary follicles Statistical analyses were performed in the software PAST v.2.17 (Hammer et al. 2013HAMMER Ø, HARPER DAT & RYAN PD. 2013. PAST: Paleontological statistics software package for education and data analysis, version 2.17c. http://folk.uio.no/ohammer/past/. Accessed on November 02, 2017.
http://folk.uio.no/ohammer/past/...
).

RESULTS

We analyzed a total of 298 specimens, 155 males (107 mature, 48 immature) and 143 females (124 mature, 19 immature). The SVL of mature males ranged from 185 to 396 mm (mean [X] = 310 mm, standard deviation [sd] = 53 mm). The SVL of mature females ranged from 245 to 480 mm (X = 345 mm, sd = 52 mm). The TL/SVL ratio in males ranged from 0.170 to 0.495 (X = 0.286, sd = 0.035) while in females this ratio ranged from 0.158 to 0.375 (X = 0.285, sd = 0.026). The t test showed a significant difference in SVL between sexes (p = 0.0000824; t = 3.99), while the ANOVA detected no significant diference between tail proportions in relation to SVL (p = 0.84; F = 0.036).

Females presented primary follicles throughout all months of the year. Secondary follicles occurred between late autumn and early summer, although a marked increase in diameter was observed from middle winter to middle spring (Figure 2). Eggs were found in 17 females, sampled between middle winter and middle summer. The number of eggs (real fecundity) ranged from 2 to 8 (X = 6.64, sd = 1.65). The number of secondary follicles (potential fecundity) ranged from 1 to 12 (X = 6.72; sd = 3). The smallest female with secondary follicles had SVL = 320 mm while the smallest female with eggs presented SVL = 245 mm. A single female carrying eggs (n=8) presented seccondary follicle (n=1; length = 10.89 mm). No significant correlation was found between SVL and number of eggs (r = 0.10, p = 0.68), SVL and the length of the largest egg (r = 0.30, p = 0.24) and SVL and number of secondary follicles (r = 0.16, p = 0.63).

Figure 2
Monthly variation in the length of the largest axis of the largest follicles (black circle) and eggs (white circle) of Erythrolamprus jaegeri coralliventris from Brazilian coastal Pampa, state of Rio Grande do Sul. The horizontal line represents the length of the largest axis from which the follicles are considered in secondary vitellogenesis (5 mm).

DISCUSSION

Our results indicated that E. j. coralliventris females attained larger body size (SVL) than males, corroborating data from E. j. jaegeri (J.G. Frota, unpublished data) and other xenodontines (e.g. Aguiar & Di-Bernardo 2005AGUIAR LFS & DI-BERNARDO M. 2005. Reproduction of the water snake Helicops infrataeniatus (Colubridae) in southern Brazil. Amphibia-Reptilia 26: 527-533., López & Giraudo 2008LÓPEZ MS & GIRAUDO AR. 2008. Ecology of the snake Philodryas patagoniensis (Serpentes, Colubridae) from Northeast Argentina. J Herpetol 42: 474-480., Orofino et al. 2010OROFINO RP, PIZZATTO L & MARQUES OAV. 2010. Reproductive biology and food habits of Pseudoboa nigra (Serpentes: Dipsadidae) from the Brazilian Cerrado. Phyllomedusa 9: 53-61., Zanella & Cechin 2010ZANELLA N & CECHIN SZ. 2010. Reproductive biology of Echinanthera cyanopleura (Serpentes: Dipsadidae) in southern Brazil. Zoologia 27: 30-34., Mesquita et al. 2013MESQUITA PCMD, SÁ-POLIDORO GL & CECHIN SZ. 2013. Reproductive biology of Philodryas olfersii (Serpentes, Colubridae) in a subtropical region of Brazil. Herpetol J 23: 39-44., Panzera & Maneyro 2013PANZERA A & MANEYRO R. 2013. Reproductive biology of the snake Liophis anomalus (Günther, 1858, Dipsadidae, Xenodontinae). Herpetol J 23: 81-87., Rebelato et al. 2016REBELATO MM, PONTES GMF & TOZETTI AM. 2016. Reproductive biology of Thamnodynastes hypoconia (Serpentes: Dipsadidae) in Brazilian subtemperate wetlands. An Acad Bras Cienc 88: 1699-1709.). This pattern is commonly observed in snakes that do not present male-to-male combat (Shine 1994SHINE R. 1994. Sexual dimorphism in snakes revisited. Copeia 2: 326-356.). The larger body size in females represents an adaptation associated to its reproductive success, considering that body size is related to fecundity and size of eggs/embryos (Pizzatto et al. 2007PIZZATTO L, ALMEIDA-SANTOS SM & SHINE R. 2007. Life-history adaptations to arboreality in snakes. Ecology 88: 359-366., Mesquita et al. 2013MESQUITA PCMD, SÁ-POLIDORO GL & CECHIN SZ. 2013. Reproductive biology of Philodryas olfersii (Serpentes, Colubridae) in a subtropical region of Brazil. Herpetol J 23: 39-44.). In our study, however, we did not verify a significant correlation between female body size (SVL) and fecundity, indicating that other aspect could be related to the female-biased sexual dimorphism in size. Shine (1994)SHINE R. 1994. Sexual dimorphism in snakes revisited. Copeia 2: 326-356. analyzed 374 species from eigth families and found that phylogenetic conservatism represented the main driving force acting on sexual size dimorphism (SSD) in snakes, while fecundity selection did not correlate significantly with SSD. Female-biased SSD was also observed in other Erytrolamprus studied species (Marques et al. 1996, Pizzatto & Marques 2006bPIZZATTO L & MARQUES OAV. 2006b. Interpopulational variation in sexual dimorphism, reproductive output, and parasitism of Liophis miliaris (Colubridae) in the Atlantic forest of Brazil. Amphibia-Reptilia 27: 37-46., López et al. 2009LÓPEZ SM, GIRAUDO AR, ARZAMENDIA V & CHIARAVIGLIO M. 2009. Biología reproductiva de la serpiente semiacuática Liophis semiaureus (Serpentes, Colubridae) en el nordeste de Argentina. Rev Chil Hist Nat 82: 233-244., Prieto et al. 2012PRIETO YA, GIRAUDO AR & LÓPEZ MS. 2012. Diet and sexual dimorphism of Liophis poecilogyrus (Serpentes, Dipsadidae) from the wet regions of Northeast Argentina. J Herpetol 46: 402-406., Quintela et al. 2017QUINTELA FM, MARQUES WC & LOEBMANN D. 2017. Reproductive biology of the Green Ground Snake Erythrolamprus poecilogyrus sublineatus (Serpentes: Dipsadidae) in Subtropical Brazil. An Acad Bras Cienc 89: 2189-2197.), corroborating the occurrence of phylogenetic conservatism in SSD within the genus.

Mature males and females of E. j. coralliventris are respectively slightly smaller than mature males and females of E. j. jaegeri (J.G. Frota, unpublished data) and in both subspecies females attain sexual maturity in greater sizes than males. The greater size of females at sexual maturation was also demonstrated in all previous studies approaching this aspect on Dipsadidae (e.g. Aguiar & Di-Bernardo 2005AGUIAR LFS & DI-BERNARDO M. 2005. Reproduction of the water snake Helicops infrataeniatus (Colubridae) in southern Brazil. Amphibia-Reptilia 26: 527-533., Zanella & Cechin 2010ZANELLA N & CECHIN SZ. 2010. Reproductive biology of Echinanthera cyanopleura (Serpentes: Dipsadidae) in southern Brazil. Zoologia 27: 30-34., Panzera & Maneyro 2013PANZERA A & MANEYRO R. 2013. Reproductive biology of the snake Liophis anomalus (Günther, 1858, Dipsadidae, Xenodontinae). Herpetol J 23: 81-87., Rebelato et al. 2016REBELATO MM, PONTES GMF & TOZETTI AM. 2016. Reproductive biology of Thamnodynastes hypoconia (Serpentes: Dipsadidae) in Brazilian subtemperate wetlands. An Acad Bras Cienc 88: 1699-1709., Quintela et al. 2017QUINTELA FM, MARQUES WC & LOEBMANN D. 2017. Reproductive biology of the Green Ground Snake Erythrolamprus poecilogyrus sublineatus (Serpentes: Dipsadidae) in Subtropical Brazil. An Acad Bras Cienc 89: 2189-2197.). The delay in sexual maturity in females until reaching larger sizes becomes an advantageous reproductive strategy, considering that it should result in larger accomodation for offsprings (Panzera & Maneyro 2013PANZERA A & MANEYRO R. 2013. Reproductive biology of the snake Liophis anomalus (Günther, 1858, Dipsadidae, Xenodontinae). Herpetol J 23: 81-87.). The absence of significant differences between tail proportions in males and females, on the other hand, was not expected, considering that the hemipenis and associated retractor musculature are placed in the caudal segment of males (King 1989KING R. 1989. Sexual dimorphism in snakes tail length: sexual selection, natural selection, or morphological constraint? Biol J Linnean Soc 38: 133-154.). No significant differences were found in tail proportions between sexes of L. j. jaegeri (J.G. Frota, unpublished data) while the congener E. poecilogyrus exhibited a geographic variation in relation to tail ratios between sexes (see Quintela et al. 2017QUINTELA FM, MARQUES WC & LOEBMANN D. 2017. Reproductive biology of the Green Ground Snake Erythrolamprus poecilogyrus sublineatus (Serpentes: Dipsadidae) in Subtropical Brazil. An Acad Bras Cienc 89: 2189-2197.). Among dipsadids, there is a clear tendency for relatively longer tails in males (see Aguiar & Di-Bernardo 2005AGUIAR LFS & DI-BERNARDO M. 2005. Reproduction of the water snake Helicops infrataeniatus (Colubridae) in southern Brazil. Amphibia-Reptilia 26: 527-533., Pizzatto et al. 2008PIZZATTO L, JORDÃO RS & MARQUES OAV. 2008. Overview of Reproductive Strategies in Xenodontini (Serpentes: Colubridae: Xenodontinae) with New Data for Xenodon neuwiedii and Waglerophis merremii. J Herpetol 42: 153-162., Orofino et al. 2010OROFINO RP, PIZZATTO L & MARQUES OAV. 2010. Reproductive biology and food habits of Pseudoboa nigra (Serpentes: Dipsadidae) from the Brazilian Cerrado. Phyllomedusa 9: 53-61., Panzera & Maneyro 2013PANZERA A & MANEYRO R. 2013. Reproductive biology of the snake Liophis anomalus (Günther, 1858, Dipsadidae, Xenodontinae). Herpetol J 23: 81-87., Mesquita et al. 2013MESQUITA PCMD, SÁ-POLIDORO GL & CECHIN SZ. 2013. Reproductive biology of Philodryas olfersii (Serpentes, Colubridae) in a subtropical region of Brazil. Herpetol J 23: 39-44.) but there are also cases of absence of significant differences in tail proportions between sexes, as observed in Echinanthera cyanopleura (Zanella & Cechin 2010ZANELLA N & CECHIN SZ. 2010. Reproductive biology of Echinanthera cyanopleura (Serpentes: Dipsadidae) in southern Brazil. Zoologia 27: 30-34.) and Imantodes cenchoa (Sousa et al. 2014SOUSA KRM, PRUDENTE ALC & MASCHIO GF. 2014. Reproduction and diet of Imantodes cenchoa (Dipsadidae: Dipsadinae) from the Brazilian Amazon. Zoologia 31: 8-19.). A possible explanation for the lack of male-biased sexual dimorphism in tail proportion of our E. j. coralliventris sample could be related to the relationships between fecundity and body size (SVL). According to King (1989)KING R. 1989. Sexual dimorphism in snakes tail length: sexual selection, natural selection, or morphological constraint? Biol J Linnean Soc 38: 133-154., when fecundity is correlated to (SVL), shorter tails in females take place as a secondary result of the increased reproductive capacity (natural selection for increased SVL). Once no significant correlation was found between SVL and fecundity, it is conceivable that secondary effects of SVL proportion on tail length is few pronounced in our E. j. coralliventris female sample, resulting in little contrast between male and female TL proportions.

As postulated by our previous hypothesis, E. j. coralliventris populations from the southernmost Brazilian coast exhibits a seasonal reproductive pattern, as seen by the female cycle. This finding corroborates data from the great majority of investigations on dipsadids at the subtropical ecoregions of Pampa and southern Atlantic Forest (Aguiar & Di-Bernardo 2005AGUIAR LFS & DI-BERNARDO M. 2005. Reproduction of the water snake Helicops infrataeniatus (Colubridae) in southern Brazil. Amphibia-Reptilia 26: 527-533., Balestrin & Di-Bernardo 2005BALESTRIN RL & DI-BERNARDO M. 2005. Reproductive biology of Atractus reticulatus (Boulanger, 1885) (Serpentes: Colubridae) in Southern Brazil. Herpetol J 15: 195-199., Zanella & Cechin 2010ZANELLA N & CECHIN SZ. 2010. Reproductive biology of Echinanthera cyanopleura (Serpentes: Dipsadidae) in southern Brazil. Zoologia 27: 30-34., Mesquita et al. 2013MESQUITA PCMD, SÁ-POLIDORO GL & CECHIN SZ. 2013. Reproductive biology of Philodryas olfersii (Serpentes, Colubridae) in a subtropical region of Brazil. Herpetol J 23: 39-44., Panzera & Maneyro 2013PANZERA A & MANEYRO R. 2013. Reproductive biology of the snake Liophis anomalus (Günther, 1858, Dipsadidae, Xenodontinae). Herpetol J 23: 81-87., Rebelato et al. 2016REBELATO MM, PONTES GMF & TOZETTI AM. 2016. Reproductive biology of Thamnodynastes hypoconia (Serpentes: Dipsadidae) in Brazilian subtemperate wetlands. An Acad Bras Cienc 88: 1699-1709., Loebens et al. 2017LOEBENS L, ROJAS CA, ALMEIDA-SANTOS SM & CECHIN SZ. 2017. Reproductive biology of Philodryas patagoniensis (Snakes: Dipsadidae) in south Brazil: Female reproductive cycle. Acta Zool 2017: 1-10., Quintela et al. 2017QUINTELA FM, MARQUES WC & LOEBMANN D. 2017. Reproductive biology of the Green Ground Snake Erythrolamprus poecilogyrus sublineatus (Serpentes: Dipsadidae) in Subtropical Brazil. An Acad Bras Cienc 89: 2189-2197.). The females of E. j. coralliventris herein studied presented a marked seasonality in advanced vitellogenesis and egg production, which extended from middle winter to middle summer (Figure 2). This pattern demonstrates that low temperatures during winter do not limit the advanced vitellogenesis and egg production. Meanwhile, the peak of secondary vitellogenesis is associated with inscreasing temperatures in spring, which indicates that female reproductive cycle is strongly influenced by temperature, in accordance with the typical subtropical pattern (Mathies 2011MATHIES T. 2011. Reproductive cycles of tropical snakes. In: Aldridge RD and Sever DM (Eds), Reproductive biology and philogeny of snakes. Science Publishers, Enfield, p. 511-550.). Further, the pattern of vitellogenic growth seems to follow the rainfall profile, which in the study area increases considerably in the beginning of winter and remains relatively higher until early summer (Figure 1). Thus, the reproductive cycle of females seems to be restricted to the period of higher precipitation. This fact can be related to the food resources explored by E. j. coralliventris, consisting mainly of anuran amphibians (Corrêa et al. 2016CORRÊA DN, QUINTELA FM & LOEBMANN D. 2016. Feeding ecology of Erythrolamprus jaegeri jaegeri (Günther, 1858) and Erythrolamprus poecilogyrus sublineatus (Cope, 1860) in the coastal zone of Subtropical Brazil (Serpentes, Dipsadidae). An Acad Bras Cienc 88: 293-308.) which are more active during rainy periods (Santos et al. 2008SANTOS TG, KOPP K, SPIES MR, TREVISAN R & CECHIN SZ. 2008. Distribuição temporal e espacial de anuros em área de Pampa, Santa Maria, RS. Iheringia, Sér Zool 98: 244-253.). Therefore, this synchrony between the reproductive cycle and the rainy season (the last presumably related to an increase on prey availability) becomes advantageous, since snakes do not start their reproductive cycle until they have enough energy to support the required metabolic costs (Bonnet et al. 1998BONNET X, BRADSHAW SD & SHINE R. 1998. Capital versus income breeding: an ectothermic perspective. Oikos 83: 333-342.). In several snake species, females request higher energy investment in order to initiate its reproductive cycle (Seigel & Ford 1987SEIGEL RA & FORD NB. 1987. Reproductive ecology. In: Seigel RA et al. (Eds), Ecology and Evolutionary Biology, New York: MacMillan Publishers Company, New York, USA, p. 210-252.). Females of E. j. jaegeri also exhibited a seazonal reproductive cycle (J.G. Frota, unpublished data), but a longer period of secondary vitellogenesis and a shorter period of egg production was observed in relation to our E. j. coralliventris sample. Meanwhile, specimens of E. j. jaegeri analyzed by J.G. Frota (unpublished data) were distributed in both tropical and subtropical climatic domains, which limits further comparisons and discussions.

Erythrolamprus jaegeri coralliventris herein analyzed presented the same range of potential fecundity than E. j. jaegeri (J.G. Frota, unpublished data) while real fecundity was slightly higher in the later. No significant correlation was observed between SVL and fecundity parameters, and SVL and egg size in our E. j. coralliventris sample. The absence of correlation between SVL and litter size was also verified for E. j. jaegeri (J.G. Frota, unpublished data) and congener E. poecilogyrus (Pinto & Fernandes 2004PINTO RR & FERNANDES R. 2004. Reproductive biology and diet of Liophis poecilogyrus poecilogyrus (Serpentes, Colubridae) from southeastern Brazil. Phyllomedusa 3: 9-14., Quintela et al. 2017QUINTELA FM, MARQUES WC & LOEBMANN D. 2017. Reproductive biology of the Green Ground Snake Erythrolamprus poecilogyrus sublineatus (Serpentes: Dipsadidae) in Subtropical Brazil. An Acad Bras Cienc 89: 2189-2197.), corroborating with our results. Studies performed with other xenodontine species, however, showed a positive correlation between SVL and litter size, but not when SVL and egg size were compared (e.g. Marques 1996MARQUES OAV. 1996. Biologia reprodutiva da cobra-coral Erythrolamprus aesculapii Linnaeus (Colubridae), no sudeste do Brasil. Rev Bras Zool 13: 747-753., Pizzatto & Marques 2002PIZZATTO L & MARQUES OAV. 2002. Reproductive biology of the false coral snake Oxyrhopus guibei (Colubridae) from southeastern Brazil. Amphibia-Reptilia 23: 495-504., Pizzatto et al. 2008PIZZATTO L, JORDÃO RS & MARQUES OAV. 2008. Overview of Reproductive Strategies in Xenodontini (Serpentes: Colubridae: Xenodontinae) with New Data for Xenodon neuwiedii and Waglerophis merremii. J Herpetol 42: 153-162., Panzera & Maneyro 2013PANZERA A & MANEYRO R. 2013. Reproductive biology of the snake Liophis anomalus (Günther, 1858, Dipsadidae, Xenodontinae). Herpetol J 23: 81-87.). These relationships, therefore, seem to be variable and intrinsic in Xenodontinae species. The presence of a unique secondary follicles in a single females carrying eggs in our E. j. coralliventris sample also indicates that only one litter per reproductive period can be produced, which contrasts with sympatric/syntopic E. poecilogyrus sublineatus (Quintela et al. 2017QUINTELA FM, MARQUES WC & LOEBMANN D. 2017. Reproductive biology of the Green Ground Snake Erythrolamprus poecilogyrus sublineatus (Serpentes: Dipsadidae) in Subtropical Brazil. An Acad Bras Cienc 89: 2189-2197.).

In the present study we observed that Erythrolamprus jaegeri coralliventris from Brazilian coastal Pampa presents a seasonal reproductive pattern, possibly influenced by climatic and ecological factors (rainfall and its effects on the availability of food resources). In this context, it is suggested the conduction of studies on the reproductive biology of Erythrolamprus jaegeri in other climatic domains, in order to clarify how environmental, ecological and phylogenetic factors affect the reproduction of the species.

ACKNOWLEGMENTS

We are thankful to Felipe Caseiro, Ruth Regnet and Franck Silveira for help in fieldwork and laboratory procedures; FMQ thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the postdoctoral fellowship. DL thanks Conselho Nacional de Desenvolvimento Científico e Técnológico (CNPq) for the Research Productivity Fellowship (#310651/2017-4).

REFERENCES

  • AGUIAR LFS & DI-BERNARDO M. 2005. Reproduction of the water snake Helicops infrataeniatus (Colubridae) in southern Brazil. Amphibia-Reptilia 26: 527-533.
  • ALMEIDA-SANTOS S, BRAZ HB, SANTOS LC, SUEIRO LR, BARROS VA, ROJAS CA & KASPEROVICZUS NK. 2014. Biologia reprodutiva de serpentes: recomendações para a coleta e análise de dados. Herpetol Brasil 3: 14-24.
  • BALESTRIN RL & DI-BERNARDO M. 2005. Reproductive biology of Atractus reticulatus (Boulanger, 1885) (Serpentes: Colubridae) in Southern Brazil. Herpetol J 15: 195-199.
  • BELLINI GP, ARZAMENDIA V & GIRAUDO AR. 2016. Is xenodontine snake reproduction shaped by ancestry, more than by ecology? Ecol Evol 7: 263-271.
  • BLACKBURN DG. 1998. Structure, function, and evolution of the oviducts of squamate reptiles, with special reference to viviparity and placentation. J Exp Zool 282: 560-671.
  • BONNET X, BRADSHAW SD & SHINE R. 1998. Capital versus income breeding: an ectothermic perspective. Oikos 83: 333-342.
  • CARREIRA-VIDAL S. 2002. Alimentación de los ofidios de Uruguay. Barcelona: Asociación Herpetologica Española, 127 p.
  • CORRÊA DN, QUINTELA FM & LOEBMANN D. 2016. Feeding ecology of Erythrolamprus jaegeri jaegeri (Günther, 1858) and Erythrolamprus poecilogyrus sublineatus (Cope, 1860) in the coastal zone of Subtropical Brazil (Serpentes, Dipsadidae). An Acad Bras Cienc 88: 293-308.
  • DIXON JR. 1987. Taxonomy and geographic variation of Liophis typhlus and related “green” species of South America (Serpentes: Colubridae). Ann Carnegie Museum 56: 173-191.
  • DIXON JR. 1989. A key and checklist to the Neotropical snake genus Liophis with country lists and maps. Smith Herpetol Inf Serv 56: 1-28.
  • GIRAUDO A. 2001. Serpientes de la Selva Paranaense y del Chaco Húmedo. Buenos Aires: L.O.L.A., 328 p.
  • HAMMER Ø, HARPER DAT & RYAN PD. 2013. PAST: Paleontological statistics software package for education and data analysis, version 2.17c. http://folk.uio.no/ohammer/past/ Accessed on November 02, 2017.
    » http://folk.uio.no/ohammer/past/
  • IBGE. 2004. Mapa de biomas e de vegetação. http://www.ibge.gov.br/home Acessado em 2 de novembro de 2017.
    » http://www.ibge.gov.br/home
  • KING R. 1989. Sexual dimorphism in snakes tail length: sexual selection, natural selection, or morphological constraint? Biol J Linnean Soc 38: 133-154.
  • LEMA T. 2002. Os répteis do Rio Grande do Sul: atuais e fósseis - biogeografia - ofidismo. Porto Alegre: EDIPUCRS, 264 p.
  • LOEBENS SL, CECHIN SZ, THEIS TF, MOURA LB & ALMEIDA-SANTOS SM. 2016. Reproductive biology of Philodryas patagoniensis (Snakes: Dipsadidae) in South Brazil: male reproductive cycle. Acta Zool 2016: 1-11.
  • LOEBENS L, ROJAS CA, ALMEIDA-SANTOS SM & CECHIN SZ. 2017. Reproductive biology of Philodryas patagoniensis (Snakes: Dipsadidae) in south Brazil: Female reproductive cycle. Acta Zool 2017: 1-10.
  • LÓPEZ MS & GIRAUDO AR. 2008. Ecology of the snake Philodryas patagoniensis (Serpentes, Colubridae) from Northeast Argentina. J Herpetol 42: 474-480.
  • LÓPEZ SM, GIRAUDO AR, ARZAMENDIA V & CHIARAVIGLIO M. 2009. Biología reproductiva de la serpiente semiacuática Liophis semiaureus (Serpentes, Colubridae) en el nordeste de Argentina. Rev Chil Hist Nat 82: 233-244.
  • MARQUES OAV. 1996. Biologia reprodutiva da cobra-coral Erythrolamprus aesculapii Linnaeus (Colubridae), no sudeste do Brasil. Rev Bras Zool 13: 747-753.
  • MATHIES T. 2011. Reproductive cycles of tropical snakes. In: Aldridge RD and Sever DM (Eds), Reproductive biology and philogeny of snakes. Science Publishers, Enfield, p. 511-550.
  • MESQUITA PCMD, SÁ-POLIDORO GL & CECHIN SZ. 2013. Reproductive biology of Philodryas olfersii (Serpentes, Colubridae) in a subtropical region of Brazil. Herpetol J 23: 39-44.
  • OROFINO RP, PIZZATTO L & MARQUES OAV. 2010. Reproductive biology and food habits of Pseudoboa nigra (Serpentes: Dipsadidae) from the Brazilian Cerrado. Phyllomedusa 9: 53-61.
  • PANZERA A & MANEYRO R. 2013. Reproductive biology of the snake Liophis anomalus (Günther, 1858, Dipsadidae, Xenodontinae). Herpetol J 23: 81-87.
  • PINTO RR & FERNANDES R. 2004. Reproductive biology and diet of Liophis poecilogyrus poecilogyrus (Serpentes, Colubridae) from southeastern Brazil. Phyllomedusa 3: 9-14.
  • PIZZATTO L, ALMEIDA-SANTOS SM & SHINE R. 2007. Life-history adaptations to arboreality in snakes. Ecology 88: 359-366.
  • PIZZATTO L, JORDÃO RS & MARQUES OAV. 2008. Overview of Reproductive Strategies in Xenodontini (Serpentes: Colubridae: Xenodontinae) with New Data for Xenodon neuwiedii and Waglerophis merremii. J Herpetol 42: 153-162.
  • PIZZATTO L & MARQUES OAV. 2002. Reproductive biology of the false coral snake Oxyrhopus guibei (Colubridae) from southeastern Brazil. Amphibia-Reptilia 23: 495-504.
  • PIZZATTO L & MARQUES OAV. 2006a. Interpopulational variation in reproductive cycles and activity of the water snake Liophis miliaris (Colubridae) in Brazil. Herpetol J 16: 353-362.
  • PIZZATTO L & MARQUES OAV. 2006b. Interpopulational variation in sexual dimorphism, reproductive output, and parasitism of Liophis miliaris (Colubridae) in the Atlantic forest of Brazil. Amphibia-Reptilia 27: 37-46.
  • PRIETO YA, GIRAUDO AR & LÓPEZ MS. 2012. Diet and sexual dimorphism of Liophis poecilogyrus (Serpentes, Dipsadidae) from the wet regions of Northeast Argentina. J Herpetol 46: 402-406.
  • QUINTELA FM & LOEBMANN D. 2009. Guia ilustrado: Os répteis da região costeira do extremo sul do Brasil. Pelotas: USEB, 82 p.
  • QUINTELA FM, MARQUES WC & LOEBMANN D. 2017. Reproductive biology of the Green Ground Snake Erythrolamprus poecilogyrus sublineatus (Serpentes: Dipsadidae) in Subtropical Brazil. An Acad Bras Cienc 89: 2189-2197.
  • REBELATO MM, PONTES GMF & TOZETTI AM. 2016. Reproductive biology of Thamnodynastes hypoconia (Serpentes: Dipsadidae) in Brazilian subtemperate wetlands. An Acad Bras Cienc 88: 1699-1709.
  • ROJAS CA, BARROS VA & ALMEIDA-SANTOS SM. 2017. A histological and ultrastructural investigation of the female reproductive system of the water snake (Erythrolamprus miliaris): Oviductal cycle and sperm storage. Acta Zool: azo.12234
  • SANTOS TG, KOPP K, SPIES MR, TREVISAN R & CECHIN SZ. 2008. Distribuição temporal e espacial de anuros em área de Pampa, Santa Maria, RS. Iheringia, Sér Zool 98: 244-253.
  • SEIGEL RA & FORD NB. 1987. Reproductive ecology. In: Seigel RA et al. (Eds), Ecology and Evolutionary Biology, New York: MacMillan Publishers Company, New York, USA, p. 210-252.
  • SHINE R. 1977. Reproduction in Australian elapid snakes. I. Testicular cycles. Aust J Zool 25: 647-653.
  • SHINE R. 1985. Reproductive biology of Australian reptiles: a search for general patterns. In: Grigg G et al. (Eds), Biology of Australasian frogs and reptiles, Sydney: Royal Zoological Society of NSW, New South Wales, Australia, p. 297-303.
  • SHINE R. 1994. Sexual dimorphism in snakes revisited. Copeia 2: 326-356.
  • SOUSA KRM, PRUDENTE ALC & MASCHIO GF. 2014. Reproduction and diet of Imantodes cenchoa (Dipsadidae: Dipsadinae) from the Brazilian Amazon. Zoologia 31: 8-19.
  • UETZ J & HOŠEK J. 2018. The Reptilia Database. http://www.reptile-database.org./ accessed on February 02, 2019.
    » http://www.reptile-database.org./
  • VIEIRA EF. 1984. Rio Grande do Sul: geografia física e vegetação. Porto Alegre: Sagra, 184 p.
  • VITT LJ. 1983. Ecology of an anuran-eating guild of terrestrial tropical snakes. Herpetologica 39: 52-66.
  • ZANELLA N & CECHIN SZ. 2010. Reproductive biology of Echinanthera cyanopleura (Serpentes: Dipsadidae) in southern Brazil. Zoologia 27: 30-34.

APPENDIX

Specimens examined from the herpetological collection of Universidade Federal do Rio Grande (CHFURG): Brasil: Rio Grande do Sul: Pelotas (CHFURG 4635, 4642, 4644, 4645, 4646, 4647, 4648, 4692, 4693, 4774, 5722); Rio Grande, Ilha do Leonídeo (CHFURG 4638, 4667, 4669), Parque Marinha (CHFURG 931), Senandes (CHFURG 1023, 1027, 1028, 1034, 1254, 1258, 1261, 1262), Área de Proteção Ambiental da Lagoa Verde (CHFURG 1577, 1580, 1586, 1590, 1592, 1593, 1594, 1596, 1599, 1602, 1605, 1648, 1651, 1652, 1655, 1664, 1720, 1785, 1790, 1795, 1796, 1798, 1803, 1805, 1806, 1807, 1809, 1813, 1817, 1824), Barra (CHFURG 3265), Bolaxa (CHFURG 1939, 3086, 3095, 3146, 3147, 3148, 3149, 3150, 3264, 3265), Cassino (CHFURG 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1582, 1589, 1649, 1778, 1950, 5228, 5470, 5474, 5486, 5493, 5499, 5603), Campus da Universidade Federal do Rio Grande – FURG (CHFURG 1583, 1940, 2821, 2911, 2912, 2912, 2974, 2974, 2991, 2993, 2994, 2995, 3238, 3238, 4670, 4715), Distrito Industrial da Barra (CHFURG 1576, 1578, 1587, 1595, 1606, 1647, 1650, 1653, 1654, 1656, 1797, 1801, 1808, 1814, 1935, 1936, 2018, 2960, 2970, 2973, 3084, 3085, 3086, 3087, 3092, 3093, 3094, 3096, 3210, 3253, 3262, 3263, 3271, 3272, 3304, 3307, 3308, 3309, 3310, 3311, 3312, 3313, 3314, 3315, 3316, 3317, 3318, 3319, 3333, 3334, 3335, 3336, 3337, 3338, 3375, 3376, 3377, 3378, 3434, 3995, 3996, 3997, 3998, 3999, 4000, 4001, 4002, 4003, 4004, 4005, 4006, 4007, 4008, 4009, 4010, 4011, 4012, 4013, 4014, 4042, 4043, 4044, 4045, 4046, 4047, 4048, 4049, 4050, 4051, 4402, 4406, 4414, 4422, 4423, 4424, 4425, 4430, 4431, 4432, 4433, 4434, 4435, 4436, 4437, 4438, 4439, 4440, 4441, 4634, 4636, 4637, 4639, 4649, 4651, 4652, 4654, 4653, 4655, 4656, 4657, 4658, 4659, 4660, 4661, 4662, 4664, 4672, 4673, 4675, 4676, 4677, 4678, 4681, 4682, 4683, 4684, 4685, 4690, 4695, 4696, 4698, 4699, 4735, 4736, 4737, 4739, 4793, 4794, 4795, 4806, 4807, 4838, 4839, 4840, 4892, 4903, 4915, 4916, 4917, 4984, 4992, 4999, 5000, 5001, 5061, 5085, 5062, 5365, 5590), Estação Ecológica do Taim (CHFURG 1077, 1271, 1272, 1736, 2506, 3241, 3242, 3243, 3244, 3562, 4717); São José do Norte (CHFURG: 5722, 5723).

Publication Dates

  • Publication in this collection
    12 Oct 2020
  • Date of issue
    2020

History

  • Received
    8 Jan 2019
  • Accepted
    11 Mar 2019
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br