Acessibilidade / Reportar erro

Resource partitioning in a snake assemblage from east-central Argentina

Abstract

Two dimensions of the ecological niche (diet and habitat) of a snake assemblage from an endemic rich area in east-central Argentina, the Sierras de Ventania mountain chain, were analyzed. Field data collection was performed in 15-week study periods between 2010 and 2014. Snakes were hand-captured using transect surveys. Field observations on diet were analyzed together with stomach content data from museum specimens. Our results supported the partitioning of the snake assemblage by both habitat use and diet into at least three functional groups: species restricted to microhabitats under rocks and with a diet composed exclusively of ants (Epictia australis); species found mostly in stream microhabitats and feeding mainly upon anurans (Erythrolamprus poecilogyrus and Lygophis elegantissimus); and species found mostly in grassland microhabitats, with specialized diets of terrestrial prey items (Philodryas patagoniensis and Bothrops alternatus). Consistent with previous work, diet was more important than habitat in explaining ecological niche partitioning of this snake assemblage. Our results showed that high overlap values of microhabitat use were compensated by low overlap values of the trophic niche dimension, thus matching the traditional complementary niches hypothesis.

Key words
diet; foraging strategies; microhabitat use; niche overlap; snake assemblages

INTRODUCTION

Species interactions, such as resource competition and predation, are among the main factors responsible for the structure of communities (i.e., resource partitioning: Schoener 1974SCHOENER TW. 1974. Resource partitioning in ecological communities. Science 185(4145): 27-39.). Frequently, the large number of interacting species in a given herpetological community complicates the study of their ecology (Heyer 1988HEYER WR. 1988. On frog distribution patterns east of the Andes. In: Vanzolini PE & Heyer WR (Eds), Proceedings of the Workshop on Neotropical Distribution Patterns. Academia Brasileira de Ciências, Rio de Janeiro, p. 245-274.).

The use of community resources is closely linked with the concept of ecological niche (Hutchinson 1957HUTCHINSON GE. 1957. Concluding remarks. Cold Spring Harb Symp Quant Biol 22: 415-427.), which includes three main dimensions: food, habitat and time (Pianka 1973PIANKA ER. 1973. The structure of lizard communities. Annu Rev Ecol Systemat 4: 53-74., 1975, 1982, Schoener 1974SCHOENER TW. 1974. Resource partitioning in ecological communities. Science 185(4145): 27-39., Toft 1980TOFT CA. 1980. Feeding ecology of thirteen syntopic species of anurans in a seasonal tropical environment. Oecologia 45(1): 131-141., 1981, 1985, Jaksic et al. 1981JAKSIC FM, GREENE HW & YÁÑEZ JL. 1981. The guild structure of a community of predatory vertebrates in central Chile. Oecologia 49(1): 21-28.). A distinction must be made between these possible explanations for the structure of a given community (populations sharing geography) or assemblage (populations sharing geography and phylogeny; definitions from Fauth et al. 1996FAUTH JE, BERNARDO J, CAMARA M, RESETARITS JR WJ, VAN BUSKIRK J & MCCOLLUM SA. 1996. Simplifying the jargon of community ecology: a conceptual approach. Am Nat 147(2): 282-286.). The current structure of an assemblage may be explained by historical and evolutionary changes that affected species interactions over time or, alternatively, by current interactions Thorpe et al. 1994THORPE RS, BROWN RP, DAY M, MALHOTRA A, MCGREGOR DP & WUSTER W. 1994. Testing ecological and phylogenetic hypothesis in microevolutionary studies. In: Eggleton P & Vane Wright R (Eds), Phylogenetics and Ecology, New York: Academy Press, 17: 189-206., Vitt & Zani 1996VITT LJ & ZANI PA. 1996. Organization of a taxonomically diverse lizard assemblage in Amazonian Ecuador. Can J Zool 74: 1313-1335.) not influenced by phylogeny (Cadle & Greene 1993CADLE JE & GREENE HW. 1993. Phylogenetic patterns, biogeography, and the ecological structure of Neotropical snake assemblages. In: Ricklefs RE & Schluter D (Eds), Species diversity in ecological communities: historical and geographical perspectives, Chicago: University of Chicago Press, p. 281-293.). According to Vitt & Pianka (2005)VITT LJ & PIANKA ER. 2005. Deep history impacts present-day ecology and biodiversity. Proc Nat Acad Sci 102(22): 7877-7881., resource partitioning may be affected by the current competitive abilities of species, which also retain ancestral differences. Thus, historical effects would be maximal and interactions less influential among phylogenetically-distant species, whereas historical effects would be minimal and interactions higher among phylogenetically-related species (Vitt & Pianka 2005VITT LJ & PIANKA ER. 2005. Deep history impacts present-day ecology and biodiversity. Proc Nat Acad Sci 102(22): 7877-7881., Bellini et al. 2015BELLINI GP, GIRAUDO AR, ARZAMENDIA V & ETCHEPARE EG. 2015. Temperate snake community in South America: Is diet determined by phylogeny or ecology? PLoS ONE 10(5): e0123237.).

Compared with other squamates, data on the structure of snake assemblages are scarce, probably because they are less abundant and more cryptic than lizards, and often have empty stomachs (Goodyear & Pianka 2008GOODYEAR SE & PIANKA ER. 2008. Sympatric ecology of five species of fossorial snakes (Elapidae) in Western Australia. J Herpetol 42(2): 279-285., Dorcas & Willson 2009DORCAS ME & WILLSON JD. 2009. Innovative methods for studies of snake ecology and conservation. In: Mullin SJ & Seigel RA (Eds), Snakes: Ecology and Conservation, Ithaca: Cornell University Press, p. 5-37.). However, the three dimensions of the ecological niche have been documented in certain snake assemblages (e.g., Henderson 1974HENDERSON RW. 1974. Resource partitioning among the snakes of the University of Kansas Natural History Reservation: a preliminary analysis. Milw Public Mus Contrib Biol Geol 1: 1-11., White & Kolb 1974WHITE M & KOLB JA. 1974. A preliminary study of Thamnophis near Sagehen Creek, California. Copeia 1974(1): 126-136., Yanosky 1989YANOSKY AA. 1989. La ofidiofauna de la reserva ecológica El Bagual, Formosa: Abundancia, utilización de los hábitats y estado de situación. Cuad Herpetol 4(3): 11-14., Martins & Oliveira 1998MARTINS M & OLIVEIRA ME. 1998. Natural history of snakes in forests of the Manaus region, central Amazonia, Brazil. Herpetol Nat Hist 6(2): 78-150., Luiselli 2006LUISELLI L. 2006. Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns. Oikos 114(2): 193-211., Goodyear & Pianka 2008GOODYEAR SE & PIANKA ER. 2008. Sympatric ecology of five species of fossorial snakes (Elapidae) in Western Australia. J Herpetol 42(2): 279-285., Bellini et al. 2015BELLINI GP, GIRAUDO AR, ARZAMENDIA V & ETCHEPARE EG. 2015. Temperate snake community in South America: Is diet determined by phylogeny or ecology? PLoS ONE 10(5): e0123237.). A review of resource partitioning in herpetological communities revealed that the diet was the main niche dimension of snakes, contrasting with the central role of habitat in structuring assemblages of most other amphibians and reptiles (Toft 1985TOFT CA. 1985. Resource partitioning in amphibians and reptiles. Copeia 1985(1): 1-21.). In another review of snake assemblages, diet explained resource partitioning in 56.80% of cases (Luiselli 2006LUISELLI L. 2006. Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns. Oikos 114(2): 193-211.).

The optimal foraging theory predicts that predator decisions maximize the net rate of food ingestion, while positive or negative balances depend on the net energy value provided by a prey item and the time spent catching it. Predators thus discriminate among prey to optimize their foraging strategy (Perry & Pianka 1997PERRY G & PIANKA ER. 1997. Animal foraging: past, present and future. Trends Ecol Evol 12(9): 360-364.). Dominant foraging modes of squamates are better explained by phylogenetic constraints than by current ecological adaptations (Cooper 1995COOPER WE. 1995. Foraging mode, prey chemical discrimination, and phylogeny in lizards. Anim Behav 50(4): 973-985., Schwenk 1995SCHWENK K. 1995. Of tongues and noses: Chemoreception in lizards and snakes. Trends Ecol Evol 10(1): 7-12.). Generalist and specialist predators represent two ends of a continuum of dietary specialization (Huey & Pianka 1981HUEY RB & PIANKA ER. 1981. Ecological consequences of foraging mode. Ecology 62(4): 991-999., Beaupre & Montgomery 2007BEAUPRE SJ & MONTGOMERY CE. 2007. The meaning and consequences of foraging mode in snakes. In: Reilly SM et al. (Eds), Lizard Ecology: The Evolutionary Consequences of Foraging Mode, Cambridge: Cambridge University Press, p. 334-367.). In addition, passively foraging snakes usually depend on vision and/or thermoreception (loreal pits) to detect moving prey, whereas active foragers mostly depend on chemoreception (tongue-flicking/vomeronasal organ) to search for and capture hidden prey (Cooper 1995COOPER WE. 1995. Foraging mode, prey chemical discrimination, and phylogeny in lizards. Anim Behav 50(4): 973-985., Schwenk 1995SCHWENK K. 1995. Of tongues and noses: Chemoreception in lizards and snakes. Trends Ecol Evol 10(1): 7-12.).

Based on our hypotheses that diet would be a key factor to understand the ecological niche partitioning of the snake assemblage and, alternatively, that habitat/microhabitat use would explain ecological niche partitioning better than diet, we analyzed the trophic and spatial dimensions of the ecological niches of five species from a snake assemblage in the Sierras de Ventania low mountain chain, a highly endemic area in east-central Argentina.

MATERIALS AND METHODS

Study Area

The Sierras de Ventania is an isolated orographic system of sub-parallel chains of low mountains located in the southwest of Buenos Aires province, Argentina, between 37.5166°S, 62.8333°W and 38.3833°S, 61.2166°W (Sellés Martínez 2001SELLÉS MARTÍNEZ J. 2001. Geología de la Ventania (Provincia de Buenos Aires, Argentina). J Iber Geol 27: 43-69.). The system covers an area of 7100 km2 from NW to SE (Vargas Gil & Scoppa 1973VARGAS GIL JR & SCOPPA CO. 1973. Suelos de la Provincia de Buenos Aires. Rev Inv Agrop, INTA 10(3): 57-79.). The four main mountain ranges are Sierra de Cura Malal, Sierra de la Ventana, Sierra de las Tunas and Sierra de Pillahuincó, with maximum altitudes of 1015, 1243, 650 and 550 masl, respectively. The area is biologically rich and home to several endemic species, thus explaining why it was defined as an orographic island (Cranwell 1942CRANWELL JA. 1942. Consideraciones sobre Rhadinaea elegantissima Koslowsky. Rev Argent Zoogeogr 2(3): 143-146., Kristensen & Frangi 1995KRISTENSEN MJ & FRANGI JL. 1995. Mesoclimas de pastizales de la Sierra de la Ventana. Ecol Austral 5(1): 55-64., Crisci et al. 2001CRISCI JV, FREIRE S, SANCHO G & KATINAS L. 2001. Historical biogeography of the Asteraceae from Tandilia and Ventania mountain ranges (Buenos Aires, Argentina). Caldasia 23: 21-41.).

The climate of the region is temperate (14°C mean annual temperature) and humid-subhumid (800 mm mean annual precipitation; Burgos 1968BURGOS JJ. 1968. El clima de la provincia de Buenos Aires en relación con la vegetación natural y el suelo. In: Cabrera AL (Ed), Flora de la provincia de Buenos Aires, Buenos Aires: Colección Científica INTA 4: 33-99.). Altitudinal temperature gradients decrease by 6.90°C/1000 m (Kristensen & Frangi 1995KRISTENSEN MJ & FRANGI JL. 1995. Mesoclimas de pastizales de la Sierra de la Ventana. Ecol Austral 5(1): 55-64.) and precipitation varies from 745 mm at the base to 828 mm at the top of the Sierra de la Ventana (Pérez & Frangi 2000PÉREZ CA & FRANGI JL. 2000. Grassland biomass dynamics along an altitudinal gradient in the Pampa. J Range Manag 53(5): 518-528.). The marked climatic seasonality is characterized by warm rainy summers and cold dry winters with occasional snowfall (Kristensen & Frangi 1995KRISTENSEN MJ & FRANGI JL. 1995. Mesoclimas de pastizales de la Sierra de la Ventana. Ecol Austral 5(1): 55-64.). Mean minimum and maximum temperature ranges from 17-22.90 in summer to 4-9°C in winter (Di Pietro et al. 2018DI PIETRO DO, CABRERA MR, WILLIAMS JD, KACOLIRIS FP, CAJADE R & ALCALDE L. 2018. Distributional patterns and conservation planning for a snake assemblage from temperate South America. J Nat Conserv 45: 79-89.). Based on our experience with the studied snake assemblage, snakes become inactive during winter and late autumn.

The area has very high grass and bush diversity. Native vegetation corresponds to the Austral Pampean District (Cabrera 1976CABRERA AL. 1976. Regiones fitogeográficas argentinas. In: Kugler WF (Ed), Enciclopedia argentina de agricultura y jardinería, 2nd ed., Buenos Aires: Acme 2: 1-85.), which is composed of more than 400 plant species, many of which are endemic (De la Sota 1967DE LA SOTA ER. 1967. Composición, origen y vinculaciones de la flora pteridológica de las Sierras de Buenos Aires (Argentina). Bol Soc Argent Bot 11(2-3): 105-128., Frangi & Bottino 1995FRANGI JL & BOTTINO OJ. 1995. Comunidades vegetales de la Sierra de la Ventana, Provincia de Buenos Aires, Argentina. Rev Fac Agron (La Plata) 71(1): 93-133., Frangi & Barrera 1996FRANGI JL & BARRERA MD. 1996. Biodiversidad y dinámica de pastizales en la Sierra de la Ventana, Provincia de Buenos Aires, Argentina. In: Sarmiento G & Cabido M (Eds), Biodiversidad y Funcionamiento de Pastizales y Sabanas en América Latina, Mérida: CYTED-CIELAT, p. 133-162.). Although many patches of the area have been forested with exotic trees such as Pinus sp., Cedrus sp., Acacia sp., Eucalyptus sp. and Ulmus sp., natural grasslands have great conservation value (Bilenca & Miñarro 2004BILENCA D & MIÑARRO F. 2004. Identificación de Áreas Valiosas de Pastizal (AVPs) en las Pampas y Campos de Argentina, Uruguay y sur de Brasil. Buenos Aires: Fundación Vida Silvestre Argentina, 323 p.). From the first herpetological list (Koslowsky 1895KOSLOWSKY J. 1895. Reptiles y batracios de la Sierra de la Ventana (Provincia de Buenos Aires). Rev Mus La Plata 7(1896): 151-156.) to subsequent records (Couturier & Grisolia 1989COUTURIER GA & GRISOLIA C. 1989. Presencia de Philodryas aestivus (Duméril, Bibron y Duméril, 1854) en Sierra de la Ventana (Provincia de Buenos Aires). Bol Asoc Herpetol Arg 5(1-2): 13-13., Viñas et al. 1989VIÑAS M, DANERI G & GNIDA G. 1989. Presencia de Pseudablabes agassizii (Jan, 1863) en Sierra de la Ventana (provincia de Buenos Aires), y confirmación para la provincia de la Pampa. Bol Asoc Herpetol Arg 5: 13-14., Di Pietro et al. 2012DI PIETRO DO, ALCALDE L, WILLIAMS JD & CABRERA MR. 2012. Geographic distribution. Testudines: Hydromedusa tectifera (South American snake-necked turtle). Herpetol Rev 43(2): 303-303., 2018DI PIETRO DO, CABRERA MR, WILLIAMS JD, KACOLIRIS FP, CAJADE R & ALCALDE L. 2018. Distributional patterns and conservation planning for a snake assemblage from temperate South America. J Nat Conserv 45: 79-89.), a total of 25 reptile species have been reported in the region: one turtle, two amphisbaenids, seven lizards and 15 snakes. Of these, two are microendemic: the snake Lygophis elegantissimus (Koslowsky 1895KOSLOWSKY J. 1895. Reptiles y batracios de la Sierra de la Ventana (Provincia de Buenos Aires). Rev Mus La Plata 7(1896): 151-156.) and the lizard Pristidactylus casuhatiensis (Gallardo 1968GALLARDO JM. 1968. Dos nuevas especies de Iguanidae (Sauria) de la Argentina. Neotropica 14: 1-8.).

Data collection

Field data were collected over 15-week study periods between February 2010 and March 2014 (one in winter, two in autumn, six in spring and six in summer), with greater sampling efforts in the months when snakes were active (September to March). Snakes were hand-captured using transect surveys. Three active searchers followed 4-5 km long line-transects daily for approximately 6 h distributed between midmorning to late afternoon (Foster 2012FOSTER MS. 2012. Standard techniques for inventory and monitoring. In: McDiarmid RW et al. (Eds), Reptile biodiversity: Standard methods for inventory and monitoring, Berkeley: University of California Press, p. 205-271.). Our sampling design consisted of 2016 man-hours regularly visiting three fixed transects (Fig. 1). Transect 1 (25 visits) was located in the Cerro Cura Malal Grande (37.7166°S, 62.2166°W) on the Sierra de Cura Malal. Transect 2 (39 visits) passed through the protected area Ernesto Tornquist Provincial Park (38.0501°S, 62.0333°W) on the Sierra de la Ventana. Transect 3 (41 visits) ran between Sierra de las Tunas and Sierra de Pillahuincó, near Villa La Arcadia village (38.1284°S, 61.7751°W). In addition, non-systematic visits to other neighboring localities were performed, totaling 672 additional man-hours (Fig. 1). Each transect faithfully reflected microhabitat categories (see below) and availability within the study area.

Additional information was obtained from road-killed specimens collected during road-riding surveys (Foster 2012FOSTER MS. 2012. Standard techniques for inventory and monitoring. In: McDiarmid RW et al. (Eds), Reptile biodiversity: Standard methods for inventory and monitoring, Berkeley: University of California Press, p. 205-271.) in the afternoon on paved roads (Provincial Routes 51, 67, 72, 76, 85, and National Route 33), totaling 4500 km of active search by car (approximately 50 km/h). To augment field data on diet, museum specimens previously collected within the study area and housed at the Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN, Buenos Aires), Museo de La Plata (MLP.JW and MLP.R, Buenos Aires) and Fundación Miguel Lillo (FML, Tucumán) were examined. Field-collected snakes and museum specimens are listed in Supplementary Material - Appendix S1 Table SI. . Our study does not require Ethics Committee and protocol number, only Collecting permits provided by the Organismo Provincial para el Desarrollo Sostenible, Gobierno de la Provincia de Buenos Aires (OPDS, Disposición Nº 003/2011), Argentina are required for this type of study.

Figure 1
Study area. Localities of the specimens examined (dots). Numbers indicate the fixed transects close to Cerro Cura Malal Grande (1), Ernesto Tornquist Provincial Park (2), and Villa La Arcadia village (3).

Data analyses

Entire digestive tracts were separated from snake bodies following a mid-ventral incision from the throat to the vent opening. Individual tracts were preserved in separate capsules using 70% ethanol. Prey items were examined under a stereomicroscope to achieve better taxonomic accuracy.

Prey volume was calculated by water displacement of entire items, commonly from the esophagus or stomach (accuracy 0.01 ml), or by using items of the same size from partially digested prey, usually from the intestine. Some invertebrates were considered either accidentally ingested or secondary prey items because of their small size and presence in the digestive tract together with remains of anurans or lizards (Martins et al. 2002MARTINS M, MARQUES OAV & SAZIMA I. 2002. Ecological and phylogenetic correlates of feeding habits in neotropical pitvipers of the genus Bothrops. In: Schuett GW et al. (Eds), Biology of the vipers, Eagle Mountain: Eagle Mountain Publishing, p. 307-328.). Highly digested remains (usually from the posterior part of the intestine) were considered unidentifiable.

Data on microhabitat use were obtained only from specimens collected during fieldwork. Accordingly, microhabitats were classified into seven categories: (1) stream watercourse (specimens found swimming); (2) stream edges (specimens found with part of their body in the water and part on ground); (3) grassland with shrubs (specimens found surrounded by shrubs on grasslands, regardless of soil coverage); (4) grassland without shrubs (specimens found on a densely covered grassland substrate); (5) bare ground (specimens found on an uncovered grassland substrate); (6) on top of rocks (specimens found on firm blocks of rocks and/or between loose rocks on a rock substrate); and (7) under rocks (specimens found under loose rocks on bare ground). The microhabitat of road-killed specimens was coded taking the surrounding road habitat into account.

Trophic diversity (Hurtubia 1973HURTUBIA J. 1973. Trophic diversity measurement in sympatric predatory species. Ecology 54(4): 885-890.) of each individual snake was calculated using the formula of Brillouin (1962)BRILLOUIN L. 1962. Science and information theory, 2nd ed., New York: Academic Press, 351 p.: H = (1 / N) (log2 N! - Σ log2 Ni!); where N is the total number of prey found in each stomach, and Ni the total number of prey of species i found in each stomach. The accumulated trophic diversity values were calculated by random additions of the individual estimations of the trophic diversity of each stomach (Brillouin 1962BRILLOUIN L. 1962. Science and information theory, 2nd ed., New York: Academic Press, 351 p.). Each round of random additions integrated the prey items of all previous stomachs for which trophic diversity was calculated. Then, the accumulated trophic diversity values were plotted versus the stomach number to estimate the minimum sample for each species (i.e., when values turned asymptotic; Hurtubia 1973HURTUBIA J. 1973. Trophic diversity measurement in sympatric predatory species. Ecology 54(4): 885-890., Basso 1990BASSO NG. 1990. Estrategias adaptativas en una comunidad subtropical de anuros. Cuad Herpetol, Ser Monogr 1: 1-70.). The formula of Brillouin (1962)BRILLOUIN L. 1962. Science and information theory, 2nd ed., New York: Academic Press, 351 p. was also employed to estimate the diversity of prey and microhabitat used by each species, where N was the total number of prey or specimens, and Ni the total number of prey of species i or specimens in microhabitat i, as applicable.

The degree of utilization of available resources in the environment was calculated by the evenness or equitability index of Pielou (1969)PIELOU EC. 1969. An introduction to mathematical ecology. New York: Wiley- Interscience, 286 p.: J’ = H’ / H’Max; being H’ = - Σ Pi Log2 Pi and H’Max = Log2 S; where H’ is the Shannon index (Shannon & Weaver 1949SHANNON CE & WEAVER W. 1949. The mathematical theory of communications. Urbana: University of Illinois Press, 117 p.), Pi the proportion of prey of species i or specimens in microhabitat i, and S the number of prey items consumed or microhabitats used, as appropriate. The importance of each prey item in the diet of the species was estimated using the importance index based on pooled stomachs (Biavati et al. 2004BIAVATI G, WIEDERHECKER H & COLLI GR. 2004. Diet of Epipedobates flavopictus (Anura: Dendrobatidae) in a Neotropical Savanna. J Herpetol 38(4): 510-518.), as follows: IPS = (F% + N% + V%) / 3; where F% is the occurrence percentage of each prey item, N% the numerical percentage of each prey item and V% the volumetric percentage of each prey item. Niche breadth of prey number, prey volume, and microhabitat use were calculated using the index proposed by Levins (1968)LEVINS R. 1968. Evolution in Changing Environments: Some Theoretical Explorations. Monographs in Population Biology, Princeton: Princeton University Press 2: 132 .: Nb = (Σ pij 2) -1; where pij represents the probability of finding each prey item i in sample j or species i in microhabitat j, as applicable.

Diet (prey proportion and volume) and microhabitat use overlaps were calculated using the overlap index of Pianka (1973)PIANKA ER. 1973. The structure of lizard communities. Annu Rev Ecol Systemat 4: 53-74.: Ojk = Σ pij pik / (Σ pij 2 Σ pik 2)1/2; where pij and pik are the proportions of resource utilization by species. The overlap index ranges from 0 to 1. Values near 1 mean increasing similarity in diet or microhabitat (complete overlap), whereas values near 0 indicate dissimilarity (absence of overlap). As already mentioned, two of the three dimensions of the ecological niche (diet and habitat) were assessed. The temporal dimension was excluded since most authors consider it is less important in structuring herpetological assemblages (Schoener 1974SCHOENER TW. 1974. Resource partitioning in ecological communities. Science 185(4145): 27-39., Pianka 1974PIANKA ER. 1974. Niche overlap and diffuse competition. Proc Nat Acad Sci 71(5): 2141-2145., Toft 1985TOFT CA. 1985. Resource partitioning in amphibians and reptiles. Copeia 1985(1): 1-21.). Overlap values were studied by randomization analysis to evaluate differences between observed and expected values using EcoSim version 7.71 (Gotelli & Entsminger 2004GOTELLI NJ & ENTSMINGER GL. 2004. EcoSim: Null models software for ecology. Version 7.71. Jericho: Acquired Intelligence Inc & Kesey-Bear. Available at: http://garyentsminger.com/ecosim/index.htm Accessed on 1 July 2018.
http://garyentsminger.com/ecosim/index.h...
), which creates random assemblages of observed data with a Monte Carlo simulation. The RA3 algorithm (retained niche breadth/reshuffled zero states) with 1000 randomizations of the original data (Winemiller & Pianka 1990WINEMILLER KO & PIANKA ER. 1990. Organization in natural assemblages of desert lizards and tropical fishes. Ecol Monogr 60(1): 27-55.) was used for the analysis.

Diet and microhabitat use overlap between each pair of species was also estimated with the asymmetrical overlap index of MacArthur & Levins (1967)MACARTHUR R & LEVINS R. 1967. The limiting similarity, convergence and divergence of coexisting species. Am Nat 101(921): 377-385.: Miy = Σ Pi Py / Σ Piy 2; where Pi and Py are the proportions of resource utilization by species. The index provides two values of overlapping (incidence of species i over y and incidence of species y over i) and is therefore more informative than the symmetrical overlap index of Pianka (1973)PIANKA ER. 1973. The structure of lizard communities. Annu Rev Ecol Systemat 4: 53-74..

Finally, three morphological measurements, namely, Total Length (TL), Mouth Width (MW), and Mass (M) were obtained from each studied specimen, excepting MW in Epictia australis. Trophic behavioral features (e.g., degree of prey selection) within species were described by correlations of TL and MW with mean volume of ingested prey using Pearson’s r with PAST software (version 3.04; Hammer et al. 2001HAMMER Ø, HARPER DAT & RYAN PD. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Version 3.14. Palaeontol Electron 4(1): 1-9. Available at: http://folk.uio.no/ohammer/past. Accessed on 1 July 2018.).

RESULTS

A total of 15 snake species were recorded. Of these species, only five were abundant enough for analyses (Fig. 2): Epictia australis (Leptotyphlopidae), Erythrolamprus poecilogyrus, Lygophis elegantissimus, Philodryas patagoniensis (Colubridae, Dipsadinae), and Bothrops alternatus (Viperidae, Crotalinae). Other species recorded were Epictia munoai (Leptotyphlopidae), Lygophis anomalus, Oxyrhopus rhombifer, Paraphimophis rusticus, Phalotris bilineatus, Philodryas aestiva, Philodryas agassizii, Xenodon dorbignyi, Xenodon semicinctus (Colubridae, Dipsadinae), and Bothrops ammodytoides (Viperidae, Crotalinae). Voucher information of each species is shown in Appendix S1, and additional information on diet composition of the whole snake assemblage is presented in Table SI.

Figure 2
Minimum sample size determination for Epictia australis (a), Erythrolamprus poecilogyrus (b), Lygophis elegantissimus (c), Philodryas patagoniensis (d), and Bothrops alternatus (e). Hk = accumulated trophic diversity, k = number of stomachs, t = minimum sample size.

Prey resource use

Epictia australis

Eighteen (36.73%) of the dissected specimens contained identifiable prey in their digestive tracts, exceeding the minimum sample size of this species (Table I; Fig. 2a). They fed exclusively on all age classes of the ant genus Pheidole. The IPS values indicated that ant eggs and larvae were the most important prey (Table II). As most scolecophidians, this species was a dietary specialist, as indicated by low and not very equitable values of prey diversity and a narrow trophic niche breadth (Table I). Mean TL and M values were much lower than those of the other species studied (Table I). The correlation between prey volume and TL was not significant (r = 0.001, p = 1).

Table I
Field-collected (alive in field, Af; road-killed, Rk) and museum collection (Mc) specimens, and their morphological measurements (mean total length in mm, TL; mean mass in g, M; mean mouth width in mm, MW). The table shows the values of diversity (H), equitability index (J’), and niche breadth (Nb) for microhabitat use, prey number (N) and prey volume (V) categories. See text for details of calculations. Ea = Epictia australis, Ep = Erythrolamprus poecilogyrus, Le = Lygophis elegantissimus, Pp = Philodryas patagoniensis, Ba = Bothrops alternatus.

Erythrolamprus poecilogyrus

More than half (58.14%) of the specimens examined had digestive tracts with identifiable contents, which exceeded the minimum sample size of the species (Table I; Fig. 2b). Larvae of the bufonid toad Rhinella arenarum was the most important of the nine prey types found in the diet of E. poecilogyrus (Table II). Prey diversity was relatively high and fairly equitable, with higher values of trophic niche breadth (Table I). The correlation of prey volume with MW (r = -0.079, p = 0.585) and TL (r = -0.001, p = 0.996) was not significant.

Table II
Diet of Epictia australis, Erythrolamprus poecilogyrus, Lygophis elegantissimus, Philodryas patagoniensis and Bothrops alternatus. For each prey category, we present the sample size (N), volume in ml (V), occurrence frequency (F) and importance index based on pooled stomachs (IPS). Numbers between brackets indicate percentage values.

Lygophis elegantissimus

The analysis of 70 specimens of this endemic snake showed that 55.71% presented identifiable contents in their digestive tracts, which exceeded the estimated minimum sample size (Table I; Fig. 2c). The diet of this species was similar to that of E. poecilogyrus, but more specialized in anurans. Five prey items were detected; they were all anurans and the most important was the hylid frog Boana pulchella (Table II). Prey diversity was low and fairly equitable, with relatively low values of trophic niche breadth (Table I). Prey volume significantly correlated with MW (r = 0.393, p = 0.015) and TL (r = 0.638, p = 0.001).

Philodryas patagoniensis

Forty-three specimens were dissected; of these, 46.51% had identifiable contents in their digestive tracts, exceeding the estimated minimum sample (Table I; Fig. 2d). The diet of this species consisted of four prey types, with spiders (Lycosa sp.) being the most important (Table II). Prey diversity was low and not very equitable, with low values of trophic niche breadth (Table I). The correlation of prey volume with MW (r = 0.461, p = 0.041) and TL (r = 0.541, p = 0.014) was significant.

Bothrops alternatus

From 58 stomachs dissected, 37.93% presented identifiable contents, exceeding the minimum sample size (Table I; Fig. 2e). The diet of B. alternatus included seven prey items; they were all rodents and Necromys benefactus was the most important (Table II). Prey diversity was high and very equitable, with high values of trophic niche breadth (Table I). Bothrops alternatus was the largest species studied (Table I). A significant correlation was found between prey volume and TL (r = 0.507, p = 0.016), but not between prey volume and MW (r = 0.361, p = 0.099).

Microhabitat Use

Epictia australis

Data on only 36.73% of specimens from the total sample were recorded during fieldwork (Table I). Despite specimens were restricted to three microhabitats, the vast majority of individuals were found under rocks (Fig. 3a). Microhabitat use diversity was low, not equitable and with low values of spatial niche breadth (Table I).

Erythrolamprus poecilogyrus

Data from 50% of the total specimens were recorded (Table I). This species was found in five of the seven microhabitat categories, mainly stream watercourses and bare grounds (Fig. 3b). Microhabitat use diversity was high and very equitable, with high values of spatial niche breadth (Table I).

Figure 3
Microhabitats used by Epictia australis (a), Erythrolamprus poecilogyrus (b), Lygophis elegantissimus (c), Philodryas patagoniensis (d), and Bothrops alternatus (e). N% = percentage of specimens, SW = stream watercourse, SE = stream edges, GS = grassland with shrubs, GW = grassland without shrubs, BG = bare ground, OR = on top of rocks, UR = under rocks.

Lygophis elegantissimus

Data on 41.43% of the total sample were recorded during fieldwork (Table I). This was the only species that used all seven microhabitat categories, mainly stream watercourses and stream edges (Fig. 3c). Microhabitat use diversity was high and very equitable, with high values of spatial niche breadth (Table I).

Philodryas patagoniensis

Of the total sample, 37.21% of specimens were found in four types of microhabitats, particularly bare grounds and grassland without shrubs (Table I; Fig. 3d). Microhabitat use diversity was low and very equitable, with relatively low values of spatial niche breadth (Table I).

Bothrops alternatus

Only 34.48% of specimens were recorded during fieldwork (Table I). This species used almost all microhabitats (mainly grassland without shrubs and bare grounds) with the exception of under rocks (Fig. 3e). Microhabitat use diversity was relatively low and very equitable, with relatively high values of spatial niche breadth (Table I).

Trophic and spatial relationships

Our results support the partitioning of the snake assemblage by both habitat use and diet into at least three functional groups: (1) species restricted to the microhabitat under rocks and with a diet composed exclusively of ants (Epictia australis), (2) species found mostly in stream microhabitats and feeding mainly upon anurans (Erythrolamprus poecilogyrus and Lygophis elegantissimus), and (3) species found mostly in grassland microhabitats, with specialized diets of terrestrial prey items (Philodryas patagoniensis and Bothrops alternatus). The relationship of overlap values between two trophic variables (proportion and volume of prey) and microhabitat use of the five species studied is shown in Table III. Random combinations of prey proportion information produced low overlap values, which were significant in eight of the 10 species pairs, whereas random combinations of prey volume data produced significantly low overlap values in six of the 10 species pairs. Microhabitat use randomization showed significantly high overlap in only two species pairs (Table III).

Results obtained by the asymmetrical overlap index of MacArthur & Levins (1967)MACARTHUR R & LEVINS R. 1967. The limiting similarity, convergence and divergence of coexisting species. Am Nat 101(921): 377-385. are shown in Table IV. Under resource scarcity, significantly high microhabitat use overlap values indicated that E. poecilogyrus was likely to be affected by L. elegantissimus, and P. patagoniensis was likely to be affected by B. alternatus.

Table III
Pairwise interspecific relationships of species within the snake assemblage from the Sierras de Ventania in east-central Argentina. Overlap values of Pianka (1973)PIANKA ER. 1973. The structure of lizard communities. Annu Rev Ecol Systemat 4: 53-74. (Ojk), overlap significance (Po ≥ e; Po ≤ e), observed mean (X¯ obs) and expected mean (X¯ exp) of three traits: prey proportion, prey volume, and microhabitat use. Significant values (p ≤ 0.05) are shown in bold. See text for details of calculations. Other references as in Table I.
Table IV
Overlap values of MacArthur & Levins (1967)MACARTHUR R & LEVINS R. 1967. The limiting similarity, convergence and divergence of coexisting species. Am Nat 101(921): 377-385. for prey proportion, prey volume and microhabitat use. Significant species pairs are shown in bold. See text for details of calculations. Other references as in Table I.

DISCUSSION

We report the most in-depth and detailed analysis of diet, feeding strategies and microhabitat use of five species from a snake assemblage in the Sierras de Ventania low mountain chain. Our data support the partitioning of the assemblage into at least three groups by habitat use and diet. The first group was composed of Epictia australis, the smallest snake of the assemblage. It was an active forager feeding exclusively upon ants and almost entirely restricted to microhabitats beneath rocks. The second group was composed of two medium-sized dipsadine species, Erythrolamprus poecilogyrus and Lygophis elegantissimus. Both species used riparian microhabitats more than other environments; they were active foragers and fed mainly (E. poecilogyrus) or exclusively (L. elegantissimus) upon anurans. The third group consisted of the largest species of the assemblage, Philodryas patagoniensis and Bothrops alternatus, which were found in grassland microhabitats and fed on terrestrial prey obtained by active (mainly spiders by P. patagoniensis) or passive (exclusively rodents by B. alternatus) foraging strategies.

The strict myrmecophagous diet of Epictia australis has been previously described in related and phylogenetically distant leptotyphlopids such as Epictia munoai (Vaz Ferreira et al. 1970VAZ FERREIRA R, COVELLO DE ZOLESSI L & ACHAVAL F. 1970. Ovoposición y desarrollo de ofidios y lacertilios en hormigueros de Acromyrmex. Physis 29: 431-459., Carreira 2002CARREIRA S. 2002. Alimentación de los ofidios de Uruguay. Monografías de Herpetología, Barcelona: Asociación Herpetológica Española, Monografías de Herpetología 6: 127.) and Leptotyphlops scutifrons (Webb et al. 2000WEBB JK, SHINE R, BRANCH WR & HARLOW PS. 2000. Life-history strategies in basal snakes: reproduction and dietary habits of the African thread snake Leptotyphlops scutifrons (Serpentes: Leptotyphlopidae). J Zool 250(3): 321-327.), respectively. Our finding that diet overlap in E. australis was low compared with other snakes was not surprising in light of the distant phylogenetic relationship between scolecophidians and alethinophidians (Vitt & Pianka 2005VITT LJ & PIANKA ER. 2005. Deep history impacts present-day ecology and biodiversity. Proc Nat Acad Sci 102(22): 7877-7881., Zheng & Wiens 2016ZHENG Y & WIENS JJ. 2016. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol Phylogenet Evol 94(Pt B): 537- 547.). Indeed, as our understanding of phylogenetic relationships among scolecophidians improved, that of variations in foraging mode among scolecophidian lineages also improved. Surprisingly, and based only on the five species which exceeded the minimum sample size, E. australis had the highest proportion of empty stomachs, considering that many scolecophidians are thought to feed at a much higher frequency than other snakes. The shift of scolecophidians from lizard-like (feeding frequently on small prey) to snake-like (feeding infrequently on large prey) trophic biology is evident (Webb et al. 2000WEBB JK, SHINE R, BRANCH WR & HARLOW PS. 2000. Life-history strategies in basal snakes: reproduction and dietary habits of the African thread snake Leptotyphlops scutifrons (Serpentes: Leptotyphlopidae). J Zool 250(3): 321-327.). For instance, two species of North American leptotyphlopids (Rena humilis and Rena dulcis) feed frequently on taxonomically diverse small prey (Punzo 1974PUNZO F. 1974. Comparative analysis of the feeding habits of two species of Arizona blind snakes, Leptotyphlops h. humilis and Leptotyphlops d. dulcis. J Herpetol 8: 153-156.); the African L. scutifrons, several Australian typhlopids and the South American E. australis feed infrequently on taxonomically restricted small prey, but have large meals composed of numerous prey items (Shine & Webb 1990SHINE R & WEBB JK. 1990. Natural history of Australian typhlopid snakes. J Herpetol 24(4): 357-363., Webb & Shine 1993WEBB JK & SHINE R. 1993. Prey-size selection, gape limitation and predator vulnerability in Australian blindsnakes (Typhlopidae). Anim Behav 45(6): 1117-1126., Webb et al. 2000WEBB JK, SHINE R, BRANCH WR & HARLOW PS. 2000. Life-history strategies in basal snakes: reproduction and dietary habits of the African thread snake Leptotyphlops scutifrons (Serpentes: Leptotyphlopidae). J Zool 250(3): 321-327., this study); finally, the highly derived Melanesian typhlopid Acutotyphlops subocularis fed infrequently on large elongate prey (Webb et al. 2000WEBB JK, SHINE R, BRANCH WR & HARLOW PS. 2000. Life-history strategies in basal snakes: reproduction and dietary habits of the African thread snake Leptotyphlops scutifrons (Serpentes: Leptotyphlopidae). J Zool 250(3): 321-327.). Thus, in contrast to popular theory (Greene 1983GREENE HW. 1983. Dietary correlates of the origin and radiation of snakes. Am Zool 23(2): 431-441., 1997), our data also support the idea that the evolutionary shift to infrequent feeding among snakes did not initially require a change from small to large prey.

The diet of scolecophidians is consistent with active foraging. Such predators capture many small prey items with potentially high-energy costs for both prey detection and digestion, which is balanced out by the low-energy cost of capture (Toft 1980TOFT CA. 1980. Feeding ecology of thirteen syntopic species of anurans in a seasonal tropical environment. Oecologia 45(1): 131-141., 1981, 1985, Huey & Pianka 1981HUEY RB & PIANKA ER. 1981. Ecological consequences of foraging mode. Ecology 62(4): 991-999.). Since ants live in large colonies, they represent a sedentary resource usually found in large numbers, clustered in both space and time that only active foragers may use (Gerritsen & Strickler 1977GERRITSEN J & STRICKLER JR. 1977. Encounter probabilities and community structure in zooplankton: a mathematical model. J Fish Res Board Can 34(1): 73-82., Krebs 1978KREBS JR. 1978. Optimal foraging: decision rules for predators. In: Krebs JR & Davies NB (Eds), Behavioural Ecology: An Evolutionary Approach, Sunderland: Sinauer Associates, Inc, p. 23-63., Eckhardt 1979ECKHARDT RC. 1979. The adaptive syndromes of two guilds of insectivorous birds in the Colorado Rocky Mountains. Ecol Monogr 49(2): 129-149., Huey & Pianka 1981HUEY RB & PIANKA ER. 1981. Ecological consequences of foraging mode. Ecology 62(4): 991-999., Basso 1990BASSO NG. 1990. Estrategias adaptativas en una comunidad subtropical de anuros. Cuad Herpetol, Ser Monogr 1: 1-70.). According to our results, the absence of correlation between volume of ingested prey and snake size indicated that both juvenile and adult E. australis consumed prey of similar size. Two steps in prey detection by active foragers are recognized in the literature. First, the snake detects the prey using its vomeronasal organ and then, the snake manages to catch the prey by sight (Greene 1997GREENE HW. 1997. Snakes: The evolution of mystery in nature. Berkeley: University of California Press, 366 p., Mullin & Cooper 1998MULLIN SJ & COOPER RJ. 1998. The foraging ecology of the snake Elaphe obsoleta spiloides - visual stimuli facilitate location of arboreal prey. Amer Midl Nat 140: 397-401.). Although E. australis forages actively, it has reduced eyes and probably relies on chemosensory and tactile cues to detect and locate prey, and on morphological adaptations for rapid handling to subdue and consume their prey (Kley 2001KLEY NJ. 2001. Prey transport mechanisms in blindsnakes and the evolution of unilateral feeding systems in snakes. Am Zool 41(6): 1321-1337.).

The diet of Erythrolamprus poecilogyrus was mainly composed of adult and larval anurans and fish, which were preyed upon using active foraging tactics. Previous studies have categorized E. poecilogyrus as either a dietary generalist (Serié 1919SERIÉ P. 1919. Notas sobre la alimentación de algunos ofidios. Rev Jard Zool Buenos Aires 60: 307-328., Gallardo 1977GALLARDO JM. 1977. Reptiles de los alrededores de Buenos Aires. Buenos Aires: EUDEBA, 213 p., Lema et al. 1983LEMA T DE, LEITÃO DE ARAÚJO M & AZEVEDO ACP. 1983. Contribuição ao conhecimento da alimentação e do modo alimentar de serpentes do Brasil. Comun Mus Ciênc Tecnol PUCRS Sér Zool 26: 41-121., Michaud & Dixon 1989MICHAUD EJ & DIXON JR. 1989. Prey items of 20 species of the neotropical colubrid snake genus Liophis. Herpetol Rev 20(2): 39-41., Cei 1986CEI JM. 1986. Reptiles del centro, centro-oeste y sur de la Argentina: Herpetofauna de las zonas áridas y semiáridas. Monografie IV. Torino: Museo Regionale di Scienze Naturali, Monografie 4: 527., 1993) or an anuran specialist (Vitt 1983VITT LJ. 1983. Ecology of an anuran-eating guild of terrestrial tropical snakes. Herpetologica 39(1): 52-66., Vitt & Vangilder 1983VITT LJ & VANGILDER LD. 1983. Ecology of a snake community in northeastern Brazil. Amphibia-Reptilia 4: 273-296., Dixon & Markezich 1992DIXON JR & MARKEZICH AL. 1992. Taxonomy and geographic variation of Liophis poecilogyrus (Wied) from South America (Serpentes: Colubridae). Tex J Sci 44: 131-166., Pinto & Fernandes 2004PINTO RR & FERNANDES R. 2004. Reproductive biology and diet of Liophis poecilogyrus poecilogyrus (Serpentes, Colubridae) from southeastern Brazil. Phyllomedusa 3: 9-14.). A third, intermediate position that best matches our results suggests that E. poecilogyrus tends to feed on anurans but also consumes other types of prey (Carreira 2002CARREIRA S. 2002. Alimentación de los ofidios de Uruguay. Monografías de Herpetología, Barcelona: Asociación Herpetológica Española, Monografías de Herpetología 6: 127., Prieto et al. 2012PRIETO YA, GIRAUDO AR & LÓPEZ MS. 2012. Diet and Sexual Dimorphism of Liophis poecilogyrus (Serpentes, Dipsadidae) from the Wetland Regions of Northeast Argentina. J Herpetol 46(3): 402-406.). In our study, the size of the prey ingested by E. poecilogyrus was not correlated with the size of the snakes, considering that small snakes could swallow large prey and large snakes did not reject small prey. This agrees with the proposal of Shine (1987)SHINE R. 1987. Ecological ramifications of prey size: food habits and reproductive biology of Australian copperhead snakes (Austrelaps, Elapidae). J Herpetol 21(1): 21-28., who hypothesized that active foragers would consume any prey they encountered, including small prey, because the time, costs, risk and energy necessary to catch and swallow prey would be trivial (Schoener 1977SCHOENER TW. 1977. Competition and the niche. In: Tinkle DW & Gans C (Eds), Biology of the Reptilia,New York: Academic Press 7: 35-136., Pough & Andrews 1985POUGH FH & ANDREWS RM. 1985. Energy costs of subduing and swallowing prey for a lizard. Ecology 66(5): 1525-1533.).

Lygophis elegantissimus exclusively fed upon anurans, mainly larvae and adult Boana pulchella. These results partially agree with previous reports that included anurans, as well as lizards on the diet of this species (Miranda et al. 1983MIRANDA M, COUTURIER G & WILLIAMS JD. 1983. Guía de los Ofidios Bonaerenses, 2nd ed., La Plata: Asoc Coop Jardín Zoológico de La Plata, 72 p., Williams & Scrocchi 1994WILLIAMS JD & SCROCCHI GJ. 1994. Ofidios de agua dulce de la República Argentina. In: De Castellanos ZA (Ed), Fauna de Agua Dulce de la República Argentina, La Plata: CICPBA, p. 1-55.). However, we did not document any lizards in L. elegantissimus digestive tracts, despite their abundance in the study area. Dietary studies of other Lygophis species also highlighted the importance of anurans in the diet of these snakes (Vitt 1983VITT LJ. 1983. Ecology of an anuran-eating guild of terrestrial tropical snakes. Herpetologica 39(1): 52-66., Vitt & Vangilder 1983VITT LJ & VANGILDER LD. 1983. Ecology of a snake community in northeastern Brazil. Amphibia-Reptilia 4: 273-296., Michaud & Dixon 1989MICHAUD EJ & DIXON JR. 1989. Prey items of 20 species of the neotropical colubrid snake genus Liophis. Herpetol Rev 20(2): 39-41., Carreira 2002CARREIRA S. 2002. Alimentación de los ofidios de Uruguay. Monografías de Herpetología, Barcelona: Asociación Herpetológica Española, Monografías de Herpetología 6: 127., Panzera & Maneyro 2014PANZERA A & MANEYRO R. 2014. Feeding Biology of Lygophis anomalus (Dipsadidae, Xenodontinae). South Am J Herpetol 9(2): 75-82.), which may be an ancestral trait within Xenodontinae (Cadle & Greene 1993CADLE JE & GREENE HW. 1993. Phylogenetic patterns, biogeography, and the ecological structure of Neotropical snake assemblages. In: Ricklefs RE & Schluter D (Eds), Species diversity in ecological communities: historical and geographical perspectives, Chicago: University of Chicago Press, p. 281-293.). Thus, we characterized L. elegantissimus as a specialist with relatively low prey diversity and a narrow trophic niche, as expected for active foragers (Toft 1980TOFT CA. 1980. Feeding ecology of thirteen syntopic species of anurans in a seasonal tropical environment. Oecologia 45(1): 131-141., 1981, Huey & Pianka 1981HUEY RB & PIANKA ER. 1981. Ecological consequences of foraging mode. Ecology 62(4): 991-999., Perry & Pianka 1997PERRY G & PIANKA ER. 1997. Animal foraging: past, present and future. Trends Ecol Evol 12(9): 360-364.). In contrast to E. poecilogyrus, L. elegantissimus could consume larger prey as they increase in size.

Many active predators employ bright coloration for predator deterrence. In our study, both E. poecilogyrus and L. elegantissimus preyed upon adult Melanophryniscus aff. montevidensis (see taxonomic comments in Vaira et al. 2012VAIRA M ET AL. 2012. Categorización del estado de conservación de los anfibios de la República Argentina. Cuad Herpetol 26(Suppl 1): 131-159.), a highly noxious bufonid toad that uses skin alkaloids for self-defense (Daly et al. 2008DALY JW, GARRAFFO HM, SPANDE TF, YEH HJC, PELTZER PM, CACIVIO P, BALDO D & FAIVOVICH J. 2008. Indolizidine 239Q and Quinolizidine 275I. Major alkaloids in two Argentinian bufonid toads (Melanophryniscus). Toxicon 52(8): 858-870.) and exhibits aposematic coloration and unken reflex behavior. The current data increase the knowledge of snake predation upon these toads, suggesting that bright coloration may be aposematic. Other snake predators of Melanophryniscus include Thamnodynastes strigatus, feeding on M. moreirae in Brazil (Winkler et al. 2011WINKLER FJM, WALTENBERG LM, SANTOS PA, NASCIMENTO DS, VRCIBRADIC D & SLUYS MV. 2011. New records of anuran prey for Thamnodynastes strigatus (Günther, 1858) (Serpentes: Colubridae) in a high-elevation area of southeast Brazil. Herpetol Notes 4(1): 123-124.), and Xenodon dorbignyi, feeding on M. montevidensis and M. atroluteus in Uruguay (Orejas Miranda 1966OREJAS MIRANDA BR. 1966. The snake genus Lystrophis in Uruguay. Copeia 1966(2): 193-205.). Adult Rhinella arenarum, a toad which also produces toxic secretions (Mebs 2002MEBS D. 2002. Venomous and Poisonous Animals. Boca Raton: CRC Press, 340 p.), was also recorded in the digestive tracts of L. elegantissimus. In contrast to Melanophryniscus, toads of the genus Rhinella are commonly preyed on by several snakes in the genera Erythrolamprus, Lygophis and Xenodon (Michaud & Dixon 1989MICHAUD EJ & DIXON JR. 1989. Prey items of 20 species of the neotropical colubrid snake genus Liophis. Herpetol Rev 20(2): 39-41., Oliveira et al. 2001OLIVEIRA RB, DI BERNARDO M, PONTES GMF, MACIEL AP & KRAUSE L. 2001. Dieta e comportamento alimentar da cobra-nariguda, Lystrophis dorbignyi (Duméril & Duméril, 1854), no Litoral Norte do Rio Grande do Sul, Brasil. Cuad Herpetol 14(2): 117-122., Pinto & Fernandes 2004PINTO RR & FERNANDES R. 2004. Reproductive biology and diet of Liophis poecilogyrus poecilogyrus (Serpentes, Colubridae) from southeastern Brazil. Phyllomedusa 3: 9-14., Albarelli & Santos Costa 2010ALBARELLI LPP & SANTOS COSTA MC. 2010. Feeding ecology of Liophis reginae semilineatus (Serpentes: Colubridae: Xenodontinae) in eastern Amazon, Brazil. Zoologia (Curitiba) 27: 87-91., Prieto et al. 2012PRIETO YA, GIRAUDO AR & LÓPEZ MS. 2012. Diet and Sexual Dimorphism of Liophis poecilogyrus (Serpentes, Dipsadidae) from the Wetland Regions of Northeast Argentina. J Herpetol 46(3): 402-406., Panzera & Maneyro 2014PANZERA A & MANEYRO R. 2014. Feeding Biology of Lygophis anomalus (Dipsadidae, Xenodontinae). South Am J Herpetol 9(2): 75-82.). Recently, documented patterns of alkaloid resistance mechanisms within diverse South American snake and toad radiations (Mohammadi et al. 2016MOHAMMADI S, GOMPERT Z, GONZALEZ J, TAKEUCHI H, MORI A & SAVITZKY AH. 2016. Toxin-resistant isoforms of Na+/K+-ATPase in snakes do not closely track dietary specialization on toads. Proc R Soc B 283: 20162111.) could help discover additional examples of toxin sequestration in snakes (Savitzky et al. 2012SAVITZKY AH, MORI A, HUTCHINSON DA, SAPORITO RA, BURGHARDT GM, LILLYWHITE HB & MEINWALD J. 2012. Sequestered defensive toxins in tetrapod vertebrates: principles, patterns, and prospects for future studies. Chemoecology 22(3): 141-158.). Our findings suggest that L. elegantissimus and E. poecilogyrus could be regarded as potentially promising candidates.

The diet of Philodryas patagoniensis was mostly made up of spiders of the genus Lycosa (77.08%) followed by rodents (20.83%), thus, representing low prey diversity and a relatively narrow trophic niche. This species has been reported as a generalist whose diet varied geographically in response to variations in prey assemblages (Gallardo 1977GALLARDO JM. 1977. Reptiles de los alrededores de Buenos Aires. Buenos Aires: EUDEBA, 213 p., Cei 1986CEI JM. 1986. Reptiles del centro, centro-oeste y sur de la Argentina: Herpetofauna de las zonas áridas y semiáridas. Monografie IV. Torino: Museo Regionale di Scienze Naturali, Monografie 4: 527., 1993, Gonzaga et al. 1997GONZAGA LAP, CASTIGLIONI GDA & ALVES MA. 1997. Philodryas patagoniensis (NCN). Diet Herpetol Rev 28(3): 154-154, Carreira 2002CARREIRA S. 2002. Alimentación de los ofidios de Uruguay. Monografías de Herpetología, Barcelona: Asociación Herpetológica Española, Monografías de Herpetología 6: 127., López 2003LÓPEZ MS. 2003. Philodryas patagoniensis (NCN). Diet Herpetol Rev 34: 71-72., Hartmann & Marques 2005HARTMANN PA & MARQUES OAV. 2005. Diet and habitat use of two sympatric species of Philodryas (Colubridae), in south Brazil. Amphibia-Reptilia 26(1): 25-31., López & Giraudo 2008LÓPEZ MS & GIRAUDO AR. 2008. Ecology of the Snake Philodryas patagoniensis (Serpentes, Colubridae) from Northeast Argentina. J Herpetol 42: 474-480.). For example, Lema (1973)LEMA T DE. 1973. As serpentes do estado do Rio Grande do Sul. Iheringia. Sér Div 3: 19-33. suggested that P. patagoniensis preyed upon almost any available prey, and Carreira (2002)CARREIRA S. 2002. Alimentación de los ofidios de Uruguay. Monografías de Herpetología, Barcelona: Asociación Herpetológica Española, Monografías de Herpetología 6: 127. found several arthropods (mainly spiders of the genus Lycosa) in the gastric contents of P. patagoniensis from Uruguay. Despite other authors have reported the ingestion of amphibians by specimens from Uruguay and Brazil and reptile predation by specimens from northern Argentina (Carreira 2002CARREIRA S. 2002. Alimentación de los ofidios de Uruguay. Monografías de Herpetología, Barcelona: Asociación Herpetológica Española, Monografías de Herpetología 6: 127., Hartmann & Marques 2005HARTMANN PA & MARQUES OAV. 2005. Diet and habitat use of two sympatric species of Philodryas (Colubridae), in south Brazil. Amphibia-Reptilia 26(1): 25-31., López & Giraudo 2008LÓPEZ MS & GIRAUDO AR. 2008. Ecology of the Snake Philodryas patagoniensis (Serpentes, Colubridae) from Northeast Argentina. J Herpetol 42: 474-480.), we did not find amphibians or reptiles in the digestive tracts of P. patagoniensis. The species thus would be generalist in a broad sense (across entire species range), although our study population specialized in preying upon spiders and rodents. Furthermore, the significant correlation between volume of ingested prey and snake size showed that the species could consume large prey in response to increments in body size, but did not cease the ingestion of small prey. The high frequency of consumption of such prey would indicate an active rather than a passive foraging strategy (Toft 1980TOFT CA. 1980. Feeding ecology of thirteen syntopic species of anurans in a seasonal tropical environment. Oecologia 45(1): 131-141., 1981, 1985), like most colubrid snakes do (Luiselli 2006LUISELLI L. 2006. Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns. Oikos 114(2): 193-211.). Spiders of the genus Lycosa are also the primary prey of P. agassizii (Viñas 1985VIÑAS M. 1985. Notas sobre la biología de Pseudablabes agassizii Jan. Bol Asoc Herpetol Argent 1: 16-16., Carreira 2002CARREIRA S. 2002. Alimentación de los ofidios de Uruguay. Monografías de Herpetología, Barcelona: Asociación Herpetológica Española, Monografías de Herpetología 6: 127., Marques et al. 2006MARQUES OAV, SAWAYA RJ, STENDER OLIVEIRA F & FRANCA FGR. 2006. Ecology of the colubrid snake Pseudablabes agassizii in South-Eastern South America. Herpetol J 16(1): 37-45.), the sister species of P. patagoniensis (Zaher et al. 2009ZAHER H, GRAZZIOTIN FG, CADLE JE, MURPHY RW, MOURA LEITE JC & BONATTO SL. 2009. Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American Xenodontines: a revised classification and descriptions of new taxa. Pap Avulsos de Zool (São Paulo) 49(11): 115-153.), indicating a probable phylogenetic root for this feeding preference. Arachnids are rarely preyed on by snakes, although they are regular components of the diets of a few other species (Plummer 1981PLUMMER MV. 1981. Habitat utilization, diet, and movements of a temperate arboreal snake (Opheodrys aestivus). J Herpetol 15(4): 425-432., Colston et al. 2010COLSTON TJ, COSTA GC & VITT LJ. 2010. Snake diets and the deep history hypothesis. Biol J Linn Soc 101(2): 476-486.). All spiders have venom, and P. agassizii apparently has both behavioral and venomic adaptations that aid it in subduing and consuming spiders without injury (Marques et al. 2006MARQUES OAV, SAWAYA RJ, STENDER OLIVEIRA F & FRANCA FGR. 2006. Ecology of the colubrid snake Pseudablabes agassizii in South-Eastern South America. Herpetol J 16(1): 37-45.). It remains to be seen whether P. patagoniensis shares these adaptations, an expected fact given the close phylogenetic relationships between them.

As most adult viperids, the venomous Bothrops alternatus had a specialized diet of rodents, but it also consumed a great diversity of mouse species, thus showing a wide trophic niche. Previous reports have also found an exclusively mammal-based diet of this species (Cei 1986CEI JM. 1986. Reptiles del centro, centro-oeste y sur de la Argentina: Herpetofauna de las zonas áridas y semiáridas. Monografie IV. Torino: Museo Regionale di Scienze Naturali, Monografie 4: 527., 1993, Martins et al. 2002MARTINS M, MARQUES OAV & SAZIMA I. 2002. Ecological and phylogenetic correlates of feeding habits in neotropical pitvipers of the genus Bothrops. In: Schuett GW et al. (Eds), Biology of the vipers, Eagle Mountain: Eagle Mountain Publishing, p. 307-328., Giraudo et al. 2008GIRAUDO AR, ARZAMENDIA V, LOPEZ SM, QUAINI RO, PRIETO YA, LEIVA LA, REGNER SA & URBAN JM. 2008. Serpientes venenosas de Santa Fe, Argentina: conocimientos sobre su historia natural aplicados para la prevención de ofidismo. FABICIB 12: 69-89.), probably shared by all species within the B. alternatus clade (Martins et al. 2002MARTINS M, MARQUES OAV & SAZIMA I. 2002. Ecological and phylogenetic correlates of feeding habits in neotropical pitvipers of the genus Bothrops. In: Schuett GW et al. (Eds), Biology of the vipers, Eagle Mountain: Eagle Mountain Publishing, p. 307-328.). Ontogenetic shifts in venom chemistry and foraging strategy have been lost in this species which, together with a large adult body size, are consistent with a lifelong diet of rodents (Andrade & Abe 1999ANDRADE DV & ABE AS. 1999. Relationship of venom ontogeny and diet in Bothrops. Herpetologica 55: 200-204., Giraudo et al. 2008GIRAUDO AR, ARZAMENDIA V, LOPEZ SM, QUAINI RO, PRIETO YA, LEIVA LA, REGNER SA & URBAN JM. 2008. Serpientes venenosas de Santa Fe, Argentina: conocimientos sobre su historia natural aplicados para la prevención de ofidismo. FABICIB 12: 69-89., Eskew et al. 2009ESKEW EA, WILLSON JD & WINNE CT. 2009. Ambush site selection and ontogenetic shifts in foraging strategy in a semi-aquatic pit viper, the Eastern Cottonmouth. J Zool 277(2): 179-186.). Luiselli (2006)LUISELLI L. 2006. Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns. Oikos 114(2): 193-211. pointed out that viperid snakes were generally passive foragers, using sit-and-wait tactics to obtain few prey of a large size, with low energy costs of both search and digestion, but increased time spent on capture (Toft 1980TOFT CA. 1980. Feeding ecology of thirteen syntopic species of anurans in a seasonal tropical environment. Oecologia 45(1): 131-141., 1981, Huey & Pianka 1981HUEY RB & PIANKA ER. 1981. Ecological consequences of foraging mode. Ecology 62(4): 991-999.). Essentially, all adult vipers have cryptic coloration, employ chemoreception to select ambush sites and use thermoreception to detect the passage of prey (Clark 2004CLARK RW. 2004. Timber rattlesnakes (Crotalus horridus) use chemical cues to select ambush sites. J Chem Ecol 30(3): 607-617., Colston et al. 2010COLSTON TJ, COSTA GC & VITT LJ. 2010. Snake diets and the deep history hypothesis. Biol J Linn Soc 101(2): 476-486.). The same applies to other species of Bothrops, such as B. jararaca and B. insularis (Sazima 1992SAZIMA I. 1992. Natural history of the jararaca pitviper, Bothrops jararaca, in southeastern Brazil. In: Campbell JA & Brodie JR ED (Eds), Biology of the Pitvipers, Tyler: Selva press, p. 199-216., Wüster et al. 2005WÜSTER W, DUARTE MR & SALOMÃO MG. 2005. Morphological correlates of incipient arboreality and ornithophagy in island pitvipers, and the phylogenetic position of Bothrops insularis. J Zool Lond 266(1): 1-10.). Moreover, the significant correlation between snake body size and volume of consumed prey indicated that the species tended to consume large prey in response to size increases, which is consistent with predictions for vipers (Greene 1992GREENE HW. 1992. The ecological and behavioral context of pitviper evolution. In: Campbell JA & Brodie Jr ED (Eds), Biology of the Pitvipers, Tyler: Selva Press, p. 107-117., Forsman & Shine 1997FORSMAN A & SHINE R. 1997. Rejection of non-adaptive hypotheses for intraspecific variation in trophic morphology in gape-limited predators. Biol J Linn Soc 62(2): 209-223., Martins et al. 2002MARTINS M, MARQUES OAV & SAZIMA I. 2002. Ecological and phylogenetic correlates of feeding habits in neotropical pitvipers of the genus Bothrops. In: Schuett GW et al. (Eds), Biology of the vipers, Eagle Mountain: Eagle Mountain Publishing, p. 307-328.).

In general, worldwide studies dealing with habitat preferences of snakes are scarce. In fact, most species have never been investigated (Reinert 1993REINERT HK. 1993. Habitat selection in snakes. In: Seigel RA & Collins JT (Eds), Snakes: Ecology and Behavior, New York: MacGraw-Hill, p. 201-240.) and studies were often constrained by sampling biases that complicated interpretations and comparisons (Martins & Oliveira 1998MARTINS M & OLIVEIRA ME. 1998. Natural history of snakes in forests of the Manaus region, central Amazonia, Brazil. Herpetol Nat Hist 6(2): 78-150.). In this context, our study is surely not an exception. Our findings agree with data in the literature (Henderson & Binder 1980HENDERSON RW & BINDER MH. 1980. The ecology and behavior of the vine snakes (Ahaetulla, Oxybelis, Thelotornis, Uromacer): a review. Milw Public Mus Contrib Biol Geol 37: 1-38., Reinert 1993REINERT HK. 1993. Habitat selection in snakes. In: Seigel RA & Collins JT (Eds), Snakes: Ecology and Behavior, New York: MacGraw-Hill, p. 201-240., Hartmann & Marques 2005HARTMANN PA & MARQUES OAV. 2005. Diet and habitat use of two sympatric species of Philodryas (Colubridae), in south Brazil. Amphibia-Reptilia 26(1): 25-31.) in the sense that the primary correlate of microhabitat would be the local availability of prey. Thus, E. australis eats ants and is mostly found near ant mounds; E. poecilogyrus and L. elegantissimus ate fish and amphibians and were mostly found along streams; and P. patagoniensis and B. alternatus ate terrestrial prey and were mostly found in grasslands.

Epictia australis was mostly found under rocks, a valid generalization about most scolecophidians (Cei 1986CEI JM. 1986. Reptiles del centro, centro-oeste y sur de la Argentina: Herpetofauna de las zonas áridas y semiáridas. Monografie IV. Torino: Museo Regionale di Scienze Naturali, Monografie 4: 527., 1993). In addition, multiple individuals of different sizes were sometimes found together under the same rock, as reported in other species of the genus such as E. munoai (Vega & Bellagamba 1990VEGA L & BELLAGAMBA P. 1990. Lista comentada de la Herpetofauna de las Sierras de Balcarce y Mar del Plata, Buenos Aires, Argentina. Cuad Herpetol 5: 10-14.) and E. diaplocia (Martins & Oliveira 1998MARTINS M & OLIVEIRA ME. 1998. Natural history of snakes in forests of the Manaus region, central Amazonia, Brazil. Herpetol Nat Hist 6(2): 78-150.). Thus, the current evidence indicates that E. australis displayed high microhabitat selectivity and feeding specialization, potentially excluding itself from competition with other snakes of the studied assemblage. Nevertheless, the ancient dietary shift of scolecophidians and alethinophidians would reveal that many modern species eat their ancestral food, regardless of habitat or biogeography (Colston et al. 2010COLSTON TJ, COSTA GC & VITT LJ. 2010. Snake diets and the deep history hypothesis. Biol J Linn Soc 101(2): 476-486.). The potential role of competition in the structure of local assemblages has been assessed in North American snakes via comparisons between local assemblage composition and regional species pool (Burbrink & Myers 2015BURBRINK FT & MYERS EA. 2015. Both traits and phylogenetic history influence community structure in snakes over steep environmental gradients. Ecography 38: 1036-1048.). These authors demonstrated that phylogenetic variability and ecological traits were disconnected at regional level, but local assemblage compositions were better explained by certain ecological key traits, regardless of phylogeny. Similar analyses of South American snake assemblages should be encouraged.

Erythrolamprus poecilogyrus was found along mountain streams and their edges (58.14%), as incidentally reported by other authors (Koslowsky 1895KOSLOWSKY J. 1895. Reptiles y batracios de la Sierra de la Ventana (Provincia de Buenos Aires). Rev Mus La Plata 7(1896): 151-156., Gallardo 1977GALLARDO JM. 1977. Reptiles de los alrededores de Buenos Aires. Buenos Aires: EUDEBA, 213 p., Miranda et al. 1983MIRANDA M, COUTURIER G & WILLIAMS JD. 1983. Guía de los Ofidios Bonaerenses, 2nd ed., La Plata: Asoc Coop Jardín Zoológico de La Plata, 72 p.). Apparently, the species preferred streams but it was also found in several other microhabitats, as observed by Vega & Bellagamba (1990)VEGA L & BELLAGAMBA P. 1990. Lista comentada de la Herpetofauna de las Sierras de Balcarce y Mar del Plata, Buenos Aires, Argentina. Cuad Herpetol 5: 10-14. in a population from the Sierras de Tandilia, Argentina. Such wide use of habitat possibilities made the species a habitat generalist with a tendency to use riparian habitats, which was even more pronounced in Lygophis elegantissimus (62.07%) than in E. poecilogyrus. Lygophis elegantissimus was found to a lesser extent in other microhabitats, as suggested by Williams & Scrocchi (1994)WILLIAMS JD & SCROCCHI GJ. 1994. Ofidios de agua dulce de la República Argentina. In: De Castellanos ZA (Ed), Fauna de Agua Dulce de la República Argentina, La Plata: CICPBA, p. 1-55.. Thus, this endemic species was moderately selective, supporting predictions as habitat generalist but with a trend towards the use of stream-related microhabitats. Previous studies have shown that other semi-aquatic snake species foraging in dynamic aquatic habitats could experience seasonal shifts in diet and habitat use in relation to shifts in prey availability (Hampton & Ford 2007HAMPTON PM & FORD NB. 2007. Effects of flood suppression on natricine snake diet and prey overlap. Can J Zool 85(7): 809-814., Durso et al. 2013DURSO AM, WILLSON JD & WINNE CT. 2013. Habitat influences diet overlap in aquatic snake assemblages. J Zool 291(3): 185-193.). We consider that these shifts did not operate in species of the currently studied assemblage since they were active in a brief period (mid spring - late summer) and became inactive the rest of the year.

Philodryas patagoniensis was found almost exclusively in grasslands (93.75%), particularly on bare ground, regardless of the collection site (alive or road-killed; Table I). Although common and widespread throughout south-eastern South America, data on microhabitat use of this species are scarce, notwithstanding a few miscellaneous comments (Gallardo 1970GALLARDO JM. 1970. Estudio ecológico sobre los anfibios y reptiles del sudoeste de la provincia de Buenos Aires, Argentina. Rev Mus Argent Cienc Nat 10: 27-63., 1977, Vega & Bellagamba 1990VEGA L & BELLAGAMBA P. 1990. Lista comentada de la Herpetofauna de las Sierras de Balcarce y Mar del Plata, Buenos Aires, Argentina. Cuad Herpetol 5: 10-14., Hartmann & Marques 2005HARTMANN PA & MARQUES OAV. 2005. Diet and habitat use of two sympatric species of Philodryas (Colubridae), in south Brazil. Amphibia-Reptilia 26(1): 25-31.). These authors agreed on the preference of this species for open grasslands, which are also favored by rodents and lycosid spiders (Pardiñas et al. 2004PARDIÑAS UFJ, ABBA AM & MERINO ML. 2004. Micromamíferos (Didelphimorphia y Rodentia) del sudoeste de la provincia de Buenos Aires (Argentina): Taxonomía y distribución. Mastozool Neotrop 11(2): 211-232., Jocqué & Alderweireldt 2005JOCQUÉ R & ALDERWEIRELDT M. 2005. Lycosidae: the grassland spiders. Acta Zool Bulg 1: 125-130.). Similarly, our data suggest that P. patagoniensis was highly adapted to grasslands.

Bothrops alternatus was found mostly (80%) in grassland, and to a lesser extent in other habitats. Previous data from the Sierras de Ventania described this species in scrublands, shrubby grasslands, streams and rocky areas (Koslowsky 1985, Cei 1986CEI JM. 1986. Reptiles del centro, centro-oeste y sur de la Argentina: Herpetofauna de las zonas áridas y semiáridas. Monografie IV. Torino: Museo Regionale di Scienze Naturali, Monografie 4: 527., 1993CEI JM. 1993. Reptiles del noroeste, nordeste y este de la Argentina: Herpetofauna de las selvas subtropicales, Puna y Pampas. Monografie XIV. Torino: Museo Regionale di Scienze Naturali, 949 p.). Nearby the Sierras de Tandilia, the species was recorded on rock outcrops and in shrubby grasslands (Vega & Bellagamba 1990VEGA L & BELLAGAMBA P. 1990. Lista comentada de la Herpetofauna de las Sierras de Balcarce y Mar del Plata, Buenos Aires, Argentina. Cuad Herpetol 5: 10-14.). Our results corroborate and extend previous observations on microhabitat use of this species. Although the bulk of specimens were found in grasslands, the species would prefer this environment with moderate selectivity (i.e., low habitat selection and relatively high values of microhabitat diversity and spatial niche breadth).

Finally, the ecological literature recognizes that communities are commonly structured by the interaction of several factors as a response to predators (Toft 1985TOFT CA. 1985. Resource partitioning in amphibians and reptiles. Copeia 1985(1): 1-21.) or by historical limitations and constraints (Brooks & McLennan 1991BROOKS DR & MCLENNAN DA. 1991. Phylogeny, Ecology, and Behavior: A Research Program in Comparative Biology. Chicago: University of Chicago Press, 441 p., Cadle & Greene 1993CADLE JE & GREENE HW. 1993. Phylogenetic patterns, biogeography, and the ecological structure of Neotropical snake assemblages. In: Ricklefs RE & Schluter D (Eds), Species diversity in ecological communities: historical and geographical perspectives, Chicago: University of Chicago Press, p. 281-293.), among other factors. The present work analyzed the main dimensions of the ecological niche (diet and habitat) suggested by Pianka (1973, 1974) in a snake assemblage from the Sierras de Ventania low mountain chain in Argentina. Consistent with previous reports (Arnold 1972ARNOLD SJ. 1972. Species densities of predators and their prey. Am Nat 106: 220-236., Schoener 1977SCHOENER TW. 1977. Competition and the niche. In: Tinkle DW & Gans C (Eds), Biology of the Reptilia,New York: Academic Press 7: 35-136., Toft 1985TOFT CA. 1985. Resource partitioning in amphibians and reptiles. Copeia 1985(1): 1-21., Luiselli 2006LUISELLI L. 2006. Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns. Oikos 114(2): 193-211., Goodyear & Pianka 2008GOODYEAR SE & PIANKA ER. 2008. Sympatric ecology of five species of fossorial snakes (Elapidae) in Western Australia. J Herpetol 42(2): 279-285.), diet instead of habitat was the niche dimension that better explained the ecological partitioning of this snake assemblage. Indeed, paired species comparisons showed a statistically significant low diet overlap for most interactions and a significantly high microhabitat use overlap only in two species pairs. Thus, the asymmetrical overlap values (MacArthur & Levins 1967MACARTHUR R & LEVINS R. 1967. The limiting similarity, convergence and divergence of coexisting species. Am Nat 101(921): 377-385.) of two species pairs indicated that, under a scenario of resource scarcity and potential competition (Sale 1974SALE PF. 1974. Overlap in resource use, and interspecific competition. Oecologia 17(3): 245-256., Connell 1980CONNELL JH. 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35(2): 131-138.), E. poecilogyrus and P. patagoniensis were likely to be affected by L. elegantissimus and B. alternatus, respectively. Our results showed a trend toward a balance between relatively high microhabitat overlapping and low diet overlapping. Furthermore, they fit well with the complementary niches hypothesis proposed by Schoener (1974)SCHOENER TW. 1974. Resource partitioning in ecological communities. Science 185(4145): 27-39., which states that coexistence may occur when a high overlap in a particular niche dimension is necessarily balanced out by a low overlap in another dimension, allowing sympatric coexistence and avoiding competitive exclusion.

ACKNOWLEGMENTS

We thank the Organismo Provincial para el Desarrollo Sostenible de la Provincia de Buenos Aires for the collecting permits. We thank Marcela Quetglas, Diego Barrasso, Santiago Nenda, Sebastián Lyons, Sergio Rosset, and Sebastián Gomez for their help during fieldwork. We thank Germán Moreira, Leopoldo Alvarez, and Mariano Lucia for their assistance in determining some prey items consumed by snakes. We greatly acknowledge two anonymous reviewers whose comments improved our work. We thank curators Julian Faivovich (MACN, Buenos Aires) and Sonia Kretzschmar (FML, Tucumán) for loaning specimens in their care. This study was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina, Secretaría de Ciencia y Técnica, Universidad Nacional de La Plata (SECYT-UNLP, Project 11/N823), and Secretaría de Ciencia y Tecnología, Universidad Nacional de Córdoba (SECYT-UNC, Project 05/I460).

REFERENCES

  • ALBARELLI LPP & SANTOS COSTA MC. 2010. Feeding ecology of Liophis reginae semilineatus (Serpentes: Colubridae: Xenodontinae) in eastern Amazon, Brazil. Zoologia (Curitiba) 27: 87-91.
  • ANDRADE DV & ABE AS. 1999. Relationship of venom ontogeny and diet in Bothrops. Herpetologica 55: 200-204.
  • ARNOLD SJ. 1972. Species densities of predators and their prey. Am Nat 106: 220-236.
  • BASSO NG. 1990. Estrategias adaptativas en una comunidad subtropical de anuros. Cuad Herpetol, Ser Monogr 1: 1-70.
  • BEAUPRE SJ & MONTGOMERY CE. 2007. The meaning and consequences of foraging mode in snakes. In: Reilly SM et al. (Eds), Lizard Ecology: The Evolutionary Consequences of Foraging Mode, Cambridge: Cambridge University Press, p. 334-367.
  • BELLINI GP, GIRAUDO AR, ARZAMENDIA V & ETCHEPARE EG. 2015. Temperate snake community in South America: Is diet determined by phylogeny or ecology? PLoS ONE 10(5): e0123237.
  • BIAVATI G, WIEDERHECKER H & COLLI GR. 2004. Diet of Epipedobates flavopictus (Anura: Dendrobatidae) in a Neotropical Savanna. J Herpetol 38(4): 510-518.
  • BILENCA D & MIÑARRO F. 2004. Identificación de Áreas Valiosas de Pastizal (AVPs) en las Pampas y Campos de Argentina, Uruguay y sur de Brasil. Buenos Aires: Fundación Vida Silvestre Argentina, 323 p.
  • BRILLOUIN L. 1962. Science and information theory, 2nd ed., New York: Academic Press, 351 p.
  • BROOKS DR & MCLENNAN DA. 1991. Phylogeny, Ecology, and Behavior: A Research Program in Comparative Biology. Chicago: University of Chicago Press, 441 p.
  • BURBRINK FT & MYERS EA. 2015. Both traits and phylogenetic history influence community structure in snakes over steep environmental gradients. Ecography 38: 1036-1048.
  • BURGOS JJ. 1968. El clima de la provincia de Buenos Aires en relación con la vegetación natural y el suelo. In: Cabrera AL (Ed), Flora de la provincia de Buenos Aires, Buenos Aires: Colección Científica INTA 4: 33-99.
  • CABRERA AL. 1976. Regiones fitogeográficas argentinas. In: Kugler WF (Ed), Enciclopedia argentina de agricultura y jardinería, 2nd ed., Buenos Aires: Acme 2: 1-85.
  • CADLE JE & GREENE HW. 1993. Phylogenetic patterns, biogeography, and the ecological structure of Neotropical snake assemblages. In: Ricklefs RE & Schluter D (Eds), Species diversity in ecological communities: historical and geographical perspectives, Chicago: University of Chicago Press, p. 281-293.
  • CARREIRA S. 2002. Alimentación de los ofidios de Uruguay. Monografías de Herpetología, Barcelona: Asociación Herpetológica Española, Monografías de Herpetología 6: 127.
  • CEI JM. 1986. Reptiles del centro, centro-oeste y sur de la Argentina: Herpetofauna de las zonas áridas y semiáridas. Monografie IV. Torino: Museo Regionale di Scienze Naturali, Monografie 4: 527.
  • CEI JM. 1993. Reptiles del noroeste, nordeste y este de la Argentina: Herpetofauna de las selvas subtropicales, Puna y Pampas. Monografie XIV. Torino: Museo Regionale di Scienze Naturali, 949 p.
  • CLARK RW. 2004. Timber rattlesnakes (Crotalus horridus) use chemical cues to select ambush sites. J Chem Ecol 30(3): 607-617.
  • COLSTON TJ, COSTA GC & VITT LJ. 2010. Snake diets and the deep history hypothesis. Biol J Linn Soc 101(2): 476-486.
  • CONNELL JH. 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35(2): 131-138.
  • COOPER WE. 1995. Foraging mode, prey chemical discrimination, and phylogeny in lizards. Anim Behav 50(4): 973-985.
  • COUTURIER GA & GRISOLIA C. 1989. Presencia de Philodryas aestivus (Duméril, Bibron y Duméril, 1854) en Sierra de la Ventana (Provincia de Buenos Aires). Bol Asoc Herpetol Arg 5(1-2): 13-13.
  • CRANWELL JA. 1942. Consideraciones sobre Rhadinaea elegantissima Koslowsky. Rev Argent Zoogeogr 2(3): 143-146.
  • CRISCI JV, FREIRE S, SANCHO G & KATINAS L. 2001. Historical biogeography of the Asteraceae from Tandilia and Ventania mountain ranges (Buenos Aires, Argentina). Caldasia 23: 21-41.
  • DALY JW, GARRAFFO HM, SPANDE TF, YEH HJC, PELTZER PM, CACIVIO P, BALDO D & FAIVOVICH J. 2008. Indolizidine 239Q and Quinolizidine 275I. Major alkaloids in two Argentinian bufonid toads (Melanophryniscus). Toxicon 52(8): 858-870.
  • DE LA SOTA ER. 1967. Composición, origen y vinculaciones de la flora pteridológica de las Sierras de Buenos Aires (Argentina). Bol Soc Argent Bot 11(2-3): 105-128.
  • DI PIETRO DO, ALCALDE L, WILLIAMS JD & CABRERA MR. 2012. Geographic distribution. Testudines: Hydromedusa tectifera (South American snake-necked turtle). Herpetol Rev 43(2): 303-303.
  • DI PIETRO DO, CABRERA MR, WILLIAMS JD, KACOLIRIS FP, CAJADE R & ALCALDE L. 2018. Distributional patterns and conservation planning for a snake assemblage from temperate South America. J Nat Conserv 45: 79-89.
  • DIXON JR & MARKEZICH AL. 1992. Taxonomy and geographic variation of Liophis poecilogyrus (Wied) from South America (Serpentes: Colubridae). Tex J Sci 44: 131-166.
  • DORCAS ME & WILLSON JD. 2009. Innovative methods for studies of snake ecology and conservation. In: Mullin SJ & Seigel RA (Eds), Snakes: Ecology and Conservation, Ithaca: Cornell University Press, p. 5-37.
  • DURSO AM, WILLSON JD & WINNE CT. 2013. Habitat influences diet overlap in aquatic snake assemblages. J Zool 291(3): 185-193.
  • ECKHARDT RC. 1979. The adaptive syndromes of two guilds of insectivorous birds in the Colorado Rocky Mountains. Ecol Monogr 49(2): 129-149.
  • ESKEW EA, WILLSON JD & WINNE CT. 2009. Ambush site selection and ontogenetic shifts in foraging strategy in a semi-aquatic pit viper, the Eastern Cottonmouth. J Zool 277(2): 179-186.
  • FAUTH JE, BERNARDO J, CAMARA M, RESETARITS JR WJ, VAN BUSKIRK J & MCCOLLUM SA. 1996. Simplifying the jargon of community ecology: a conceptual approach. Am Nat 147(2): 282-286.
  • FORSMAN A & SHINE R. 1997. Rejection of non-adaptive hypotheses for intraspecific variation in trophic morphology in gape-limited predators. Biol J Linn Soc 62(2): 209-223.
  • FOSTER MS. 2012. Standard techniques for inventory and monitoring. In: McDiarmid RW et al. (Eds), Reptile biodiversity: Standard methods for inventory and monitoring, Berkeley: University of California Press, p. 205-271.
  • FRANGI JL & BARRERA MD. 1996. Biodiversidad y dinámica de pastizales en la Sierra de la Ventana, Provincia de Buenos Aires, Argentina. In: Sarmiento G & Cabido M (Eds), Biodiversidad y Funcionamiento de Pastizales y Sabanas en América Latina, Mérida: CYTED-CIELAT, p. 133-162.
  • FRANGI JL & BOTTINO OJ. 1995. Comunidades vegetales de la Sierra de la Ventana, Provincia de Buenos Aires, Argentina. Rev Fac Agron (La Plata) 71(1): 93-133.
  • GALLARDO JM. 1968. Dos nuevas especies de Iguanidae (Sauria) de la Argentina. Neotropica 14: 1-8.
  • GALLARDO JM. 1970. Estudio ecológico sobre los anfibios y reptiles del sudoeste de la provincia de Buenos Aires, Argentina. Rev Mus Argent Cienc Nat 10: 27-63.
  • GALLARDO JM. 1977. Reptiles de los alrededores de Buenos Aires. Buenos Aires: EUDEBA, 213 p.
  • GERRITSEN J & STRICKLER JR. 1977. Encounter probabilities and community structure in zooplankton: a mathematical model. J Fish Res Board Can 34(1): 73-82.
  • GIRAUDO AR, ARZAMENDIA V, LOPEZ SM, QUAINI RO, PRIETO YA, LEIVA LA, REGNER SA & URBAN JM. 2008. Serpientes venenosas de Santa Fe, Argentina: conocimientos sobre su historia natural aplicados para la prevención de ofidismo. FABICIB 12: 69-89.
  • GONZAGA LAP, CASTIGLIONI GDA & ALVES MA. 1997. Philodryas patagoniensis (NCN). Diet Herpetol Rev 28(3): 154-154
  • GOODYEAR SE & PIANKA ER. 2008. Sympatric ecology of five species of fossorial snakes (Elapidae) in Western Australia. J Herpetol 42(2): 279-285.
  • GOTELLI NJ & ENTSMINGER GL. 2004. EcoSim: Null models software for ecology. Version 7.71. Jericho: Acquired Intelligence Inc & Kesey-Bear. Available at: http://garyentsminger.com/ecosim/index.htm Accessed on 1 July 2018.
    » http://garyentsminger.com/ecosim/index.htm
  • GREENE HW. 1983. Dietary correlates of the origin and radiation of snakes. Am Zool 23(2): 431-441.
  • GREENE HW. 1992. The ecological and behavioral context of pitviper evolution. In: Campbell JA & Brodie Jr ED (Eds), Biology of the Pitvipers, Tyler: Selva Press, p. 107-117.
  • GREENE HW. 1997. Snakes: The evolution of mystery in nature. Berkeley: University of California Press, 366 p.
  • HAMMER Ø, HARPER DAT & RYAN PD. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Version 3.14. Palaeontol Electron 4(1): 1-9. Available at: http://folk.uio.no/ohammer/past. Accessed on 1 July 2018.
  • HAMPTON PM & FORD NB. 2007. Effects of flood suppression on natricine snake diet and prey overlap. Can J Zool 85(7): 809-814.
  • HARTMANN PA & MARQUES OAV. 2005. Diet and habitat use of two sympatric species of Philodryas (Colubridae), in south Brazil. Amphibia-Reptilia 26(1): 25-31.
  • HENDERSON RW. 1974. Resource partitioning among the snakes of the University of Kansas Natural History Reservation: a preliminary analysis. Milw Public Mus Contrib Biol Geol 1: 1-11.
  • HENDERSON RW & BINDER MH. 1980. The ecology and behavior of the vine snakes (Ahaetulla, Oxybelis, Thelotornis, Uromacer): a review. Milw Public Mus Contrib Biol Geol 37: 1-38.
  • HEYER WR. 1988. On frog distribution patterns east of the Andes. In: Vanzolini PE & Heyer WR (Eds), Proceedings of the Workshop on Neotropical Distribution Patterns. Academia Brasileira de Ciências, Rio de Janeiro, p. 245-274.
  • HUEY RB & PIANKA ER. 1981. Ecological consequences of foraging mode. Ecology 62(4): 991-999.
  • HURTUBIA J. 1973. Trophic diversity measurement in sympatric predatory species. Ecology 54(4): 885-890.
  • HUTCHINSON GE. 1957. Concluding remarks. Cold Spring Harb Symp Quant Biol 22: 415-427.
  • JAKSIC FM, GREENE HW & YÁÑEZ JL. 1981. The guild structure of a community of predatory vertebrates in central Chile. Oecologia 49(1): 21-28.
  • JOCQUÉ R & ALDERWEIRELDT M. 2005. Lycosidae: the grassland spiders. Acta Zool Bulg 1: 125-130.
  • KLEY NJ. 2001. Prey transport mechanisms in blindsnakes and the evolution of unilateral feeding systems in snakes. Am Zool 41(6): 1321-1337.
  • KOSLOWSKY J. 1895. Reptiles y batracios de la Sierra de la Ventana (Provincia de Buenos Aires). Rev Mus La Plata 7(1896): 151-156.
  • KREBS JR. 1978. Optimal foraging: decision rules for predators. In: Krebs JR & Davies NB (Eds), Behavioural Ecology: An Evolutionary Approach, Sunderland: Sinauer Associates, Inc, p. 23-63.
  • KRISTENSEN MJ & FRANGI JL. 1995. Mesoclimas de pastizales de la Sierra de la Ventana. Ecol Austral 5(1): 55-64.
  • LEMA T DE. 1973. As serpentes do estado do Rio Grande do Sul. Iheringia. Sér Div 3: 19-33.
  • LEMA T DE, LEITÃO DE ARAÚJO M & AZEVEDO ACP. 1983. Contribuição ao conhecimento da alimentação e do modo alimentar de serpentes do Brasil. Comun Mus Ciênc Tecnol PUCRS Sér Zool 26: 41-121.
  • LEVINS R. 1968. Evolution in Changing Environments: Some Theoretical Explorations. Monographs in Population Biology, Princeton: Princeton University Press 2: 132 .
  • LÓPEZ MS. 2003. Philodryas patagoniensis (NCN). Diet Herpetol Rev 34: 71-72.
  • LÓPEZ MS & GIRAUDO AR. 2008. Ecology of the Snake Philodryas patagoniensis (Serpentes, Colubridae) from Northeast Argentina. J Herpetol 42: 474-480.
  • LUISELLI L. 2006. Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns. Oikos 114(2): 193-211.
  • MACARTHUR R & LEVINS R. 1967. The limiting similarity, convergence and divergence of coexisting species. Am Nat 101(921): 377-385.
  • MARQUES OAV, SAWAYA RJ, STENDER OLIVEIRA F & FRANCA FGR. 2006. Ecology of the colubrid snake Pseudablabes agassizii in South-Eastern South America. Herpetol J 16(1): 37-45.
  • MARTINS M, MARQUES OAV & SAZIMA I. 2002. Ecological and phylogenetic correlates of feeding habits in neotropical pitvipers of the genus Bothrops. In: Schuett GW et al. (Eds), Biology of the vipers, Eagle Mountain: Eagle Mountain Publishing, p. 307-328.
  • MARTINS M & OLIVEIRA ME. 1998. Natural history of snakes in forests of the Manaus region, central Amazonia, Brazil. Herpetol Nat Hist 6(2): 78-150.
  • MEBS D. 2002. Venomous and Poisonous Animals. Boca Raton: CRC Press, 340 p.
  • MICHAUD EJ & DIXON JR. 1989. Prey items of 20 species of the neotropical colubrid snake genus Liophis. Herpetol Rev 20(2): 39-41.
  • MIRANDA M, COUTURIER G & WILLIAMS JD. 1983. Guía de los Ofidios Bonaerenses, 2nd ed., La Plata: Asoc Coop Jardín Zoológico de La Plata, 72 p.
  • MOHAMMADI S, GOMPERT Z, GONZALEZ J, TAKEUCHI H, MORI A & SAVITZKY AH. 2016. Toxin-resistant isoforms of Na+/K+-ATPase in snakes do not closely track dietary specialization on toads. Proc R Soc B 283: 20162111.
  • MULLIN SJ & COOPER RJ. 1998. The foraging ecology of the snake Elaphe obsoleta spiloides - visual stimuli facilitate location of arboreal prey. Amer Midl Nat 140: 397-401.
  • OLIVEIRA RB, DI BERNARDO M, PONTES GMF, MACIEL AP & KRAUSE L. 2001. Dieta e comportamento alimentar da cobra-nariguda, Lystrophis dorbignyi (Duméril & Duméril, 1854), no Litoral Norte do Rio Grande do Sul, Brasil. Cuad Herpetol 14(2): 117-122.
  • OREJAS MIRANDA BR. 1966. The snake genus Lystrophis in Uruguay. Copeia 1966(2): 193-205.
  • PANZERA A & MANEYRO R. 2014. Feeding Biology of Lygophis anomalus (Dipsadidae, Xenodontinae). South Am J Herpetol 9(2): 75-82.
  • PARDIÑAS UFJ, ABBA AM & MERINO ML. 2004. Micromamíferos (Didelphimorphia y Rodentia) del sudoeste de la provincia de Buenos Aires (Argentina): Taxonomía y distribución. Mastozool Neotrop 11(2): 211-232.
  • PÉREZ CA & FRANGI JL. 2000. Grassland biomass dynamics along an altitudinal gradient in the Pampa. J Range Manag 53(5): 518-528.
  • PERRY G & PIANKA ER. 1997. Animal foraging: past, present and future. Trends Ecol Evol 12(9): 360-364.
  • PIANKA ER. 1973. The structure of lizard communities. Annu Rev Ecol Systemat 4: 53-74.
  • PIANKA ER. 1974. Niche overlap and diffuse competition. Proc Nat Acad Sci 71(5): 2141-2145.
  • PIANKA ER. 1975. Niche relations of desert lizards. In: Cody ML & Diamong JM (Eds), Ecology and evolution of communities, Cambridge: Harvard University Press, p. 292-314.
  • PIANKA ER. 1982. Ecología evolutiva. Barcelona: Omega, 536 p.
  • PIELOU EC. 1969. An introduction to mathematical ecology. New York: Wiley- Interscience, 286 p.
  • PINTO RR & FERNANDES R. 2004. Reproductive biology and diet of Liophis poecilogyrus poecilogyrus (Serpentes, Colubridae) from southeastern Brazil. Phyllomedusa 3: 9-14.
  • PLUMMER MV. 1981. Habitat utilization, diet, and movements of a temperate arboreal snake (Opheodrys aestivus). J Herpetol 15(4): 425-432.
  • POUGH FH & ANDREWS RM. 1985. Energy costs of subduing and swallowing prey for a lizard. Ecology 66(5): 1525-1533.
  • PRIETO YA, GIRAUDO AR & LÓPEZ MS. 2012. Diet and Sexual Dimorphism of Liophis poecilogyrus (Serpentes, Dipsadidae) from the Wetland Regions of Northeast Argentina. J Herpetol 46(3): 402-406.
  • PUNZO F. 1974. Comparative analysis of the feeding habits of two species of Arizona blind snakes, Leptotyphlops h. humilis and Leptotyphlops d. dulcis. J Herpetol 8: 153-156.
  • REINERT HK. 1993. Habitat selection in snakes. In: Seigel RA & Collins JT (Eds), Snakes: Ecology and Behavior, New York: MacGraw-Hill, p. 201-240.
  • SALE PF. 1974. Overlap in resource use, and interspecific competition. Oecologia 17(3): 245-256.
  • SAVITZKY AH, MORI A, HUTCHINSON DA, SAPORITO RA, BURGHARDT GM, LILLYWHITE HB & MEINWALD J. 2012. Sequestered defensive toxins in tetrapod vertebrates: principles, patterns, and prospects for future studies. Chemoecology 22(3): 141-158.
  • SAZIMA I. 1992. Natural history of the jararaca pitviper, Bothrops jararaca, in southeastern Brazil. In: Campbell JA & Brodie JR ED (Eds), Biology of the Pitvipers, Tyler: Selva press, p. 199-216.
  • SCHOENER TW. 1974. Resource partitioning in ecological communities. Science 185(4145): 27-39.
  • SCHOENER TW. 1977. Competition and the niche. In: Tinkle DW & Gans C (Eds), Biology of the Reptilia,New York: Academic Press 7: 35-136.
  • SCHWENK K. 1995. Of tongues and noses: Chemoreception in lizards and snakes. Trends Ecol Evol 10(1): 7-12.
  • SELLÉS MARTÍNEZ J. 2001. Geología de la Ventania (Provincia de Buenos Aires, Argentina). J Iber Geol 27: 43-69.
  • SERIÉ P. 1919. Notas sobre la alimentación de algunos ofidios. Rev Jard Zool Buenos Aires 60: 307-328.
  • SHANNON CE & WEAVER W. 1949. The mathematical theory of communications. Urbana: University of Illinois Press, 117 p.
  • SHINE R. 1987. Ecological ramifications of prey size: food habits and reproductive biology of Australian copperhead snakes (Austrelaps, Elapidae). J Herpetol 21(1): 21-28.
  • SHINE R & WEBB JK. 1990. Natural history of Australian typhlopid snakes. J Herpetol 24(4): 357-363.
  • THORPE RS, BROWN RP, DAY M, MALHOTRA A, MCGREGOR DP & WUSTER W. 1994. Testing ecological and phylogenetic hypothesis in microevolutionary studies. In: Eggleton P & Vane Wright R (Eds), Phylogenetics and Ecology, New York: Academy Press, 17: 189-206.
  • TOFT CA. 1980. Feeding ecology of thirteen syntopic species of anurans in a seasonal tropical environment. Oecologia 45(1): 131-141.
  • TOFT CA. 1981. Feeding ecology of Panamanian litter anurans: patterns in diet and foraging mode. J Herpetol 15(2): 139-144.
  • TOFT CA. 1985. Resource partitioning in amphibians and reptiles. Copeia 1985(1): 1-21.
  • VAIRA M ET AL. 2012. Categorización del estado de conservación de los anfibios de la República Argentina. Cuad Herpetol 26(Suppl 1): 131-159.
  • VARGAS GIL JR & SCOPPA CO. 1973. Suelos de la Provincia de Buenos Aires. Rev Inv Agrop, INTA 10(3): 57-79.
  • VAZ FERREIRA R, COVELLO DE ZOLESSI L & ACHAVAL F. 1970. Ovoposición y desarrollo de ofidios y lacertilios en hormigueros de Acromyrmex. Physis 29: 431-459.
  • VEGA L & BELLAGAMBA P. 1990. Lista comentada de la Herpetofauna de las Sierras de Balcarce y Mar del Plata, Buenos Aires, Argentina. Cuad Herpetol 5: 10-14.
  • VIÑAS M. 1985. Notas sobre la biología de Pseudablabes agassizii Jan. Bol Asoc Herpetol Argent 1: 16-16.
  • VIÑAS M, DANERI G & GNIDA G. 1989. Presencia de Pseudablabes agassizii (Jan, 1863) en Sierra de la Ventana (provincia de Buenos Aires), y confirmación para la provincia de la Pampa. Bol Asoc Herpetol Arg 5: 13-14.
  • VITT LJ. 1983. Ecology of an anuran-eating guild of terrestrial tropical snakes. Herpetologica 39(1): 52-66.
  • VITT LJ & PIANKA ER. 2005. Deep history impacts present-day ecology and biodiversity. Proc Nat Acad Sci 102(22): 7877-7881.
  • VITT LJ & VANGILDER LD. 1983. Ecology of a snake community in northeastern Brazil. Amphibia-Reptilia 4: 273-296.
  • VITT LJ & ZANI PA. 1996. Organization of a taxonomically diverse lizard assemblage in Amazonian Ecuador. Can J Zool 74: 1313-1335.
  • WEBB JK & SHINE R. 1993. Prey-size selection, gape limitation and predator vulnerability in Australian blindsnakes (Typhlopidae). Anim Behav 45(6): 1117-1126.
  • WEBB JK, SHINE R, BRANCH WR & HARLOW PS. 2000. Life-history strategies in basal snakes: reproduction and dietary habits of the African thread snake Leptotyphlops scutifrons (Serpentes: Leptotyphlopidae). J Zool 250(3): 321-327.
  • WHITE M & KOLB JA. 1974. A preliminary study of Thamnophis near Sagehen Creek, California. Copeia 1974(1): 126-136.
  • WILLIAMS JD & SCROCCHI GJ. 1994. Ofidios de agua dulce de la República Argentina. In: De Castellanos ZA (Ed), Fauna de Agua Dulce de la República Argentina, La Plata: CICPBA, p. 1-55.
  • WINEMILLER KO & PIANKA ER. 1990. Organization in natural assemblages of desert lizards and tropical fishes. Ecol Monogr 60(1): 27-55.
  • WINKLER FJM, WALTENBERG LM, SANTOS PA, NASCIMENTO DS, VRCIBRADIC D & SLUYS MV. 2011. New records of anuran prey for Thamnodynastes strigatus (Günther, 1858) (Serpentes: Colubridae) in a high-elevation area of southeast Brazil. Herpetol Notes 4(1): 123-124.
  • WÜSTER W, DUARTE MR & SALOMÃO MG. 2005. Morphological correlates of incipient arboreality and ornithophagy in island pitvipers, and the phylogenetic position of Bothrops insularis. J Zool Lond 266(1): 1-10.
  • YANOSKY AA. 1989. La ofidiofauna de la reserva ecológica El Bagual, Formosa: Abundancia, utilización de los hábitats y estado de situación. Cuad Herpetol 4(3): 11-14.
  • ZAHER H, GRAZZIOTIN FG, CADLE JE, MURPHY RW, MOURA LEITE JC & BONATTO SL. 2009. Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American Xenodontines: a revised classification and descriptions of new taxa. Pap Avulsos de Zool (São Paulo) 49(11): 115-153.
  • ZHENG Y & WIENS JJ. 2016. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol Phylogenet Evol 94(Pt B): 537- 547.

SUPPLEMENTARY MATERIAL Appendix S1.

Table SI.

Publication Dates

  • Publication in this collection
    03 June 2020
  • Date of issue
    2020

History

  • Received
    26 July 2018
  • Accepted
    5 Nov 2018
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br