Acessibilidade / Reportar erro

A review on the ceramic additive manufacturing technologies and availability of equipment and materials

Abstract

Ceramic additive manufacturing allows the fabrication of small series of complex parts without the high costs of molds usually associated with traditional ceramic processing. Although research into ceramic 3D printing by all technologies started back in the 90s, its industrial application is still quite restricted when compared to polymers and metals, which is related to the limited availability and costs of equipment and materials for such applications. This review examined the advantages and limitations of each process (binder jetting, direct ink writing, directed energy deposition, fused deposition, material jetting, selective laser sintering, selective laser melting, and vat photopolymerization), discussing their particularities. It also summarized the commercially available 3D printers and raw materials for ceramic processing, pointing out to trends and challenges of each technology.

Keywords:
3D printing; additive manufacturing; ceramics; digital light processing; stereolithography; viscosity

CERAMIC ADDITIVE MANUFACTURING

3D printing or additive manufacturing (AM) is a set of processes that fabricate parts by adding materials layer by layer. After the great development of additive manufacturing of polymers and metals, developments of this technique applied to ceramic materials have gained prominence in recent years 11 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661.), (22 A. Shahzad, I. Lazoglu, Compos. B Eng. 225 (2021) 109249. . Ceramic AM enables the fabrication of customized complex 3D parts without molds 33 K. Zhang, R. He, G. Ding, C. Feng, W. Song, D. Fang, Mater. Sci. Eng. A 774 (2020) 138768. )- (55 R. Galante, C.G. Figueiredo-Pina, A.P. Serro, Dent. Mater. 35 (2019) 825., reducing costs and lead times 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. . Ceramic parts can be produced by a variety of AM technologies 55 R. Galante, C.G. Figueiredo-Pina, A.P. Serro, Dent. Mater. 35 (2019) 825., choosing one of them for a given application should consider their strengths, weaknesses, and commercial availability of equipment and feedstock. Although research into ceramic 3D printing by all technologies started back in the 90s 77 E. Sachs, M. Cima, P. Williams, D. Brancazio, J. Cornie, J. Eng. Ind. 114 (1992) 481.)-(1212 M.L. Griffith, J.W. Halloran, in Solid Free. Fabr. Symp. (1994) 396., its industrial application is still quite restricted when compared to polymers and metals 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. ), (1313 J.S. Pelz, N. Ku, M.A. Meyers, L.R. Vargas-Gonzalez, J. Mater. Res. Technol. 15 (2021) 670.), (1414 X. Zhang, X. Wu, J. Shi, J. Mater. Res. Technol. 9 (2020) 9029.. The widespread of ceramic AM depends on technological availability 1515 N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, P. Greil, Adv. Eng. Mater. 16 (2014) 729.. Thus, proper feedstock 1313 J.S. Pelz, N. Ku, M.A. Meyers, L.R. Vargas-Gonzalez, J. Mater. Res. Technol. 15 (2021) 670. and equipment 1515 N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, P. Greil, Adv. Eng. Mater. 16 (2014) 729. availability have been an issue. Moreover, many technologies present high-priced raw materials, and their supply is linked to the equipment supplier. Several companies have launched their ceramic 3D printing solutions in the last 5 years. To the best of our knowledge, this is the first review focused on commercially available raw materials and 3D-printing systems for each technology of ceramic AM. This paper also discusses the technologies’ capabilities and limitations, and the main trends and challenges of ceramic additive manufacturing.

TECHNOLOGIES

According to ISO/ASTM 52900:2015 standard 1616 ISO/ASTM 52900:2015, “Additive manufacturing: general principles, terminology” (2015)., additive manufacturing technologies can be divided into two types. In the multi-step (or indirect 1717 J. Deckers, J. Vleugels, J.P. Kruth, J. Ceram. Sci. Technol. 5 (2014) 245.) processes, two or more operations are needed to reach the final part. On the other hand, the single-step (or direct 1717 J. Deckers, J. Vleugels, J.P. Kruth, J. Ceram. Sci. Technol. 5 (2014) 245.) processes achieve the final shape and properties in a single operation. For ceramic AM, multi-step processes are the most common. Additives and binders are used to create a green body that is subsequently treated for debinding (to eliminate the organics) and sintered (to increase density) 55 R. Galante, C.G. Figueiredo-Pina, A.P. Serro, Dent. Mater. 35 (2019) 825.), (1313 J.S. Pelz, N. Ku, M.A. Meyers, L.R. Vargas-Gonzalez, J. Mater. Res. Technol. 15 (2021) 670.), (1818 I.L. De Camargo, J.F.P. Lovo, R. Erbereli, R.T. Coelho, I.B. Da Silva, C.A. Fortulan, Rev. Mater. 25 (2020) e12590.. The debinding is a critical step to successfully obtaining the ceramic parts and the heating rates must be suitable to avoid cracks and/or delamination 55 R. Galante, C.G. Figueiredo-Pina, A.P. Serro, Dent. Mater. 35 (2019) 825.), (1919 D.A. Komissarenko, P.S. Sokolov, A.D. Evstigneeva, I.A. Shmeleva, A.E. Dosovitsky, Materials 11 (2018) 2350. ), (2020 E. Johansson, O. Lidström, J. Johansson, O. Lyckfeldt, E. Adolfsson, Materials 10 (2017) 138.. Also, debinding becomes more difficult with increasing wall thickness 55 R. Galante, C.G. Figueiredo-Pina, A.P. Serro, Dent. Mater. 35 (2019) 825., and some AM technologies that use a high amount of organic material, such as vat photopolymerization and fused deposition, have the maximum wall thickness limited 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. . Table I shows a summary of multi-step ceramic AM technologies, their main characteristics, equipment suppliers, and commercially available feedstock. All these technologies already have commercial solutions for printing advanced ceramics such as aluminum oxide. Although all these technologies are layerwise processes, they differ in the way each layer is formed, which provides very different products for each technology.

Table I
Ceramic additive manufacturing technologies characteristics and commercially available feedstock and equipment suppliers.

Binder jetting, direct ink writing, and selective laser sintering are limited to manufacturing porous parts with poor surface finish. On the other hand, these technologies are capable of producing large parts. Direct ink writing is a low-cost technology with paste feedstock indicated for parts with smaller geometrical complexity. On the other hand, binder jetting and selective laser sintering are powder bed technologies capable of producing complex parts with overhanging structures without secondary supports. Among them, binder jetting stands out for its high scalability and throughput. Fused deposition and vat photopolymerization are the processes indicated to produce dense structural parts with adequate mechanical properties. However, both technologies present limited wall thickness 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. due to the high amount of organic associated with the processes. Vat photopolymerization stands out for having excellent resolution and surface finish 11 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661.), (66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. ), (3232 O. Santoliquido, P. Colombo, A. Ortona, J. Eur. Ceram. Soc. 39 (2019) 2140.), (3333 Q. Lian, F. Yang, H. Xin, D. Li, Ceram. Int. 43 (2017) 14956.. It is the most well-established technology having an industrial readiness level 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. with a wide range of commercially available advanced ceramic feedstock and more than 10 equipment suppliers. Finally, material jetting is a suspension-based technology still little explored in ceramic manufacturing. Considering that it is a low productivity process, it is indicated for very compact applications such as the manufacture of cathodes and electrolytes. All indirect technologies are discussed in detail in their sections.

On the other hand, the single-step processes for ceramic additive manufacturing are directed energy deposition (DED) and selective laser melting (SLM). These technologies can become the fastest way to produce ceramics by AM since they do not include the time-consuming debinding and sintering steps 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. ), (1414 X. Zhang, X. Wu, J. Shi, J. Mater. Res. Technol. 9 (2020) 9029.. However, ceramic materials have a high melting point and limited thermal shock resistance 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. ), (1414 X. Zhang, X. Wu, J. Shi, J. Mater. Res. Technol. 9 (2020) 9029.. Thus, thermal gradients, an intrinsic feature of these technologies, are generated by inducing thermal stresses, which induce delamination and cracks 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. ), (1313 J.S. Pelz, N. Ku, M.A. Meyers, L.R. Vargas-Gonzalez, J. Mater. Res. Technol. 15 (2021) 670.), (1414 X. Zhang, X. Wu, J. Shi, J. Mater. Res. Technol. 9 (2020) 9029.. Accordingly, their application is still restricted to research, not much development has been achieved 11 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661., and no dedicated system is commercially available.

Binder jetting

Binder jetting is an AM technology in which a liquid bonding agent is selectively deposited to join powder materials 1616 ISO/ASTM 52900:2015, “Additive manufacturing: general principles, terminology” (2015).. Fig. 1 illustrates the schematic of the binder jetting technology with two different powder feeding approaches. In both cases, after a new layer of powder is spread in the powder bed, a print head jets the liquid binder into the powder, creating layers with a predefined 2D pattern 2121 M. Ziaee, N.B. Crane, Addit. Manuf. 28 (2019) 781.. Fig. 1a illustrates the use of a hopper feeding system. The hopper deposits the powder from its reservoir and subsequently, it is spread by a roller 2121 M. Ziaee, N.B. Crane, Addit. Manuf. 28 (2019) 781.. On the other hand, Fig. 1b shows a binder jetting with two chambers: the powder feed supplier and the build chamber. In this case, the roller performs the transport of the powder and recoating 3434 A. Mostafaei, A.M. Elliott, J.E. Barnes, F. Li, W. Tan, C.L. Cramer, P. Nandwana, M. Chmielus, Prog. Mater. Sci. 119 (2021) 100707. . This technology is the most suitable for large parts, having scalability and throughput 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. , (1414 X. Zhang, X. Wu, J. Shi, J. Mater. Res. Technol. 9 (2020) 9029., Also, it is capable of producing complex parts with overhanging structures due to its self-supporting powder-bed 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. . On the other hand, the ceramic particles should be large (>30 μm 2121 M. Ziaee, N.B. Crane, Addit. Manuf. 28 (2019) 781.) to ensure flowability in the layer spreading which decreases the density of the final part and provides a poor surface finish 11 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661.), (55 R. Galante, C.G. Figueiredo-Pina, A.P. Serro, Dent. Mater. 35 (2019) 825.), (66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. ), (1313 J.S. Pelz, N. Ku, M.A. Meyers, L.R. Vargas-Gonzalez, J. Mater. Res. Technol. 15 (2021) 670., as shown in Fig. 2. Thus, binder jetting is best suited to porous parts, not being adequate for structural parts 55 R. Galante, C.G. Figueiredo-Pina, A.P. Serro, Dent. Mater. 35 (2019) 825.. The research group from Texas A&M University led by Profs. Pei and Ma is the leading research group on ceramic binder jetting. Their research is related to the improvement of sinterability and part strength by improving the feedstock (particle coating 3636 W. Du, X. Ren, C. Ma, Z. Pei, Mater. Lett. 234 (2019) 327., granulation of nanopowders 3737 G. Miao, W. Du, M. Moghadasi, Z. Pei, C. Ma, Addit. Manuf. 36 (2020) 101542., etc.), having already manufactured alumina 3838 M. Moghadasi, G. Miao, M. Li, Z. Pei, C. Ma, Ceram. Int. 47 (2021) 35348., porcelain 3939 H. Miyanaji, S. Zhang, A. Lassell, A. Zandinejad, L. Yang, JOM 68 (2016) 831., and silicon carbide 4040 W. Du, M. Singh, D. Singh, Ceram. Int. 46 (2020) 19701.. In addition, some other groups are researching this technology, some of them having studied its applicability in support of heterogeneous catalysis 4141 H.M. Bui, R. Fischer, N. Szesni, M. Tonigold, K. Achterhold, F. Pfeiffer, O. Hinrichsen, Addit. Manuf. 50 (2022) 102498. and bone tissue 4242 S. Bose, A. Bhattacharjee, D. Banerjee, A.R. Boccaccini, A. Bandyopadhyay, Addit. Manuf. 40 (2021) 101895..

Figure 1:
Schematics of the binder jetting technology with two different powder feeding approaches (adapted from 3434 A. Mostafaei, A.M. Elliott, J.E. Barnes, F. Li, W. Tan, C.L. Cramer, P. Nandwana, M. Chmielus, Prog. Mater. Sci. 119 (2021) 100707. ): a) powder is supplied using a hopper and oscillation and subsequently spread using a roller; and b) powder is swiped from the powder feeder and spread in the powder bed by the roller.

Figure 2:
Barium titanate samples with lattice structures fabricated by binder jetting 3535 V. Sufiiarov, A. Kantyukov, A. Popovich, A. Sotov, Materials 14 (2021) 4419..

The low density of the sintered parts is an important issue for ceramic binder jetting 3838 M. Moghadasi, G. Miao, M. Li, Z. Pei, C. Ma, Ceram. Int. 47 (2021) 35348. and the relative density usually ranges between 50% and 75% 3737 G. Miao, W. Du, M. Moghadasi, Z. Pei, C. Ma, Addit. Manuf. 36 (2020) 101542.), (3838 M. Moghadasi, G. Miao, M. Li, Z. Pei, C. Ma, Ceram. Int. 47 (2021) 35348.), (4242 S. Bose, A. Bhattacharjee, D. Banerjee, A.R. Boccaccini, A. Bandyopadhyay, Addit. Manuf. 40 (2021) 101895.)- (4848 G. Lee, M. Carrillo, J. McKittrick, D.G. Martin, E.A. Olevsky, Addit. Manuf. 33 (2020) 101107. . On the other hand, infiltration has been used to improve sintered parts properties. For example, Vogt et al. 4949 J. Vogt, H. Friedrich, M. Stepanyan, C. Eckardt, M. Lam, D. Lau, B. Chen, R. Shan, J. Chan, Prog. Addit. Manuf. 7 (2022) 161. reached alumina samples with densities above 90% and improved bending strength from 60 to 145 MPa with infiltration of nanometric alumina powder. Also, Maleksaeedi et al. 5050 S. Maleksaeedi, H. Eng, F.E. Wiria, T.M.H. Ha, Z. He, J. Mater. Process. Technol. 214 (2014) 1301. showed that infiltration can also improve surface quality, reducing surface roughness (Ra) from 13.2 to 0.9 μm. Ceramic binder jetting has several parameters that have a significant influence on the final parts. Such parameters have been used in the following ranges in related works 3737 G. Miao, W. Du, M. Moghadasi, Z. Pei, C. Ma, Addit. Manuf. 36 (2020) 101542.), (4141 H.M. Bui, R. Fischer, N. Szesni, M. Tonigold, K. Achterhold, F. Pfeiffer, O. Hinrichsen, Addit. Manuf. 50 (2022) 102498.), (4242 S. Bose, A. Bhattacharjee, D. Banerjee, A.R. Boccaccini, A. Bandyopadhyay, Addit. Manuf. 40 (2021) 101895.), (4444 M. Mariani, R. Beltrami, P. Brusa, C. Galassi, R. Ardito, N. Lecis, J. Eur. Ceram. Soc. 41 (2021) 5307.)-(4747 D. Yao, C.M. Gomes, Y.P. Zeng, D. Jiang, J. Günster, J.G. Heinrich, Mater. Lett. 147 (2015) 116.), (4949 J. Vogt, H. Friedrich, M. Stepanyan, C. Eckardt, M. Lam, D. Lau, B. Chen, R. Shan, J. Chan, Prog. Addit. Manuf. 7 (2022) 161.), (5151 E. Mendoza Jimenez, D. Ding, L. Su, A.R. Joshi, A. Singh, B. Reeja-Jayan, J. Beuth, Addit. Manuf. 30 (2019) 100864.)-(5555 S. Cho, D. Jeong, H. Kim, Ceram. Int. 46 (2020) 16827.: layer thickness: 30-150 μm; recoater speed: 50-80 mm/s; roller recoating speed: 100-500 rpm; and binder saturation or fraction of pore space filled with the binder: 50-100%. Also, the binder must be compatible with the process with viscosity around 10 mPa.s and surface tension from 23 to 30 mN/m 4141 H.M. Bui, R. Fischer, N. Szesni, M. Tonigold, K. Achterhold, F. Pfeiffer, O. Hinrichsen, Addit. Manuf. 50 (2022) 102498.. It is usually water-based with some additives for surface tension and viscosity adjustment 4141 H.M. Bui, R. Fischer, N. Szesni, M. Tonigold, K. Achterhold, F. Pfeiffer, O. Hinrichsen, Addit. Manuf. 50 (2022) 102498. as isopropyl alcohol 4141 H.M. Bui, R. Fischer, N. Szesni, M. Tonigold, K. Achterhold, F. Pfeiffer, O. Hinrichsen, Addit. Manuf. 50 (2022) 102498.), (4545 S. Cao, F. Xie, X. He, C. Zhang, M. Wu, Adv. Mater. Sci. Eng. 2020 (2020) 3865752.), (4848 G. Lee, M. Carrillo, J. McKittrick, D.G. Martin, E.A. Olevsky, Addit. Manuf. 33 (2020) 101107. , diethylene-glycol 4848 G. Lee, M. Carrillo, J. McKittrick, D.G. Martin, E.A. Olevsky, Addit. Manuf. 33 (2020) 101107. , polyvinyl alcohol 5656 P. Kunchala, K. Kappagantula, Mater. Des. 155 (2018) 443., and glycerol 4545 S. Cao, F. Xie, X. He, C. Zhang, M. Wu, Adv. Mater. Sci. Eng. 2020 (2020) 3865752.. Also, some related works 3838 M. Moghadasi, G. Miao, M. Li, Z. Pei, C. Ma, Ceram. Int. 47 (2021) 35348.), (4444 M. Mariani, R. Beltrami, P. Brusa, C. Galassi, R. Ardito, N. Lecis, J. Eur. Ceram. Soc. 41 (2021) 5307.), (4949 J. Vogt, H. Friedrich, M. Stepanyan, C. Eckardt, M. Lam, D. Lau, B. Chen, R. Shan, J. Chan, Prog. Addit. Manuf. 7 (2022) 161.), (5151 E. Mendoza Jimenez, D. Ding, L. Su, A.R. Joshi, A. Singh, B. Reeja-Jayan, J. Beuth, Addit. Manuf. 30 (2019) 100864. used a commercial aqueous binder (BA005, ExOne). Table II shows the additive manufacturing systems available for binder jetting of ceramics. While the M10 Ceramic 3D printer (ComeTrue) is focused on the additive manufacturing of traditional ceramics 5757 ComeTrue, “M10 Ceramic & Binder Jetting 3D Printer”, 57 ComeTrue, “M10 Ceramic & Binder Jetting 3D Printer”, http://www.cometrue3d.com , acc. 04/02/2022.
http://www.cometrue3d.com...
, Voxeljet has two systems capable of working with advanced ceramics, being VX200 5959 Voxeljet, “VX200”, 59 Voxeljet, “VX200”, http://www.voxeljet.com , acc. 04/02/2022.
http://www.voxeljet.com...
suitable for research and development and VX1000 6060 Voxeljet, “VX1000”, 60 Voxeljet, “VX1000”, http://www.voxeljet.com , acc. 04/02/2022.
http://www.voxeljet.com...
an industrial printer capable of producing large parts with a building volume of 1000x600x500 mm3. Moreover, ExOne company has been working on the development of ceramic feedstock for binder jetting presenting advanced ceramics aluminum oxide, zirconium oxide, silicon carbide, and boron nitride under development 6161 ExOne, “Ceramic 3D printing materials & binders”, 61 ExOne, “Ceramic 3D printing materials & binders”, http://www.exone.com , acc. 04/02/2022.
http://www.exone.com...
. Also, some researchers have used non-dedicated ExOne 3D printers to process ceramics 3838 M. Moghadasi, G. Miao, M. Li, Z. Pei, C. Ma, Ceram. Int. 47 (2021) 35348.), (4444 M. Mariani, R. Beltrami, P. Brusa, C. Galassi, R. Ardito, N. Lecis, J. Eur. Ceram. Soc. 41 (2021) 5307.), (4949 J. Vogt, H. Friedrich, M. Stepanyan, C. Eckardt, M. Lam, D. Lau, B. Chen, R. Shan, J. Chan, Prog. Addit. Manuf. 7 (2022) 161..

Table II
Binder jetting of ceramics: equipment suppliers.

Direct ink writing

Direct ink writing (DIW), also called robocasting is an AM based on material extrusion in which a ceramic slurry (paste) is selectively dispensed through a nozzle (Fig. 3). The paste is forced through the nozzle by a piston, which can be operated in two ways: pneumatic or mechanic. A detailed review of the different extruders available for this technology has already been published 6262 A. Ruscitti, C. Tapia, N.M. Rendtorff, Cerâmica 66, 380 (2020) 354.. DIW is a low-cost 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. ), (6262 A. Ruscitti, C. Tapia, N.M. Rendtorff, Cerâmica 66, 380 (2020) 354. and fast additive manufacturing process which produces parts with limited geometrical complexity, poor resolution, and surface finish 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. ), (1313 J.S. Pelz, N. Ku, M.A. Meyers, L.R. Vargas-Gonzalez, J. Mater. Res. Technol. 15 (2021) 670., as illustrated in Fig. 4. A research group from the University of Aveiro led by Prof. Ferreira has made important contributions to the manufacture of scaffolds/lattices by ceramic DIW, developing suspensions with particles (zirconia 6464 A. Gaddam, D.S. Brazete, A.S. Neto, B. Nan, J.M.F. Ferreira, J. Am. Ceram. Soc. 104 (2021) 4368.), (6565 A. Gaddam, D.S. Brazete, A.S. Neto, B. Nan, H.R. Fernandes, J.M.F. Ferreira, J. Am. Ceram. Soc. 105 (2022) 1753., bioactive glass 6666 B.A.E. Ben-Arfa, A.S. Neto, I.M. Miranda Salvado, R.C. Pullar, J.M.F. Ferreira, J. Am. Ceram. Soc. 102 (2019) 1608., piezoelectric ceramics 6767 B. Nan, S. Olhero, R. Pinho, P.M. Vilarinho, T.W. Button, J.M.F. Ferreira, J. Am. Ceram. Soc. 102 (2019) 3191., etc.) and aqueous solution with dispersant, binder, and coagulant agent. Moreover, the Department of Industrial Engineering from the University of Padua also stands out with research on ceramic direct ink writing. Profs. Bernardo and Colombo have been leading research in the area, mostly using preceramic silicone as the binder 6868 H. Elsayed, M. Sayed, S.M. Naga, P. Rebesan, C. Gardin, B. Zavan, P. Colombo, E. Bernardo, J. Eur. Ceram. Soc. 42 (2022) 286.)- (7474 F. Dogrul, P. Ożóg, M. Michálek, H. Elsayed, D. Galusek, L. Liverani, A.R. Boccaccini, E. Bernardo, Materials 14 (2021) 5170. to create scaffolds made of a variety of ceramic and glass materials with potential application in bone tissue engineering applications.

Figure 3:
Schematic of the direct ink writing technology (adapted from 6262 A. Ruscitti, C. Tapia, N.M. Rendtorff, Cerâmica 66, 380 (2020) 354.).

Figure 4:
Al2O3-Y2O3 sample fabricated by DIW 6363 J. Baltazar, M.F.R.P. Alves, C. dos Santos, S. Olhero, Ceramics 5 (2021) 1.: a) schematic representation of layers deposition; b) 3D printed sample; and c) 3D printed sample after drying.

Ceramic direct ink writing has been shown to be suitable for the fabrication of highly porous ceramic scaffolds and foams with porosity, which can exceed 80% 7272 K. Huang, H. Elsayed, G. Franchin, P. Colombo, Addit. Manuf. 36 (2020) 101549. . Gaddam et al. 6565 A. Gaddam, D.S. Brazete, A.S. Neto, B. Nan, H.R. Fernandes, J.M.F. Ferreira, J. Am. Ceram. Soc. 105 (2022) 1753. produced zirconia scaffolds with macroporosity of about 70% and average compressive strength of ~236 MPa. For this process, the reported shrinkage usually varies between 17% and 24% 7272 K. Huang, H. Elsayed, G. Franchin, P. Colombo, Addit. Manuf. 36 (2020) 101549. ), (7575 M.A. Sainz, S. Serena, M. Belmonte, P. Miranzo, M.I. Osendi, Mater. Sci. Eng. C 115 (2020) 110734.), (7676 H. Elsayed, A. Chmielarz, M. Potoczek, T. Fey, P. Colombo, Addit. Manuf. 28 (2019) 365.. The surface quality of this process is a major issue and roughness (RA) above 20 μm has been reported 7777 I. Buj-Corral, A. Domínguez-Fernández, A. Gómez-Gejo, Materials 13 (2020) 2157. . Furthermore, the side surface may present such a distorted surface that roughness can not even be measured 7878 Y. Lakhdar, C. Tuck, A. Terry, C. Spadaccini, R. Goodridge, J. Eur. Ceram. Soc. 41 (2021) 76.. In this process, the characteristics of the ceramic slurry, usually composed of ceramic powder, deionized water, and additives, are very important 22 A. Shahzad, I. Lazoglu, Compos. B Eng. 225 (2021) 109249. ), (7979 L. del-Mazo-Barbara, M.P. Ginebra, J. Eur. Ceram. Soc. 41 (2021) 18.. The high-loaded ceramic slurries (typically 40-50 vol%) must have adequate rheological behavior and should be smoothly extruded through a narrow nozzle without clogging. Besides, it should be self-supporting (to avoid collapsing) and be able to retain its shape 7979 L. del-Mazo-Barbara, M.P. Ginebra, J. Eur. Ceram. Soc. 41 (2021) 18.. Thus, suitable additives must be chosen. Hydroxypropyl methylcellulose and polyethyleneimine have been extensively used as viscosifying and coagulant agents, respectively 6464 A. Gaddam, D.S. Brazete, A.S. Neto, B. Nan, J.M.F. Ferreira, J. Am. Ceram. Soc. 104 (2021) 4368.), (6565 A. Gaddam, D.S. Brazete, A.S. Neto, B. Nan, H.R. Fernandes, J.M.F. Ferreira, J. Am. Ceram. Soc. 105 (2022) 1753.), (6767 B. Nan, S. Olhero, R. Pinho, P.M. Vilarinho, T.W. Button, J.M.F. Ferreira, J. Am. Ceram. Soc. 102 (2019) 3191.), (7575 M.A. Sainz, S. Serena, M. Belmonte, P. Miranzo, M.I. Osendi, Mater. Sci. Eng. C 115 (2020) 110734.), (8080 M. Belmonte, G. Lopez-Navarrete, M.I. Osendi, P. Miranzo, J. Eur. Ceram. Soc. 41 (2021) 2407.), (8181 B. Nan, F.J. Galindo-Rosales, J.M.F. Ferreira, Mater. Today 35 (2020) 16.. Also, a variety of commercial dispersants have been employed, depending on the selected ceramic powder. However, details of their compositions are not disclosed by the manufacturer. In addition, the choice of nozzle opening diameter must be made properly to avoid choking the nozzle or sudden release of the slurry 22 A. Shahzad, I. Lazoglu, Compos. B Eng. 225 (2021) 109249. ), (8282 J. Qiu, J. Tani, N. Yanada, Y. Kobayashi, H. Takahashi, J. Intell. Mater. Syst. Struct. 15 (2004) 643.. The nozzle should have at least 15 times the size of the largest particle size 22 A. Shahzad, I. Lazoglu, Compos. B Eng. 225 (2021) 109249. ), (8282 J. Qiu, J. Tani, N. Yanada, Y. Kobayashi, H. Takahashi, J. Intell. Mater. Syst. Struct. 15 (2004) 643. and the optimum diameter is typically between 400 to 800 μm 22 A. Shahzad, I. Lazoglu, Compos. B Eng. 225 (2021) 109249. . In addition, the printing speed is a parameter that should be selected carefully. The printing speed should be adequate to form a continuous strut and to achieve inter-layer bonding and small modification of this parameter may result in vastly different outcomes 7878 Y. Lakhdar, C. Tuck, A. Terry, C. Spadaccini, R. Goodridge, J. Eur. Ceram. Soc. 41 (2021) 76.. On the other hand, a systematic study to optimize this parameter has not yet been reported and related works have reported very varied printing speeds from 2.5 to 70 mm/s 7777 I. Buj-Corral, A. Domínguez-Fernández, A. Gómez-Gejo, Materials 13 (2020) 2157. ), (7878 Y. Lakhdar, C. Tuck, A. Terry, C. Spadaccini, R. Goodridge, J. Eur. Ceram. Soc. 41 (2021) 76.), (8383 K. Zhu, D. Yang, Z. Yu, Y. Ma, S. Zhang, R. Liu, J. Li, J. Cui, H. Yuan, Ceram. Int. 46 (2020) 27254.)- (8686 H. Xiong, L. Zhao, H. Chen, X. Wang, K. Zhou, D. Zhang, J. Alloys Compd. 809 (2019) 151824.. Table III shows the additive manufacturing systems available for DIW of ceramics, evidencing that most 3D printers of this technology are indicated just to traditional ceramics as clay and porcelain 8787 3DPotter, “Printers”, 87 3DPotter, “Printers”, https://3dpotter.com , acc. 21/01/2022.
https://3dpotter.com...
), (8989 Eazao, “Eazao Mega 5”, 89 Eazao, “Eazao Mega 5”, http://www.eazao.com , acc. 22/01/2022.
http://www.eazao.com...
)- (9191 Duraprinter 3D, “3D Printers”, 91 Duraprinter 3D, “3D Printers”, https://duraprinter3d.com , acc. 21/02/2022.
https://duraprinter3d.com...
), (9595 StoneFlower, “3d-printer StoneFlower”, 95 StoneFlower, “3d-printer StoneFlower”, http://www.stoneflower3d.com , acc. 21/01/2022.
http://www.stoneflower3d.com...
), (9696 Wasp, “Delta WASP 2040 Clay”, 96 Wasp, “Delta WASP 2040 Clay”, http://www.3dwasp.com , acc. 21/01/2022.
http://www.3dwasp.com...
), (9999 Vorm Vrij, “Clay printers & accessories”, 99 Vorm Vrij, “Clay printers & accessories”, https://vormvrij.nl , acc. 24/01/2022.
https://vormvrij.nl...
. Lynxter is the only manufacturer to date to have a commercially available solution for advanced ceramics 9292 Lynxter, “PAS11, toolhead for 3d printing of ceramics”, 92 Lynxter, “PAS11, toolhead for 3d printing of ceramics”, https://lynxter.fr , acc. 21/01/2022.
https://lynxter.fr...
and Rapidia is developing feedstocks of aluminum oxide and zirconium oxide 9393 Rapidia, “Materials ”, 93 Rapidia, “Materials ”, http://www.rapidia.com , acc. 21/01/2022.
http://www.rapidia.com...
. Lastly, systems focused on building and structures have emerged. 3DPotter has a variety of 3D printers for cementitious materials 8888 3DPotter, “3D-printing cement”, 88 3DPotter, “3D-printing cement”, https://3dpotter.com , acc. 21/01/2022.
https://3dpotter.com...
, and WASP has systems able to deal with concrete mortar with a printing volume of Ø6.3x3 m3 (9797 Wasp, “Crane WASP”, 97 Wasp, “Crane WASP”, http://www.3dwasp.com , acc. 21/01/2022.
http://www.3dwasp.com...
), (9898 Wasp, “Delta WASP 3MT Concrete”, 98 Wasp, “Delta WASP 3MT Concrete”, http://www.3dwasp.com , acc. 20/01/2022.
http://www.3dwasp.com...
.

Table III
Direct ink writing of ceramics: equipment suppliers.

Fused deposition

Fig. 5 illustrates the schematic of the fused deposition technology with two types of raw material: filament and granule. In both cases, the feedstock is composed of the ceramic powder (usually around 40-50 vol%) and multicomponent binders usually containing a thermoplastic (ethylene vinyl acetate 100100 L. Gorjan, R. Tonello, T. Sebastian, P. Colombo, F. Clemens, J. Eur. Ceram. Soc. 39 (2019) 2463.)-(102102 L. Gorjan, C. Galusca, M. Sami, T. Sebastian, F. Clemens, Addit. Manuf. 36 (2020) 101391., polylactic acid 103103 S. Esslinger, A. Grebhardt, J. Jaeger, F. Kern, A. Killinger, C. Bonten, R. Gadow, Materials 14 (2020) 156. , polyvinyl butyral 2222 M. Mader, L. Hambitzer, P. Schlautmann, S. Jenne, C. Greiner, F. Hirth, D. Helmer, F. Kotz-Helmer, B.E. Rapp, Adv. Sci. 8 (2021) 2103180.), (104104 D. Nötzel, T. Hanemann, Materials 13 (2020) 4461. , polyolefin 105105 M. Orlovská, M. Hain, M. Kitzmantel, P. Veteška, Z. Hajdúchová, M. Janek, M. Vozárová Bača, Addit. Manuf. 48 (2021). ), (106106 A.C. Marsh, Y. Zhang, L. Poli, N. Hammer, A. Roch, M. Crimp, X. Chatzistavrou, Mater. Sci. Eng. C 118 (2021) 111516. , low-density polyethylene 107107 D. Nötzel, R. Eickhoff, C. Pfeifer, T. Hanemann, Materials 14 (2021) 5467.), surfactant (stearic acid 102102 L. Gorjan, C. Galusca, M. Sami, T. Sebastian, F. Clemens, Addit. Manuf. 36 (2020) 101391.), (104104 D. Nötzel, T. Hanemann, Materials 13 (2020) 4461. ), (107107 D. Nötzel, R. Eickhoff, C. Pfeifer, T. Hanemann, Materials 14 (2021) 5467.), (108108 P. Veteška, Z. Hajdúchová, J. Feranc, K. Tomanová, J. Milde, M. Kritikos, Ľ. Bača, M. Janek, Appl. Mater. Today 22 (2021) 100949.), and plasticizer (polyethylene glycol 2222 M. Mader, L. Hambitzer, P. Schlautmann, S. Jenne, C. Greiner, F. Hirth, D. Helmer, F. Kotz-Helmer, B.E. Rapp, Adv. Sci. 8 (2021) 2103180.), (103103 S. Esslinger, A. Grebhardt, J. Jaeger, F. Kern, A. Killinger, C. Bonten, R. Gadow, Materials 14 (2020) 156. ), (104104 D. Nötzel, T. Hanemann, Materials 13 (2020) 4461. ). This material is heated to just above the melting point of the polymer. So the material is selectively extruded through a nozzle, being deposited layer-by-layer according to a pre-defined path 109109 G. Poszvek, C. Wiedermann, E. Markl, J.M. Bauer, R. Seemann, N.M. Durakbasa, M. Lackner, in “Digital conversion on the way to industry 4.0”, N.M. Durakbasa, M.G. Gençyilmaz (Eds.), Springer, Cham (2021) 121.), (110110 J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, C. Holzer, Materials 11 (2018) 840.. Fig. 5a shows the fused filament fabrication operation, which uses a ram extruder, with the filament pushing the softened material out of the nozzle. Conversely, the granule-based 3D printers use a screw extruder for pushing the material to be deposited (Fig. 5b) 110110 J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, C. Holzer, Materials 11 (2018) 840..

Figure 5:
Schematics of the fused deposition technology 110110 J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, C. Holzer, Materials 11 (2018) 840.: a) fused filament fabrication; and b) fused granules.

In the fused deposition of ceramics, the nozzle diameter usually varies between 0.4 and 0.6 mm 2222 M. Mader, L. Hambitzer, P. Schlautmann, S. Jenne, C. Greiner, F. Hirth, D. Helmer, F. Kotz-Helmer, B.E. Rapp, Adv. Sci. 8 (2021) 2103180.), (2323 T. Shen, H. Xiong, Z. Li, L. Zhang, K. Zhou, Ceram. Int. 47 (2021) 34352.), (101101 N.A. Conzelmann, L. Gorjan, F. Sarraf, L.D. Poulikakos, M.N. Partl, C.R. Müller, F.J. Clemens, Rapid Prototyp. J. 26 (2020) 1035.), (102102 L. Gorjan, C. Galusca, M. Sami, T. Sebastian, F. Clemens, Addit. Manuf. 36 (2020) 101391.), (105105 M. Orlovská, M. Hain, M. Kitzmantel, P. Veteška, Z. Hajdúchová, M. Janek, M. Vozárová Bača, Addit. Manuf. 48 (2021). ), (106106 A.C. Marsh, Y. Zhang, L. Poli, N. Hammer, A. Roch, M. Crimp, X. Chatzistavrou, Mater. Sci. Eng. C 118 (2021) 111516. ), (108108 P. Veteška, Z. Hajdúchová, J. Feranc, K. Tomanová, J. Milde, M. Kritikos, Ľ. Bača, M. Janek, Appl. Mater. Today 22 (2021) 100949.), (111111 M. Orlovská, Z. Chlup, Bača M. Janek, M. Kitzmantel, J. Eur. Ceram. Soc. 40 (2020) 4837.)-(113113 A. Arnesano, S.K. Padmanabhan, A. Notarangelo, F. Montagna, A. Licciulli, Ceram. Int. 46 (2020) 2206. and the layer thickness from 100-300 μm 2222 M. Mader, L. Hambitzer, P. Schlautmann, S. Jenne, C. Greiner, F. Hirth, D. Helmer, F. Kotz-Helmer, B.E. Rapp, Adv. Sci. 8 (2021) 2103180.)- (2424 Q. He, J. Jiang, X. Yang, L. Zhang, Z. Zhou, Y. Zhong, Z. Shen, J. Eur. Ceram. Soc. 41 (2021) 1033.), (103103 S. Esslinger, A. Grebhardt, J. Jaeger, F. Kern, A. Killinger, C. Bonten, R. Gadow, Materials 14 (2020) 156. )- (105105 M. Orlovská, M. Hain, M. Kitzmantel, P. Veteška, Z. Hajdúchová, M. Janek, M. Vozárová Bača, Addit. Manuf. 48 (2021). ), (107107 D. Nötzel, R. Eickhoff, C. Pfeifer, T. Hanemann, Materials 14 (2021) 5467.), (108108 P. Veteška, Z. Hajdúchová, J. Feranc, K. Tomanová, J. Milde, M. Kritikos, Ľ. Bača, M. Janek, Appl. Mater. Today 22 (2021) 100949.), (111111 M. Orlovská, Z. Chlup, Bača M. Janek, M. Kitzmantel, J. Eur. Ceram. Soc. 40 (2020) 4837.)- (114114 D. Nötzel, R. Eickhoff, T. Hanemann, Materials 11 (2018) 1463.. Also, nozzle temperature and printing speed are important parameters and presented a great variation in related works reported in the literature 2222 M. Mader, L. Hambitzer, P. Schlautmann, S. Jenne, C. Greiner, F. Hirth, D. Helmer, F. Kotz-Helmer, B.E. Rapp, Adv. Sci. 8 (2021) 2103180.)- (2525 Y.M.X. Hung Hung, M.H. Talou, M.A. Camerucci, Int. J. Appl. Ceram. Technol. 18 (2021) 1466.), (100100 L. Gorjan, R. Tonello, T. Sebastian, P. Colombo, F. Clemens, J. Eur. Ceram. Soc. 39 (2019) 2463.)- (108108 P. Veteška, Z. Hajdúchová, J. Feranc, K. Tomanová, J. Milde, M. Kritikos, Ľ. Bača, M. Janek, Appl. Mater. Today 22 (2021) 100949.), (111111 M. Orlovská, Z. Chlup, Bača M. Janek, M. Kitzmantel, J. Eur. Ceram. Soc. 40 (2020) 4837.)- (114114 D. Nötzel, R. Eickhoff, T. Hanemann, Materials 11 (2018) 1463. (130-260 °C and 1-95 mm/s, respectively). Such a difference is explained by the dependence of the operation range on the material and equipment used. This technology is capable of producing dense structural ceramic parts. However, the surface finish is limited and the staircase effect is an issue 11 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661., as illustrated in Fig. 6. Also, there is a limitation on the maximum wall thickness that can be produced without the formation of cracks during the subsequent heat treatment 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. . Efforts to produce ceramics by fused deposition started in the late 1990s 88 M.K. Agarwala, R. Van Weeren, A. Bandyopadhyay, A. Safari, S.C. Danforth, W.R. Priedeman, in Proc. Solid Free. Fabr. Symp. (1996) 451.), (99 S. Danforth, Mater. Technol. 10 (1995) 144.. On the other hand, equipment suppliers and available systems (Table IV) have raised in the last 3 years. 3D printers for filament and granules are available and the difference between these feedstocks is discussed next.

Figure 6:
Alumina parts fabricated by fused deposition 115115 M. Eickenscheidt, M. Langenmair, A. Dbouk, D. Nötzel, T. Hanemann, T. Stieglitz, Materials 14 (2021) 200. .

Table IV
Fused deposition of ceramics: equipment suppliers.

Fused filament fabrication: using filaments could benefit from the extensive use of FDM (fused deposition modeling) already applied to polymers, and recent studies 101101 N.A. Conzelmann, L. Gorjan, F. Sarraf, L.D. Poulikakos, M.N. Partl, C.R. Müller, F.J. Clemens, Rapid Prototyp. J. 26 (2020) 1035.), (102102 L. Gorjan, C. Galusca, M. Sami, T. Sebastian, F. Clemens, Addit. Manuf. 36 (2020) 101391.), (105105 M. Orlovská, M. Hain, M. Kitzmantel, P. Veteška, Z. Hajdúchová, M. Janek, M. Vozárová Bača, Addit. Manuf. 48 (2021). ), (106106 A.C. Marsh, Y. Zhang, L. Poli, N. Hammer, A. Roch, M. Crimp, X. Chatzistavrou, Mater. Sci. Eng. C 118 (2021) 111516. ), (109109 G. Poszvek, C. Wiedermann, E. Markl, J.M. Bauer, R. Seemann, N.M. Durakbasa, M. Lackner, in “Digital conversion on the way to industry 4.0”, N.M. Durakbasa, M.G. Gençyilmaz (Eds.), Springer, Cham (2021) 121.), (111111 M. Orlovská, Z. Chlup, Bača M. Janek, M. Kitzmantel, J. Eur. Ceram. Soc. 40 (2020) 4837.), (129129 J.F. Valera-Jiménez, J.C. Pérez-Flores, M. Castro-García, J. Canales-Vázquez, Appl. Mater. Today 25 (2021) 101243. have indicated that common FDM 3D printers, which are low-cost and easy to operate 2424 Q. He, J. Jiang, X. Yang, L. Zhang, Z. Zhou, Y. Zhong, Z. Shen, J. Eur. Ceram. Soc. 41 (2021) 1033., could deal with ceramic filaments. Oppositely, creating filaments with well-dispersed high ceramic loading is a big challenge 1313 J.S. Pelz, N. Ku, M.A. Meyers, L.R. Vargas-Gonzalez, J. Mater. Res. Technol. 15 (2021) 670., and they are commonly brittle and difficult to handle 2323 T. Shen, H. Xiong, Z. Li, L. Zhang, K. Zhou, Ceram. Int. 47 (2021) 34352.), (109109 G. Poszvek, C. Wiedermann, E. Markl, J.M. Bauer, R. Seemann, N.M. Durakbasa, M. Lackner, in “Digital conversion on the way to industry 4.0”, N.M. Durakbasa, M.G. Gençyilmaz (Eds.), Springer, Cham (2021) 121.), (110110 J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, C. Holzer, Materials 11 (2018) 840.. Moreover, nozzle blockages can occur due to particle agglomeration 109109 G. Poszvek, C. Wiedermann, E. Markl, J.M. Bauer, R. Seemann, N.M. Durakbasa, M. Lackner, in “Digital conversion on the way to industry 4.0”, N.M. Durakbasa, M.G. Gençyilmaz (Eds.), Springer, Cham (2021) 121.), (130130 S. Cano, J. Gonzalez-Gutierrez, J. Sapkota, M. Spoerk, F. Arbeiter, S. Schuschnigg, C. Holzer, C. Kukla, Addit. Manuf. 26 (2019) 117.. Research about ceramic fused filament fabrication has increased in recent years. The research group from Empa (Switzerland) led by Dr. Clemens is the leading research group on this subject. They have shown that is possible to process different ceramic materials (alumina 101101 N.A. Conzelmann, L. Gorjan, F. Sarraf, L.D. Poulikakos, M.N. Partl, C.R. Müller, F.J. Clemens, Rapid Prototyp. J. 26 (2020) 1035.), (102102 L. Gorjan, C. Galusca, M. Sami, T. Sebastian, F. Clemens, Addit. Manuf. 36 (2020) 101391., mullite 100100 L. Gorjan, R. Tonello, T. Sebastian, P. Colombo, F. Clemens, J. Eur. Ceram. Soc. 39 (2019) 2463.), (131131 F. Sarraf, E. Abbatinali, L. Gorjan, T. Sebastian, P. Colombo, S.V. Churakov, F. Clemens, J. Eur. Ceram. Soc. 41 (2021) 6677., barium titanate 132132 T. Sebastian, M. Bach, A. Geiger, T. Lusiola, L. Kozielski, F. Clemens, Materials 14 (2021) 5927. , and PZT 132132 T. Sebastian, M. Bach, A. Geiger, T. Lusiola, L. Kozielski, F. Clemens, Materials 14 (2021) 5927. ) in ordinary commercial printers. Fused filament fabrication proved to be capable to produce dense ceramic parts (~99%) 102102 L. Gorjan, C. Galusca, M. Sami, T. Sebastian, F. Clemens, Addit. Manuf. 36 (2020) 101391.), (107107 D. Nötzel, R. Eickhoff, C. Pfeifer, T. Hanemann, Materials 14 (2021) 5467.), (114114 D. Nötzel, R. Eickhoff, T. Hanemann, Materials 11 (2018) 1463. and the firing shrinkage usually ranges between 17% and 23% 101101 N.A. Conzelmann, L. Gorjan, F. Sarraf, L.D. Poulikakos, M.N. Partl, C.R. Müller, F.J. Clemens, Rapid Prototyp. J. 26 (2020) 1035.), (102102 L. Gorjan, C. Galusca, M. Sami, T. Sebastian, F. Clemens, Addit. Manuf. 36 (2020) 101391.), (104104 D. Nötzel, T. Hanemann, Materials 13 (2020) 4461. ), (107107 D. Nötzel, R. Eickhoff, C. Pfeifer, T. Hanemann, Materials 14 (2021) 5467.), (111111 M. Orlovská, Z. Chlup, Bača M. Janek, M. Kitzmantel, J. Eur. Ceram. Soc. 40 (2020) 4837.. A surface roughness (Ra) of around 10 μm can be reached with the process 111111 M. Orlovská, Z. Chlup, Bača M. Janek, M. Kitzmantel, J. Eur. Ceram. Soc. 40 (2020) 4837.), (112112 K. Sudan, P. Singh, A. Gökçe, V.K. Balla, K.H. Kate, Ceram. Int. 46 (2020) 23922.. Conversely, the mechanical strength of ceramic parts produced by this technology has still been little explored. Xerion offers the Fusion Factory, an integrated additive manufacturing solution that includes 3D printing, debinding, and sintering in one system, focused on industrial production 128128 Xerion, “Fusion Factory”, 128 Xerion, “Fusion Factory”, http://www.xerion.de , acc. 19/01/2022.
http://www.xerion.de...
. On the other hand, Nanoe provides a lower-cost 3D printer 127127 Zetamix, “Zetaprint Raise3D Pro2”, 127 Zetamix, “Zetaprint Raise3D Pro2”, http://zetamix.fr , acc. 19/01/2022.
http://zetamix.fr...
and ceramic filaments (aluminum oxide and zirconium oxide 126126 Zetamix, “Filaments”, 126 Zetamix, “Filaments”, http://zetamix.fr , acc. 19/01/2022.
http://zetamix.fr...
) compatible with common FDM 3D printers.

Fused granules: using granules favors the application of fused deposition of ceramics on a larger scale since granules feedstock is already available 2222 M. Mader, L. Hambitzer, P. Schlautmann, S. Jenne, C. Greiner, F. Hirth, D. Helmer, F. Kotz-Helmer, B.E. Rapp, Adv. Sci. 8 (2021) 2103180. due to the mature technology of ceramic injection molding 2323 T. Shen, H. Xiong, Z. Li, L. Zhang, K. Zhou, Ceram. Int. 47 (2021) 34352.. Also, it can reach higher ceramic solid loading than filaments 2222 M. Mader, L. Hambitzer, P. Schlautmann, S. Jenne, C. Greiner, F. Hirth, D. Helmer, F. Kotz-Helmer, B.E. Rapp, Adv. Sci. 8 (2021) 2103180.), (2323 T. Shen, H. Xiong, Z. Li, L. Zhang, K. Zhou, Ceram. Int. 47 (2021) 34352.), (110110 J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, C. Holzer, Materials 11 (2018) 840. and are easier to be prepared 2323 T. Shen, H. Xiong, Z. Li, L. Zhang, K. Zhou, Ceram. Int. 47 (2021) 34352.), (104104 D. Nötzel, T. Hanemann, Materials 13 (2020) 4461. . 3D-Figo 117117 3d-figo, “Materials ”, 117 3d-figo, “Materials ”, http://3d-figo.de , acc. 12/01/2022.
http://3d-figo.de...
and Pollen 119119 Pollen, “Pam Series MC 3D Printer”, 119 Pollen, “Pam Series MC 3D Printer”, http://www.pollen.am , acc. 12/01/2022.
http://www.pollen.am...
offers 3D printers able to work with granules used for injection molding. Few studies about ceramic fused granules have been carried out so far 2323 T. Shen, H. Xiong, Z. Li, L. Zhang, K. Zhou, Ceram. Int. 47 (2021) 34352.)- (2525 Y.M.X. Hung Hung, M.H. Talou, M.A. Camerucci, Int. J. Appl. Ceram. Technol. 18 (2021) 1466.. Even so, dense zirconia parts (~99%) with flexural strength comparable to that made by conventional methods (890 MPa) have already been obtained 2424 Q. He, J. Jiang, X. Yang, L. Zhang, Z. Zhou, Y. Zhong, Z. Shen, J. Eur. Ceram. Soc. 41 (2021) 1033.. In this work, the reported shrinkage was about 20%.

Material jetting

Fig. 7 presents the schematic of the material jetting technology. Small droplets of ceramic suspension (build-up material) and support material are dispensed by hundreds of nozzles contained in the printheads, creating the predefined cross-section 133133 E. Willems, M. Turon-Vinas, B.C. dos Santos, B. Van Hooreweder, F. Zhang, B. Van Meerbeek, J. Vleugels, J. Eur. Ceram. Soc. 41 (2021) 5292.), (134134 J. Ebert, E. Ozkol, R. Telle, H. Fischer, K. Uibel, in Proc. 10th Eur. Ceram. Soc. Conf., ECERS (2008) 466. . The build plate (substrate) may be heated to begin to evaporate the solvent of the printed ink 135135 Y. Oh, V. Bharambe, B. Mummareddy, J. Martin, J. McKnight, M.A. Abraham, J.M. Walker, K. Rogers, B. Conner, P. Cortes, E. MacDonald, J.J. Adams, Addit. Manuf. 27 (2019) 586.. In order to complete the solvent evaporation, the drying device moves over the printed layers 133133 E. Willems, M. Turon-Vinas, B.C. dos Santos, B. Van Hooreweder, F. Zhang, B. Van Meerbeek, J. Vleugels, J. Eur. Ceram. Soc. 41 (2021) 5292.. Compared with the other ceramic additive manufacturing technologies, very little study has been done regarding parameter optimization. In this process, layer thickness has been used at around 10 μm 133133 E. Willems, M. Turon-Vinas, B.C. dos Santos, B. Van Hooreweder, F. Zhang, B. Van Meerbeek, J. Vleugels, J. Eur. Ceram. Soc. 41 (2021) 5292.), (135135 Y. Oh, V. Bharambe, B. Mummareddy, J. Martin, J. McKnight, M.A. Abraham, J.M. Walker, K. Rogers, B. Conner, P. Cortes, E. MacDonald, J.J. Adams, Addit. Manuf. 27 (2019) 586.. This technology is best suited for compact parts 11 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661., having excellent resolution (~20 μm 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. ), (135135 Y. Oh, V. Bharambe, B. Mummareddy, J. Martin, J. McKnight, M.A. Abraham, J.M. Walker, K. Rogers, B. Conner, P. Cortes, E. MacDonald, J.J. Adams, Addit. Manuf. 27 (2019) 586.), as shown in Fig. 8. It stands out for the ability to deposit droplets of multiple materials simultaneously 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. In contrast, material jetting has low productivity (~1 mm heigh per hour) 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. . Also, 3D printed parts by material jetting may present ‘coffee stains’ formed in the drying step, in which solid particles segregate from the center to the edge of the printed patterns 1414 X. Zhang, X. Wu, J. Shi, J. Mater. Res. Technol. 9 (2020) 9029.), (136136 M. Majumder, C.S. Rendall, J.A. Eukel, J.Y.L. Wang, N. Behabtu, C.L. Pint, T.-Y. Liu, A.W. Orbaek, F. Mirri, J. Nam, A.R. Barron, R.H. Hauge, H.K. Schmidt, M. Pasquali, J. Phys. Chem. B 116 (2012) 6536..

Figure 7:
Schematic of the material jetting technology.

Figure 8:
Alumina cooling element fabricated by material jetting 137137 D. Graf, J. Jung, T. Hanemann, Micromachines 12 (2021) 1136. .

Ceramic material jetting has still been little explored. Around the early 2010s, a research group from RWTH Aachen University (Germany), led by Prof. Telle, investigated the development of ceramic inks and their application in the material jetting process 2626 A.M. Wätjen, P. Gingter, M. Kramer, R. Telle, Adv. Mech. Eng. 6 (2014) 141346. ), (134134 J. Ebert, E. Ozkol, R. Telle, H. Fischer, K. Uibel, in Proc. 10th Eur. Ceram. Soc. Conf., ECERS (2008) 466. ), (138138 E. Özkol, J. Ebert, K. Uibel, A.M. Wätjen, R. Telle, J. Eur. Ceram. Soc. 29 (2009) 403.)- (140140 E. Özkol, W. Zhang, J. Ebert, R. Telle, J. Eur. Ceram. Soc. 32 (2012) 2193.. However, few articles have been recently published on the topic. Usually, very thin ceramic (thickness smaller than 1 mm) bodies were fabricated 3030 Z. Zhu, Z. Gong, P. Qu, Z. Li, S.A. Rasaki, Z. Liu, P. Wang, C. Liu, C. Lao, Z. Chen, J. Adv. Ceram. 10 (2021) 279.), (133133 E. Willems, M. Turon-Vinas, B.C. dos Santos, B. Van Hooreweder, F. Zhang, B. Van Meerbeek, J. Vleugels, J. Eur. Ceram. Soc. 41 (2021) 5292.), (141141 P. Qu, D. Xiong, Z. Zhu, Z. Gong, Y. Li, Y. Li, L. Fan, Z. Liu, P. Wang, C. Liu, Z. Chen, Addit. Manuf. 48 (2021) 102394., aiming to produce cathodes/electrolytes for solid oxide fuel cells 3030 Z. Zhu, Z. Gong, P. Qu, Z. Li, S.A. Rasaki, Z. Liu, P. Wang, C. Liu, C. Lao, Z. Chen, J. Adv. Ceram. 10 (2021) 279.), (141141 P. Qu, D. Xiong, Z. Zhu, Z. Gong, Y. Li, Y. Li, L. Fan, Z. Liu, P. Wang, C. Liu, Z. Chen, Addit. Manuf. 48 (2021) 102394. or dielectric resonator antenna 135135 Y. Oh, V. Bharambe, B. Mummareddy, J. Martin, J. McKnight, M.A. Abraham, J.M. Walker, K. Rogers, B. Conner, P. Cortes, E. MacDonald, J.J. Adams, Addit. Manuf. 27 (2019) 586.. There is very little information about the properties of parts produced by ceramic material jetting. Willems et al. 133133 E. Willems, M. Turon-Vinas, B.C. dos Santos, B. Van Hooreweder, F. Zhang, B. Van Meerbeek, J. Vleugels, J. Eur. Ceram. Soc. 41 (2021) 5292. reported having obtained zirconia parts by material jetting with a density of 99.7%, surface roughness (Ra) of about 7 μm, and flexural strength greater than 1000 MPa. This work also reported firing shrinkage between 16.8% and 17.6%.

For this process, the feedstock is a suspension with well-dispersed ceramic particles in the liquid solvent, with suitable stability, viscosity, and surface tensions 11 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661.. Unlike the pastes used in DIW technology, the material jetting’s feedstock is ink-based, ejecting a low-viscosity (~20 mPa.s) fluid 135135 Y. Oh, V. Bharambe, B. Mummareddy, J. Martin, J. McKnight, M.A. Abraham, J.M. Walker, K. Rogers, B. Conner, P. Cortes, E. MacDonald, J.J. Adams, Addit. Manuf. 27 (2019) 586. with surface tension not exceeding 60 mN/m 3030 Z. Zhu, Z. Gong, P. Qu, Z. Li, S.A. Rasaki, Z. Liu, P. Wang, C. Liu, C. Lao, Z. Chen, J. Adv. Ceram. 10 (2021) 279.. To avoid clogging and blockage, the diameter of the nozzles should be 100 times bigger than the particle size 2929 A. Kosmala, Q. Zhang, R. Wright, P. Kirby, Mater. Chem. Phys. 132 (2012) 788.), (3030 Z. Zhu, Z. Gong, P. Qu, Z. Li, S.A. Rasaki, Z. Liu, P. Wang, C. Liu, C. Lao, Z. Chen, J. Adv. Ceram. 10 (2021) 279.. Consequently, nanoparticles are more desirable in formulating inks, since the nozzle diameters usually range between 20 and 30 μm 3030 Z. Zhu, Z. Gong, P. Qu, Z. Li, S.A. Rasaki, Z. Liu, P. Wang, C. Liu, C. Lao, Z. Chen, J. Adv. Ceram. 10 (2021) 279.), (134134 J. Ebert, E. Ozkol, R. Telle, H. Fischer, K. Uibel, in Proc. 10th Eur. Ceram. Soc. Conf., ECERS (2008) 466. ), (141141 P. Qu, D. Xiong, Z. Zhu, Z. Gong, Y. Li, Y. Li, L. Fan, Z. Liu, P. Wang, C. Liu, Z. Chen, Addit. Manuf. 48 (2021) 102394.. On the other hand, smaller particles are more likely to agglomerate 11 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661.. In addition to deionized water, some additives such as dispersants (triethanolamine 141141 P. Qu, D. Xiong, Z. Zhu, Z. Gong, Y. Li, Y. Li, L. Fan, Z. Liu, P. Wang, C. Liu, Z. Chen, Addit. Manuf. 48 (2021) 102394., polyethylene glycol 141141 P. Qu, D. Xiong, Z. Zhu, Z. Gong, Y. Li, Y. Li, L. Fan, Z. Liu, P. Wang, C. Liu, Z. Chen, Addit. Manuf. 48 (2021) 102394., polyacrylic acid 3030 Z. Zhu, Z. Gong, P. Qu, Z. Li, S.A. Rasaki, Z. Liu, P. Wang, C. Liu, C. Lao, Z. Chen, J. Adv. Ceram. 10 (2021) 279.), glycerol 3030 Z. Zhu, Z. Gong, P. Qu, Z. Li, S.A. Rasaki, Z. Liu, P. Wang, C. Liu, C. Lao, Z. Chen, J. Adv. Ceram. 10 (2021) 279.), (134134 J. Ebert, E. Ozkol, R. Telle, H. Fischer, K. Uibel, in Proc. 10th Eur. Ceram. Soc. Conf., ECERS (2008) 466. ), (141141 P. Qu, D. Xiong, Z. Zhu, Z. Gong, Y. Li, Y. Li, L. Fan, Z. Liu, P. Wang, C. Liu, Z. Chen, Addit. Manuf. 48 (2021) 102394., and ethanol 134134 J. Ebert, E. Ozkol, R. Telle, H. Fischer, K. Uibel, in Proc. 10th Eur. Ceram. Soc. Conf., ECERS (2008) 466. ), (141141 P. Qu, D. Xiong, Z. Zhu, Z. Gong, Y. Li, Y. Li, L. Fan, Z. Liu, P. Wang, C. Liu, Z. Chen, Addit. Manuf. 48 (2021) 102394. are added to the suspension to adjust the ink properties and performance 3030 Z. Zhu, Z. Gong, P. Qu, Z. Li, S.A. Rasaki, Z. Liu, P. Wang, C. Liu, C. Lao, Z. Chen, J. Adv. Ceram. 10 (2021) 279.), (141141 P. Qu, D. Xiong, Z. Zhu, Z. Gong, Y. Li, Y. Li, L. Fan, Z. Liu, P. Wang, C. Liu, Z. Chen, Addit. Manuf. 48 (2021) 102394.. Material jetting presents just two additive manufacturing systems for ceramics, as shown in Table V, and aluminum oxide and zirconium oxide are the only feedstock commercially available.

Table V
Material jetting of ceramics: equipment suppliers.

Selective laser sintering

Selective laser sintering (SLS) is a powder bed additive manufacturing technology in which the binder is melted by the scanning laser and binds to the ceramic powder. Fig. 9 illustrates the schematic of the SLS technology. A typical SLS 3D printer has two chambers: the powder feed supplier and the build chamber. The transport of recoating of the powder in the build chamber is performed by the powder recoater 146146 S. Pfeiffer, K. Florio, D. Puccio, M. Grasso, B.M. Colosimo, C.G. Aneziris, K. Wegener, T. Graule, J. Eur. Ceram. Soc. 41 (2021) 6087.. A laser beam is steered by an X-Y scanning mirror (usually a galvano scanner), locally heating and sintering the raw material creating layers according to predefined geometries 146146 S. Pfeiffer, K. Florio, D. Puccio, M. Grasso, B.M. Colosimo, C.G. Aneziris, K. Wegener, T. Graule, J. Eur. Ceram. Soc. 41 (2021) 6087.), (147147 A.-N. Chen, J.-M. Wu, K. Liu, J.-Y. Chen, H. Xiao, P. Chen, C.-H. Li, Y.-S. Shi, Adv. Appl. Ceram. 117 (2018) 100.. Although a variety of lasers may be used in SLS 3D printers, the CO2 type is the most common 148148 A. Awad, F. Fina, A. Goyanes, S. Gaisford, A.W. Basit, Adv. Drug Deliv. Rev. 174 (2021) 406.. This laser is suitable for processing oxide ceramics due to its high optical absorptivity in its wavelength (λ=10.6 μm) 149149 H. Zhang, S. LeBlanc, in “Additive manufacturing of high-performance metals and alloys: modeling and optimization”, I. Shishkovsky (Ed.), IntechOpen (2018) 75832.), (150150 N.K. Tolochko, Y.V. Khlopkov, S.E. Mozzharov, M.B. Ignatiev, T. Laoui, V.I. Titov, Rapid Prototyp. J. 6 (2000) 155.. SLS is best suited to porous applications that do not require high geometrical accuracy and surface roughness such as scaffolds for tissue engineering 11 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661.), (1313 J.S. Pelz, N. Ku, M.A. Meyers, L.R. Vargas-Gonzalez, J. Mater. Res. Technol. 15 (2021) 670.), (1414 X. Zhang, X. Wu, J. Shi, J. Mater. Res. Technol. 9 (2020) 9029.. Fig. 10 shows an alumina part fabricated by SLS. The process commonly uses coarse ceramic powders (10-100 μm 1717 J. Deckers, J. Vleugels, J.P. Kruth, J. Ceram. Sci. Technol. 5 (2014) 245.) to guarantee flowability and the formation of uniform powder layers 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. ), (1414 X. Zhang, X. Wu, J. Shi, J. Mater. Res. Technol. 9 (2020) 9029.. The main process parameters to be considered are laser beam power, laser scan speed, scan spacing, and layer thickness 146146 S. Pfeiffer, K. Florio, D. Puccio, M. Grasso, B.M. Colosimo, C.G. Aneziris, K. Wegener, T. Graule, J. Eur. Ceram. Soc. 41 (2021) 6087.)- (148148 A. Awad, F. Fina, A. Goyanes, S. Gaisford, A.W. Basit, Adv. Drug Deliv. Rev. 174 (2021) 406. and an orthogonal method may be performed for optimization 151151 S.S. Liu, M. Li, J.M. Wu, A.N. Chen, Y.S. Shi, C.H. Li, Ceram. Int. 46 (2020) 4240.)- (153153 C. Li, L. Hu, Y. Zou, J. Liu, J. Xiao, J. Wu, Y. Shi, Int. J. Appl. Ceram. Technol. 17 (2020) 255.. In recent work 151151 S.S. Liu, M. Li, J.M. Wu, A.N. Chen, Y.S. Shi, C.H. Li, Ceram. Int. 46 (2020) 4240.)- (160160 J.M. Wu, M. Li, S.S. Liu, Y.S. Shi, C.H. Li, W. Wang, Ceram. Int. 47 (2021) 15313., the parameters have varied in the following range: laser power: 6-12 W; scanning speed: 1500-2500 mm/s; scan spacing: 50-150 μm; and layer thickness: 100-200 μm. Also, a pre-heating of the powder bed can reduce thermal stresses and thus help prevent crack formation in sintered parts 147147 A.-N. Chen, J.-M. Wu, K. Liu, J.-Y. Chen, H. Xiao, P. Chen, C.-H. Li, Y.-S. Shi, Adv. Appl. Ceram. 117 (2018) 100.. Such parameter depends on the selected binder. For example, the most used in recent work has been the epoxy resin (E12), and a pre-heating of 45 °C has been reported 151151 S.S. Liu, M. Li, J.M. Wu, A.N. Chen, Y.S. Shi, C.H. Li, Ceram. Int. 46 (2020) 4240.), (158158 J. Zhang, W. Zheng, J.M. Wu, K.B. Yu, C.S. Ye, Y.S. Shi, Ceram. Int. 48 (2022) 1173.), (159159 Y. Zou, C.H. Li, J.A. Liu, J.M. Wu, L. Hu, R.F. Gui, Y.S. Shi, Ceram. Int. 45 (2019) 12654.. On the other hand, polyamides may require a higher pre-heating temperature 156156 A. Chen, M. Li, J. Xu, C. Lou, J. Wu, L. Cheng, Y. Shi, J. Eur. Ceram. Soc. 38 (2018) 4553..

Figure 9:
Schematic of the SLS technology 146146 S. Pfeiffer, K. Florio, D. Puccio, M. Grasso, B.M. Colosimo, C.G. Aneziris, K. Wegener, T. Graule, J. Eur. Ceram. Soc. 41 (2021) 6087..

Figure 10:
Alumina part fabricated by selective laser sintering 1717 J. Deckers, J. Vleugels, J.P. Kruth, J. Ceram. Sci. Technol. 5 (2014) 245..

Most recent research on ceramic SLS has been done by the State Key Laboratory of Material Processing and Die & Mould Technology from Huazhong University of Science and Technology (Wuhan, China) 151151 S.S. Liu, M. Li, J.M. Wu, A.N. Chen, Y.S. Shi, C.H. Li, Ceram. Int. 46 (2020) 4240.)- (160160 J.M. Wu, M. Li, S.S. Liu, Y.S. Shi, C.H. Li, W. Wang, Ceram. Int. 47 (2021) 15313.. Their research focuses on improving the ceramic parts produced by SLS by considering adding additives (CaSiO3154154 J.M. Wu, M. Li, S.S. Liu, Y.S. Shi, C.H. Li, W. Wang, Ceram. Int. 46 (2020) 26888., Al 157157 Y. Dong, H. Jiang, A. Chen, T. Yang, T. Zou, D. Xu, Ceram. Int. 46 (2020) 15159.), adjusting process parameters 151151 S.S. Liu, M. Li, J.M. Wu, A.N. Chen, Y.S. Shi, C.H. Li, Ceram. Int. 46 (2020) 4240.)- (153153 C. Li, L. Hu, Y. Zou, J. Liu, J. Xiao, J. Wu, Y. Shi, Int. J. Appl. Ceram. Technol. 17 (2020) 255. (laser power, scanning speed, scanning space), sintering temperature 155155 A. Chen, M. Li, J. Wu, L. Cheng, R. Liu, Y. Shi, C. Li, J. Alloys Compd. 776 (2019) 486.), (156156 A. Chen, M. Li, J. Xu, C. Lou, J. Wu, L. Cheng, Y. Shi, J. Eur. Ceram. Soc. 38 (2018) 4553., and particle size distribution of the raw materials 158158 J. Zhang, W. Zheng, J.M. Wu, K.B. Yu, C.S. Ye, Y.S. Shi, Ceram. Int. 48 (2022) 1173.), (159159 Y. Zou, C.H. Li, J.A. Liu, J.M. Wu, L. Hu, R.F. Gui, Y.S. Shi, Ceram. Int. 45 (2019) 12654., and by combining SLS with other processes such as vacuum infiltration 152152 W. Zheng, J.M. Wu, S. Chen, K.B. Yu, S. Bin Hua, C.H. Li, J.X. Zhang, Y.S. Shi, Addit. Manuf. 48 (2021) 102396. . Such works have shown the potential use of this technology to produce ceramic cores (to fabricate turbine engines and gas turbine hollow blades) and high porous ceramics (used for thermal insulators, filters, catalyst supports, separation membranes, etc.). The SLS technology can be used to fabricate parts with low firing shrinkage (<5% 155155 A. Chen, M. Li, J. Wu, L. Cheng, R. Liu, Y. Shi, C. Li, J. Alloys Compd. 776 (2019) 486.), (156156 A. Chen, M. Li, J. Xu, C. Lou, J. Wu, L. Cheng, Y. Shi, J. Eur. Ceram. Soc. 38 (2018) 4553.), (158158 J. Zhang, W. Zheng, J.M. Wu, K.B. Yu, C.S. Ye, Y.S. Shi, Ceram. Int. 48 (2022) 1173.) due to the low content of binders (which typically ranges from 7.5 to 15 wt% 152152 W. Zheng, J.M. Wu, S. Chen, K.B. Yu, S. Bin Hua, C.H. Li, J.X. Zhang, Y.S. Shi, Addit. Manuf. 48 (2021) 102396. )- (158158 J. Zhang, W. Zheng, J.M. Wu, K.B. Yu, C.S. Ye, Y.S. Shi, Ceram. Int. 48 (2022) 1173.). The sintered bodies typically have low relative density, with porosity usually greater than 50% 151151 S.S. Liu, M. Li, J.M. Wu, A.N. Chen, Y.S. Shi, C.H. Li, Ceram. Int. 46 (2020) 4240.), (154154 J.M. Wu, M. Li, S.S. Liu, Y.S. Shi, C.H. Li, W. Wang, Ceram. Int. 46 (2020) 26888.)- (157157 Y. Dong, H. Jiang, A. Chen, T. Yang, T. Zou, D. Xu, Ceram. Int. 46 (2020) 15159.), (160160 J.M. Wu, M. Li, S.S. Liu, Y.S. Shi, C.H. Li, W. Wang, Ceram. Int. 47 (2021) 15313., and may exceed 85% 155155 A. Chen, M. Li, J. Wu, L. Cheng, R. Liu, Y. Shi, C. Li, J. Alloys Compd. 776 (2019) 486.), (156156 A. Chen, M. Li, J. Xu, C. Lou, J. Wu, L. Cheng, Y. Shi, J. Eur. Ceram. Soc. 38 (2018) 4553.. Efforts have been made to increase mechanical strength. For example, the compressive strength of alumina parts increased almost 30 times with the addition of a sintering additive (CaSiO3), reaching 8.39 MPa for a porosity of 68.16% 154154 J.M. Wu, M. Li, S.S. Liu, Y.S. Shi, C.H. Li, W. Wang, Ceram. Int. 46 (2020) 26888.. Also, vacuum infiltration remarkably improved the flexural strength of silica-based parts, reaching 15.04 MPa, being compatible with the requirements for ceramic cores for manufacturing hollow blades 152152 W. Zheng, J.M. Wu, S. Chen, K.B. Yu, S. Bin Hua, C.H. Li, J.X. Zhang, Y.S. Shi, Addit. Manuf. 48 (2021) 102396. . Currently, there is a variety of SLS for metals and polymers. However, adapting these pieces of equipment for ceramic manufacturing requires considerable modifications and research 161161 D. Grossin, A. Montón, P. Navarrete-Segado, E. Özmen, G. Urruth, F. Maury, D. Maury, C. Frances, M. Tourbin, P. Lenormand, G. Bertrand, Open Ceram. 5 (2021) 100073.. There is just one commercially available SLS 3D printer for ceramics, as shown in Table VI.

Table VI
Selective laser sintering of ceramics: equipment supplier.

Vat photopolymerization

Fig. 11 illustrates the schematic of the vat photopolymerization technology. In this additive manufacturing process, a liquid photosensitive raw material contained in a vat is selectively cured by light-activated polymerization 1616 ISO/ASTM 52900:2015, “Additive manufacturing: general principles, terminology” (2015).. The layers can be formed by scanning a laser (stereolithography, SLA) or by projecting the entire layer at once (digital light processing, DLP) 3131 I.L. de Camargo, M.M. Morais, C.A. Fortulan, M.C. Branciforti, Ceram. Int. 47 (2021) 11906.), (163163 I. Gibson, D. Rosen, B. Stucker, Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd ed., Springer Sci., New York (2015).), (164164 J.F.P. Lovo, I.L. de Camargo, R. Erbereli, M.M. Morais, C.A. Fortulan, Mater. Res. 23 (2020) e20200010. . This technology is best suited for small ceramic components for high-precision applications 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. . It can produce dense parts with desirable mechanical performance 11 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661.), (165165 J. Wang, Int. J. Precis. Eng. Manuf. 14 (2013) 485.), (166166 M. Borlaf, A. Serra-Capdevila, C. Colominas, T. Graule, J. Eur. Ceram. Soc. 39 (2019) 3797. and excellent resolution (~40 μm 167167 E. Zanchetta, M. Cattaldo, G. Franchin, M. Schwentenwein, J. Homa, G. Brusatin, P. Colombo, Adv. Mater. 28 (2016) 370.)- (170170 U. Scheithauer, E. Schwarzer, T. Moritz, A. Michaelis, J. Mater. Eng. Perform. 27 (2018) 14.) and surface finish 11 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661.), (66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. ), (3232 O. Santoliquido, P. Colombo, A. Ortona, J. Eur. Ceram. Soc. 39 (2019) 2140.), (3333 Q. Lian, F. Yang, H. Xin, D. Li, Ceram. Int. 43 (2017) 14956., as shown in Fig. 12. However, ceramic vat photopolymerization cannot produce monolithic large parts due to the high amount of organic material associated with the process and that would lead to cracks in the debinding of thick sections 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. ), (171171 V. Truxova, J. Safka, M. Seidl, I. Kovalenko, L. Volesky, M. Ackermann, MM Sci. J. 2020 (2020) 3905.. Suppliers specify 10 mm as the maximum wall thickness to be produced 171171 V. Truxova, J. Safka, M. Seidl, I. Kovalenko, L. Volesky, M. Ackermann, MM Sci. J. 2020 (2020) 3905.), (172172 Admatec, “Admaflex 130”, 172 Admatec, “Admaflex 130”, https://admateceurope.com , acc. 25/01/2022.
https://admateceurope.com...
.

Figure 11:
Schematic of the vat photopolymerization technology (adapted from 173173 M. Pagac, J. Hajnys, Q.-P. Ma, L. Jancar, J. Jansa, P. Stefek, J. Mesicek, Polymers 13 (2021) 598. ).

Figure 12:
Zirconia part fabricated by vat photopolymerization 174174 I.L. de Camargo, R. Erbereli, H. Taylor, C.A. Fortulan, Mater. Res. 24 (2021) e20200457..

Vat photopolymerization has two main parameters: the layer thickness (usually varying between 25 and 100 μm) and the light exposure energy that determines the cure depth. This key factor should be higher than the layer thickness to ensure layer integration 2020 E. Johansson, O. Lidström, J. Johansson, O. Lyckfeldt, E. Adolfsson, Materials 10 (2017) 138.), (166166 M. Borlaf, A. Serra-Capdevila, C. Colominas, T. Graule, J. Eur. Ceram. Soc. 39 (2019) 3797.), (175175 L. Wei, J. Zhang, F. Yu, W. Zhang, X. Meng, N. Yang, S. Liu, Int. J. Hydrog. Energy 44 (2019) 6182.), (176176 I.L. de Camargo, R. Erbereli, J.F.P. Lovo, C.A. Fortulan, in 11th Braz. Congr. Manuf. Eng., ABCM (2021). . Conversely, if cure depth is too high, the accuracy is reduced 166166 M. Borlaf, A. Serra-Capdevila, C. Colominas, T. Graule, J. Eur. Ceram. Soc. 39 (2019) 3797.), (175175 L. Wei, J. Zhang, F. Yu, W. Zhang, X. Meng, N. Yang, S. Liu, Int. J. Hydrog. Energy 44 (2019) 6182.. Thus, the cure depth should be between 1.10 and 1.35 times the layer thickness 175175 L. Wei, J. Zhang, F. Yu, W. Zhang, X. Meng, N. Yang, S. Liu, Int. J. Hydrog. Energy 44 (2019) 6182. and the exposure energy must be defined empirically for each photosensitive feedstock to satisfy such condition. Moreover, the photosensitive slurry (feedstock) have several requirements concerning ceramic loading (>40 vol% 177177 M.L. Griffith, J.W. Halloran, J. Am. Ceram. Soc. 79 (1996) 2601.), (178178 K.J. Jang, J.H. Kang, J.G. Fisher, S.W. Park, Dent. Mater. 35 (2019) e97.), proper rheological behavior (<3 Pa.s 44 M. Schwentenwein, J. Homa, Int. J. Appl. Ceram. Technol. 12 (2015) 1.), (177177 M.L. Griffith, J.W. Halloran, J. Am. Ceram. Soc. 79 (1996) 2601.), (179179 Z. Wu, W. Liu, H. Wu, R. Huang, R. He, Q. Jiang, Y. Chen, X. Ji, Z. Tian, S. Wu, Mater. Chem. Phys. 207 (2018) 1.), stability, etc. Hence, a large number of studies have been carried out about the formulation of photosensitive ceramic suspensions for vat photopolymerization. Such slurry is composed of monomers, photoinitiators, ceramic powders, and additives such as dispersants, diluents, defoamers, plasticizers, and light absorbers. Due to the huge number of components already used, such a study is beyond the scope of this paper and can be found in a review dedicated to the topic 3131 I.L. de Camargo, M.M. Morais, C.A. Fortulan, M.C. Branciforti, Ceram. Int. 47 (2021) 11906.. Vat photopolymerization (VP) of ceramics can produce dense parts 44 M. Schwentenwein, J. Homa, Int. J. Appl. Ceram. Technol. 12 (2015) 1.), (166166 M. Borlaf, A. Serra-Capdevila, C. Colominas, T. Graule, J. Eur. Ceram. Soc. 39 (2019) 3797.), (175175 L. Wei, J. Zhang, F. Yu, W. Zhang, X. Meng, N. Yang, S. Liu, Int. J. Hydrog. Energy 44 (2019) 6182.), (179179 Z. Wu, W. Liu, H. Wu, R. Huang, R. He, Q. Jiang, Y. Chen, X. Ji, Z. Tian, S. Wu, Mater. Chem. Phys. 207 (2018) 1.)- (191191 H. Xing, B. Zou, Q. Lai, C. Huang, Q. Chen, X. Fu, Z. Shi, Powder Technol. 338 (2018) 153. (>99%) with mechanical strength comparable to those of conventional methods. For example, some works have reported zirconia with flexural strength greater than 700 MPa 166166 M. Borlaf, A. Serra-Capdevila, C. Colominas, T. Graule, J. Eur. Ceram. Soc. 39 (2019) 3797.), (182182 L. Wang, X. Liu, G. Wang, W. Tang, S. Li, W. Duan, R. Dou, Mater. Sci. Eng. A 770 (2020) 138537. ), (183183 M. Borlaf, N. Szubra, A. Serra-Capdevila, W.W. Kubiak, T. Graule, J. Eur. Ceram. Soc. 40 (2020) 1574.), (189189 J.C. Wang, H. Dommati, Int. J. Adv. Manuf. Technol. 98 (2018) 1537. and may exceed 1000 MPa 188188 H. Xing, B. Zou, S. Li, X. Fu, Ceram. Int. 43 (2017) 16340.), (192192 Y. Lu, Z. Mei, J. Zhang, S. Gao, X. Yang, B. Dong, L. Yue, H. Yu, J. Eur. Ceram. Soc. 40 (2020) 826.. The reported shrinkage shows great variation (from less than 15% 193193 K. Hu, Y. Wei, Z. Lu, L. Wan, P. Li, 3D Print. Addit. Manuf. 5 (2018) 311. to more than 30% (194), (195195 R. He, W. Liu, Z. Wu, D. An, M. Huang, H. Wu, Q. Jiang, X. Ji, S. Wu, Z. Xie, Ceram. Int. 44 (2018) 3412.), being usually around between 19% and 24% 33 K. Zhang, R. He, G. Ding, C. Feng, W. Song, D. Fang, Mater. Sci. Eng. A 774 (2020) 138768. ), (166166 M. Borlaf, A. Serra-Capdevila, C. Colominas, T. Graule, J. Eur. Ceram. Soc. 39 (2019) 3797.), (182182 L. Wang, X. Liu, G. Wang, W. Tang, S. Li, W. Duan, R. Dou, Mater. Sci. Eng. A 770 (2020) 138537. ), (196196 X.B. Li, H. Zhong, J.X. Zhang, Y. Sen Duan, D.L. Jiang, J. Inorg. Mater. 35 (2020) 231.), (197197 Q. Zeng, C. Yang, D. Tang, J. Li, Z. Feng, J. Liu, K. Guan, J. Mater. Sci. Technol. 35 (2019) 2751.. Such characteristic depends closely on the solid loading and sintering temperature 198198 I.L. de Camargo, R. Erbereli, C.A. Fortulan, J. Eur. Ceram. Soc. 41 (2021) 7182.. Finally, this process presents outstanding surface quality and roughness (Ra) below 0.5 μm have been reported 44 M. Schwentenwein, J. Homa, Int. J. Appl. Ceram. Technol. 12 (2015) 1.), (166166 M. Borlaf, A. Serra-Capdevila, C. Colominas, T. Graule, J. Eur. Ceram. Soc. 39 (2019) 3797.), (188188 H. Xing, B. Zou, S. Li, X. Fu, Ceram. Int. 43 (2017) 16340.), (199199 S. Sobhani, S. Allan, P. Muhunthan, E. Boigne, M. Ihme, Adv. Eng. Mater. 22 (2020) 2000158. . Research about ceramic VP has become widespread in recent years and over 30 research institutions published at least 10 papers indexed by the Web of Science in the last 5 years. Ceramic VP may be applied in the most diverse areas and Table VII presents potential applications and ceramic materials used in recent articles. For more in-depth information about this technology, a few review articles are recommended 3131 I.L. de Camargo, M.M. Morais, C.A. Fortulan, M.C. Branciforti, Ceram. Int. 47 (2021) 11906.), (311311 S. Zakeri, M. Vippola, E. Levänen, Addit. Manuf. 35 (2020) 101177.), (312312 S.A. Rasaki, D. Xiong, S. Xiong, F. Su, M. Idrees, Z. Chen, J. Adv. Ceram. 10 (2021) 442..

Table VII
Potential applications and materials used in articles related to vat photopolymerization.

Ceramic vat photopolymerization is the most mature technology with industrial readiness level 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. and several commercial machines 11 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661. (Table VIII). Although most related companies emerged in the last 5 years, there are well-established companies with years in the market as Lithoz 334334 Lithoz, “Materials ”, 334 Lithoz, “Materials ”, http://www.lithoz.com , acc. 11/02/2022.
http://www.lithoz.com...
and 3DCeram 313313 3DCeram, “Ceramics ”, 313 3DCeram, “Ceramics ”, https://3dceram.com , acc. 25/01/2022.
https://3dceram.com...
with a variety of 3D printing systems and feedstock commercially available. Even systems capable of working with multi-materials have emerged in recent years 314314 3DCeram, “C900 Hybrid”, 314 3DCeram, “C900 Hybrid”, https://3dceram.com , acc. 25/01/2022.
https://3dceram.com...
), (319319 10dim Tech, “Autocera-Multi”, 319 10dim Tech, “Autocera-Multi”, https://en.10dim.com , acc. 25/01/2022.
https://en.10dim.com...
), (342342 Soonsolid, “Industrial ceramic printer”, 342 Soonsolid, “Industrial ceramic printer”, http://www.soonser.com , acc. 25/01/2022.
http://www.soonser.com...
. Contrastingly, producing carbides and borides with this technology remains challenging due to the high refractive index (RI) of these materials, which would cause light scattering due to the RI mismatch with the usual photosensitive materials, leading to poor resolution and reducing the photopolymerization reaction 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. ), (1313 J.S. Pelz, N. Ku, M.A. Meyers, L.R. Vargas-Gonzalez, J. Mater. Res. Technol. 15 (2021) 670.), (1414 X. Zhang, X. Wu, J. Shi, J. Mater. Res. Technol. 9 (2020) 9029.. Such materials are not yet commercially available. One alternative approach to deal with this issue is the use of polymer-derived ceramics 1313 J.S. Pelz, N. Ku, M.A. Meyers, L.R. Vargas-Gonzalez, J. Mater. Res. Technol. 15 (2021) 670., which are converted into ceramics without the addition of ceramic particles 3131 I.L. de Camargo, M.M. Morais, C.A. Fortulan, M.C. Branciforti, Ceram. Int. 47 (2021) 11906.), (345345 M. Wang, C. Xie, R. He, G. Ding, K. Zhang, G. Wang, D. Fang, J. Am. Ceram. Soc. 102 (2019) 5117.)- (349349 S. Li, Y. Zhang, T. Zhao, W. Han, W. Duan, L. Wang, R. Dou, G. Wang, RSC Adv. 10 (2020) 5681.. It proved capable of manufacturing SiOC 346346 J. Schmidt, P. Colombo, J. Eur. Ceram. Soc. 38 (2018) 57.), (347347 Z. Li, Z. Chen, J. Liu, Y. Fu, C. Liu, P. Wang, M. Jiang, C. Lao, Virtual Phys. Prototyp. 15 (2020) 163.), (350350 X. Wang, F. Schmidt, D. Hanaor, P.H. Kamm, S. Li, A. Gurlo, Addit. Manuf. 27 (2019) 80.)- (352352 N.R. Brodnik, J. Schmidt, P. Colombo, K.T. Faber, Addit. Manuf. 31 (2020) 100957. , SiC 350350 X. Wang, F. Schmidt, D. Hanaor, P.H. Kamm, S. Li, A. Gurlo, Addit. Manuf. 27 (2019) 80., SiCN 350350 X. Wang, F. Schmidt, D. Hanaor, P.H. Kamm, S. Li, A. Gurlo, Addit. Manuf. 27 (2019) 80.), (353353 J. Xiao, D. Liu, H. Cheng, Y. Jia, S. Zhou, M. Zu, Ceram. Int. 46 (2020) 19393., and SiBCN 348348 S. Li, W. Duan, T. Zhao, W. Han, L. Wang, R. Dou, G. Wang, J. Eur. Ceram. Soc. 38 (2018) 4597. by ceramic vat photopolymerization. This AM technology is relatively expensive 55 R. Galante, C.G. Figueiredo-Pina, A.P. Serro, Dent. Mater. 35 (2019) 825.. The raw materials are costly because they depend on high-priced photosensitive materials 1515 N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, P. Greil, Adv. Eng. Mater. 16 (2014) 729.. Efforts have been made to reduce feedstock waste. Thus, machines that work with a small amount of material (60 mL) 316316 3DCeram, “C100 Easy Lab”, 316 3DCeram, “C100 Easy Lab”, https://3dceram.com , acc. 25/01/2022.
https://3dceram.com...
and studies about recycling raw materials 286286 C.-Y. Su, J.-C. Wang, D.-S. Chen, C.-C. Chuang, C.-K. Lin, Ceram. Int. 46 (2020) 28701.), (354354 W.A. Sarwar, J.-H. Kang, H.-I. Yoon, Materials 14 (2021) 3446. have emerged. Also, the ceramic vat photopolymerization system made by the main suppliers (3DCeram, Admatec, Lithoz) surpasses US$100,000. These systems have a dedicated recoating system 44 M. Schwentenwein, J. Homa, Int. J. Appl. Ceram. Technol. 12 (2015) 1.), (355355 P.A.J.M. Kuijpers, “Additive manufacturing system for manufacturing a three dimensional object”, Patent, WO2015107066A1, WIPO (2015).), (356356 T. Hafkamp, G. Van Baars, B. De Jager, P. Etman, in Proc. 28th Ann. Int. Solid Free. Fabr. Symp. (2017) 687. which allows the spreading of constant and homogeneous micrometric layers even for high viscosity feedstock as the high ceramic loading photosensitive suspensions 357357 I.L. de Camargo, R. Erbereli, J.F.P. Lovo, C.A. Fortulan, in Proc. 6th Braz. Technol. Symp., Springer, Cham (2021) 609.. On the other hand, research using home-built prototypes 174174 I.L. de Camargo, R. Erbereli, H. Taylor, C.A. Fortulan, Mater. Res. 24 (2021) e20200457.), (189189 J.C. Wang, H. Dommati, Int. J. Adv. Manuf. Technol. 98 (2018) 1537.), (357357 I.L. de Camargo, R. Erbereli, J.F.P. Lovo, C.A. Fortulan, in Proc. 6th Braz. Technol. Symp., Springer, Cham (2021) 609.), (358358 G. Varghese, M. Moral, M. Castro-García, J.J. López-lópez, J.R. Marín-Rueda, V. Yagüe-Alcaraz, L. Hernández-Afonso, J.C. Ruiz-Morales, J. Canales-Vázquez, Bol. Soc. Esp. Ceram. V. 57 (2018) 9. and low-cost 3D printers 198198 I.L. de Camargo, R. Erbereli, C.A. Fortulan, J. Eur. Ceram. Soc. 41 (2021) 7182.), (359359 Diptanshu G. Miao, C. Ma, Manuf. Lett. 21 (2019) 20.), (360360 F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T.M. Nargang, C. Richter, D. Helmer, B.E. Rapp, Nature 544 (2017) 337., commonly used in the manufacturing of polymers, have emerged and may be a suitable solution for the use of the technique in laboratories and small businesses.

Table VIII
Vat photopolymerization of ceramics: equipment suppliers.

CHALLENGES AND TRENDS

Ceramic parts produced by additive manufacturing still have to improve performance (resolution, surface quality, mechanical properties), reduce the associated costs (equipment and feedstock), and increase productivity to become more competitive with the traditional fabrication technologies 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. ), (1414 X. Zhang, X. Wu, J. Shi, J. Mater. Res. Technol. 9 (2020) 9029.. Although ceramic AM enables the fabrication of customized complex parts with reduced lead times 33 K. Zhang, R. He, G. Ding, C. Feng, W. Song, D. Fang, Mater. Sci. Eng. A 774 (2020) 138768. )- (66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. , 3D printing of large and dense ceramic pieces is still not feasible. In addition to the low density associated with most ceramic additive manufacturing technologies, parts produced by these processes may have defects that impair mechanical properties, and process control is a critical factor to be considered 11 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661.), (1414 X. Zhang, X. Wu, J. Shi, J. Mater. Res. Technol. 9 (2020) 9029.. The feedstock design is another key point for improvement, and it requires multidisciplinary efforts. The raw materials usually include a variety of materials and they should fit the process requirements that can range from the most common as flowability/rheological behavior, to specific for each technology as photosensitive parameters to vat photopolymerization.

Powder bed processes (binder jetting and selective laser sintering) usually provide low-density parts due to the coarse ceramic particles used to provide the proper flowability of the feedstock. Research about combining different particle sizes 361361 W. Du, J. Roa, J. Hong, Y. Liu, Z. Pei, C. Ma, J. Manuf. Sci. Eng. 143 (2021) 91002. and using granulation of nanoparticles, with high sinterability, into micron-sized granules 3737 G. Miao, W. Du, M. Moghadasi, Z. Pei, C. Ma, Addit. Manuf. 36 (2020) 101542. might alleviate the problem. Vat photopolymerization and fused deposition have the potential to produce dense ceramic parts, but their wall thickness is limited 66 Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736. due to the high amount of organic associated with the feedstock that is necessary to maintain proper rheological behavior 3131 I.L. de Camargo, M.M. Morais, C.A. Fortulan, M.C. Branciforti, Ceram. Int. 47 (2021) 11906., and improvements in post-processing can be key to this issue.

The post-processing of ceramic additive manufacturing has been the subject of study such as adding additional post-processing steps (vacuum freeze drying 278278 Q. Lian, W. Sui, X. Wu, F. Yang, S. Yang, Rapid Prototyp. J. 24 (2018) 114., different types of infiltration 278278 Q. Lian, W. Sui, X. Wu, F. Yang, S. Yang, Rapid Prototyp. J. 24 (2018) 114.), (362362 T. Koyanagi, K. Terrani, S. Harrison, J. Liu, Y. Katoh, J. Nucl. Mater. 543 (2021) 152577.), (363363 R. He, G. Ding, K. Zhang, Y. Li, D. Fang, Ceram. Int. 45 (2019) 14006., isostatic pressing 11 Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661.), (364364 C.A. Díaz-Moreno, Y. Lin, A. Hurtado-Macías, D. Espalin, C.A. Terrazas, L.E. Murr, R.B. Wicker, Ceram. Int. 45 (2019) 13620. and sanding 169169 J.C. Wang, H. Dommati, S.J. Hsieh, Int. J. Adv. Manuf. Technol. 103 (2019) 2627.), or optimizing the required step: drying 180180 M. Zhou, W. Liu, H. Wu, X. Song, Y. Chen, L. Cheng, F. He, S. Chen, S. Wu, Ceram. Int. 42 (2016) 11598.), (365365 H. Wu, W. Liu, R. He, Z. Wu, Q. Jiang, X. Song, Y. Chen, L. Cheng, S. Wu, Ceram. Int. 43 (2017) 968., debinding (heating rate 366366 L. Zhang, J. Huang, Z. Xiao, Y. He, K. Liu, B. He, B. Xiang, J. Zhai, L. Kong, Ceram. Int. 48 (2022) 14026., special atmosphere 188188 H. Xing, B. Zou, S. Li, X. Fu, Ceram. Int. 43 (2017) 16340.), (191191 H. Xing, B. Zou, Q. Lai, C. Huang, Q. Chen, X. Fu, Z. Shi, Powder Technol. 338 (2018) 153.), (272272 W. Wang, J. Sun, B. Guo, X. Chen, K.P. Ananth, J. Bai, J. Eur. Ceram. Soc. 40 (2020) 682.), (366366 L. Zhang, J. Huang, Z. Xiao, Y. He, K. Liu, B. He, B. Xiang, J. Zhai, L. Kong, Ceram. Int. 48 (2022) 14026., using vacuum 367367 H. Wu, Y. Cheng, W. Liu, R. He, M. Zhou, S. Wu, X. Song, Y. Chen, Ceram. Int. 42 (2016) 17290., multiple-steps 180180 M. Zhou, W. Liu, H. Wu, X. Song, Y. Chen, L. Cheng, F. He, S. Chen, S. Wu, Ceram. Int. 42 (2016) 11598.), (190190 W. Liu, H. Wu, Z. Tian, Y. Li, Z. Zhao, M. Huang, X. Deng, Z. Xie, S. Wu, J. Am. Ceram. Soc. 102 (2019) 2257.), (195195 R. He, W. Liu, Z. Wu, D. An, M. Huang, H. Wu, Q. Jiang, X. Ji, S. Wu, Z. Xie, Ceram. Int. 44 (2018) 3412.), (365365 H. Wu, W. Liu, R. He, Z. Wu, Q. Jiang, X. Song, Y. Chen, L. Cheng, S. Wu, Ceram. Int. 43 (2017) 968.), (368368 Y. Li, M. Wang, H. Wu, F. He, Y. Chen, S. Wu, J. Eur. Ceram. Soc. 39 (2019) 4921.), (369369 Z. Tian, Y. Yang, Y. Wang, H. Wu, W. Liu, S. Wu, Mater. Lett. 236 (2019) 144.), and sintering 198198 I.L. de Camargo, R. Erbereli, C.A. Fortulan, J. Eur. Ceram. Soc. 41 (2021) 7182.), (274274 Y. Chen, X. Bao, C.M. Wong, J. Cheng, H. Wu, H. Song, X. Ji, S. Wu, Ceram. Int. 44 (2018) 22725.), (369369 Z. Tian, Y. Yang, Y. Wang, H. Wu, W. Liu, S. Wu, Mater. Lett. 236 (2019) 144.), (370370 R.J. Huang, Q.G. Jiang, H.D. Wu, Y.H. Li, W.Y. Liu, X.X. Lu, S.H. Wu, Ceram. Int. 45 (2019) 5158.. Finally, ceramic additive manufacturing is expected to follow the general 3D printing concern with sustainability 371371 H.A. Colorado, E.I.G. Velásquez, S.N. Monteiro, J. Mater. Res. Technol. 9 (2020) 8221. and expand studies on its environmental implications (considering materials savings in the life cycle and energy consumption 372372 V.J. Ferreira, D. Wolff, A. Hornés, A. Morata, M. Torrell, A. Tarancón, C. Corchero, Appl. Energy 291 (2021) 116803.). There are already related studies about the reusability/recycling of feedstock 354354 W.A. Sarwar, J.-H. Kang, H.-I. Yoon, Materials 14 (2021) 3446., the use of recycled glass as raw materials 373373 G. Marchelli, R. Prabhakar, D. Storti, M. Ganter, Rapid Prototyp. J. 17 (2011) 187.), (374374 A. Dasan, P. Ożóg, J. Kraxner, H. Elsayed, E. Colusso, L. Grigolato, G. Savio, D. Galusek, E. Bernardo, Materials 14 (2021) 5083., and steel dust waste as an additive in ceramic 3D printing 375375 E. Ordoñez, H.A. Colorado, in “Energy technology 2020: recycling, carbon dioxide management, and other technologies”, X. Chen, Y. Zhong, L. Zhang, J.A. Howarter, A.A. Baba, C. Wang, Z. Sun, M. Zhang, E. Olivetti, A. Luo, A. Powell (Eds.), Springer, Cham (2020) 307.. Also, care must be taken about the environmentally hazardous materials involved in 3D printing and post-processing 1515 N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, P. Greil, Adv. Eng. Mater. 16 (2014) 729..

CONCLUSIONS

The performance of the ceramic parts made by additive manufacturing is still the main issue to its widespread in industry. Most ceramic additive manufacturing technologies are not able suited to produce dense parts. On the other hand, vat photopolymerization, which is the most well-established ceramic 3D printing process and can produce structural parts, has limited wall thickness due to the high amount of organic materials associated with this process that has to be eliminated during the debinding. Moreover, costs and availability of equipment and feedstock are still a matter for ceramic additive manufacturing. Several companies have launched their ceramic 3D printing solutions in the last 5 years. On the other hand, much research on equipment, material, 3D printing, and post-processing has yet to be carried out to allow ceramic additive manufacturing to have an extensive industrial application.

REFERENCES

  • 1
    Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39 (2019) 661.
  • 2
    A. Shahzad, I. Lazoglu, Compos. B Eng. 225 (2021) 109249.
  • 3
    K. Zhang, R. He, G. Ding, C. Feng, W. Song, D. Fang, Mater. Sci. Eng. A 774 (2020) 138768.
  • 4
    M. Schwentenwein, J. Homa, Int. J. Appl. Ceram. Technol. 12 (2015) 1.
  • 5
    R. Galante, C.G. Figueiredo-Pina, A.P. Serro, Dent. Mater. 35 (2019) 825.
  • 6
    Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Prog. Mater. Sci. 116 (2021) 100736.
  • 7
    E. Sachs, M. Cima, P. Williams, D. Brancazio, J. Cornie, J. Eng. Ind. 114 (1992) 481.
  • 8
    M.K. Agarwala, R. Van Weeren, A. Bandyopadhyay, A. Safari, S.C. Danforth, W.R. Priedeman, in Proc. Solid Free. Fabr. Symp. (1996) 451.
  • 9
    S. Danforth, Mater. Technol. 10 (1995) 144.
  • 10
    P.F. Blazdell, J.R.G. Evans, M.J. Edirisinghe, P. Shaw, M.J. Binstead, J. Mater. Sci. Lett. 14 (1995) 1562.
  • 11
    U. Lakshminarayan, S. Ogrydiziak, H.L. Marcus, in Int. Solid Free. Fabr. Symp. (1990) 16.
  • 12
    M.L. Griffith, J.W. Halloran, in Solid Free. Fabr. Symp. (1994) 396.
  • 13
    J.S. Pelz, N. Ku, M.A. Meyers, L.R. Vargas-Gonzalez, J. Mater. Res. Technol. 15 (2021) 670.
  • 14
    X. Zhang, X. Wu, J. Shi, J. Mater. Res. Technol. 9 (2020) 9029.
  • 15
    N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier, T. Schlordt, P. Greil, Adv. Eng. Mater. 16 (2014) 729.
  • 16
    ISO/ASTM 52900:2015, “Additive manufacturing: general principles, terminology” (2015).
  • 17
    J. Deckers, J. Vleugels, J.P. Kruth, J. Ceram. Sci. Technol. 5 (2014) 245.
  • 18
    I.L. De Camargo, J.F.P. Lovo, R. Erbereli, R.T. Coelho, I.B. Da Silva, C.A. Fortulan, Rev. Mater. 25 (2020) e12590.
  • 19
    D.A. Komissarenko, P.S. Sokolov, A.D. Evstigneeva, I.A. Shmeleva, A.E. Dosovitsky, Materials 11 (2018) 2350.
  • 20
    E. Johansson, O. Lidström, J. Johansson, O. Lyckfeldt, E. Adolfsson, Materials 10 (2017) 138.
  • 21
    M. Ziaee, N.B. Crane, Addit. Manuf. 28 (2019) 781.
  • 22
    M. Mader, L. Hambitzer, P. Schlautmann, S. Jenne, C. Greiner, F. Hirth, D. Helmer, F. Kotz-Helmer, B.E. Rapp, Adv. Sci. 8 (2021) 2103180.
  • 23
    T. Shen, H. Xiong, Z. Li, L. Zhang, K. Zhou, Ceram. Int. 47 (2021) 34352.
  • 24
    Q. He, J. Jiang, X. Yang, L. Zhang, Z. Zhou, Y. Zhong, Z. Shen, J. Eur. Ceram. Soc. 41 (2021) 1033.
  • 25
    Y.M.X. Hung Hung, M.H. Talou, M.A. Camerucci, Int. J. Appl. Ceram. Technol. 18 (2021) 1466.
  • 26
    A.M. Wätjen, P. Gingter, M. Kramer, R. Telle, Adv. Mech. Eng. 6 (2014) 141346.
  • 27
    B. Cappi, J. Ebert, R. Telle, J. Am. Ceram. Soc. 94 (2011) 111.
  • 28
    M. Lejeune, T. Chartier, C. Dossou-Yovo, R. Noguera, J. Eur. Ceram. Soc. 29 (2009) 905.
  • 29
    A. Kosmala, Q. Zhang, R. Wright, P. Kirby, Mater. Chem. Phys. 132 (2012) 788.
  • 30
    Z. Zhu, Z. Gong, P. Qu, Z. Li, S.A. Rasaki, Z. Liu, P. Wang, C. Liu, C. Lao, Z. Chen, J. Adv. Ceram. 10 (2021) 279.
  • 31
    I.L. de Camargo, M.M. Morais, C.A. Fortulan, M.C. Branciforti, Ceram. Int. 47 (2021) 11906.
  • 32
    O. Santoliquido, P. Colombo, A. Ortona, J. Eur. Ceram. Soc. 39 (2019) 2140.
  • 33
    Q. Lian, F. Yang, H. Xin, D. Li, Ceram. Int. 43 (2017) 14956.
  • 34
    A. Mostafaei, A.M. Elliott, J.E. Barnes, F. Li, W. Tan, C.L. Cramer, P. Nandwana, M. Chmielus, Prog. Mater. Sci. 119 (2021) 100707.
  • 35
    V. Sufiiarov, A. Kantyukov, A. Popovich, A. Sotov, Materials 14 (2021) 4419.
  • 36
    W. Du, X. Ren, C. Ma, Z. Pei, Mater. Lett. 234 (2019) 327.
  • 37
    G. Miao, W. Du, M. Moghadasi, Z. Pei, C. Ma, Addit. Manuf. 36 (2020) 101542.
  • 38
    M. Moghadasi, G. Miao, M. Li, Z. Pei, C. Ma, Ceram. Int. 47 (2021) 35348.
  • 39
    H. Miyanaji, S. Zhang, A. Lassell, A. Zandinejad, L. Yang, JOM 68 (2016) 831.
  • 40
    W. Du, M. Singh, D. Singh, Ceram. Int. 46 (2020) 19701.
  • 41
    H.M. Bui, R. Fischer, N. Szesni, M. Tonigold, K. Achterhold, F. Pfeiffer, O. Hinrichsen, Addit. Manuf. 50 (2022) 102498.
  • 42
    S. Bose, A. Bhattacharjee, D. Banerjee, A.R. Boccaccini, A. Bandyopadhyay, Addit. Manuf. 40 (2021) 101895.
  • 43
    D. Oropeza, A.J. Hart, Addit. Manuf. 48 (2021) 102448.
  • 44
    M. Mariani, R. Beltrami, P. Brusa, C. Galassi, R. Ardito, N. Lecis, J. Eur. Ceram. Soc. 41 (2021) 5307.
  • 45
    S. Cao, F. Xie, X. He, C. Zhang, M. Wu, Adv. Mater. Sci. Eng. 2020 (2020) 3865752.
  • 46
    S.M. Gaytan, M.A. Cadena, H. Karim, D. Delfin, Y. Lin, D. Espalin, E. MacDonald, R.B. Wicker, Ceram. Int. 41 (2015) 6610.
  • 47
    D. Yao, C.M. Gomes, Y.P. Zeng, D. Jiang, J. Günster, J.G. Heinrich, Mater. Lett. 147 (2015) 116.
  • 48
    G. Lee, M. Carrillo, J. McKittrick, D.G. Martin, E.A. Olevsky, Addit. Manuf. 33 (2020) 101107.
  • 49
    J. Vogt, H. Friedrich, M. Stepanyan, C. Eckardt, M. Lam, D. Lau, B. Chen, R. Shan, J. Chan, Prog. Addit. Manuf. 7 (2022) 161.
  • 50
    S. Maleksaeedi, H. Eng, F.E. Wiria, T.M.H. Ha, Z. He, J. Mater. Process. Technol. 214 (2014) 1301.
  • 51
    E. Mendoza Jimenez, D. Ding, L. Su, A.R. Joshi, A. Singh, B. Reeja-Jayan, J. Beuth, Addit. Manuf. 30 (2019) 100864.
  • 52
    S. Huang, C. Ye, H. Zhao, Z. Fan, Addit. Manuf. 29 (2019) 100802.
  • 53
    J.A. Gonzalez, J. Mireles, Y. Lin, R.B. Wicker, Ceram. Int. 42 (2016) 10559.
  • 54
    X. Li, H. Zhang, Y. Shen, Y. Xiong, L. Dong, J. Zheng, S. Zhao, Mater. Chem. Phys. 267 (2021) 124587.
  • 55
    S. Cho, D. Jeong, H. Kim, Ceram. Int. 46 (2020) 16827.
  • 56
    P. Kunchala, K. Kappagantula, Mater. Des. 155 (2018) 443.
  • 57
    ComeTrue, “M10 Ceramic & Binder Jetting 3D Printer”, 57 ComeTrue, “M10 Ceramic & Binder Jetting 3D Printer”, http://www.cometrue3d.com , acc. 04/02/2022.
    » http://www.cometrue3d.com
  • 58
    Voxeljet, “Technical ceramics”, 58 Voxeljet, “Technical ceramics”, http://www.voxeljet.com , acc. 04/02/2022.
    » http://www.voxeljet.com
  • 59
    Voxeljet, “VX200”, 59 Voxeljet, “VX200”, http://www.voxeljet.com , acc. 04/02/2022.
    » http://www.voxeljet.com
  • 60
    Voxeljet, “VX1000”, 60 Voxeljet, “VX1000”, http://www.voxeljet.com , acc. 04/02/2022.
    » http://www.voxeljet.com
  • 61
    ExOne, “Ceramic 3D printing materials & binders”, 61 ExOne, “Ceramic 3D printing materials & binders”, http://www.exone.com , acc. 04/02/2022.
    » http://www.exone.com
  • 62
    A. Ruscitti, C. Tapia, N.M. Rendtorff, Cerâmica 66, 380 (2020) 354.
  • 63
    J. Baltazar, M.F.R.P. Alves, C. dos Santos, S. Olhero, Ceramics 5 (2021) 1.
  • 64
    A. Gaddam, D.S. Brazete, A.S. Neto, B. Nan, J.M.F. Ferreira, J. Am. Ceram. Soc. 104 (2021) 4368.
  • 65
    A. Gaddam, D.S. Brazete, A.S. Neto, B. Nan, H.R. Fernandes, J.M.F. Ferreira, J. Am. Ceram. Soc. 105 (2022) 1753.
  • 66
    B.A.E. Ben-Arfa, A.S. Neto, I.M. Miranda Salvado, R.C. Pullar, J.M.F. Ferreira, J. Am. Ceram. Soc. 102 (2019) 1608.
  • 67
    B. Nan, S. Olhero, R. Pinho, P.M. Vilarinho, T.W. Button, J.M.F. Ferreira, J. Am. Ceram. Soc. 102 (2019) 3191.
  • 68
    H. Elsayed, M. Sayed, S.M. Naga, P. Rebesan, C. Gardin, B. Zavan, P. Colombo, E. Bernardo, J. Eur. Ceram. Soc. 42 (2022) 286.
  • 69
    H. Elsayed, M. Picicco, A. Dasan, J. Kraxner, D. Galusek, E. Bernardo, Ceram. Int. 45 (2019) 13740.
  • 70
    A. Dasan, H. Elsayed, J. Kraxner, D. Galusek, E. Bernardo, J. Eur. Ceram. Soc. 39 (2019) 4445.
  • 71
    K. Huang, H. Elsayed, G. Franchin, P. Colombo, J. Eur. Ceram. Soc. 41 (2021) 7552.
  • 72
    K. Huang, H. Elsayed, G. Franchin, P. Colombo, Addit. Manuf. 36 (2020) 101549.
  • 73
    H. Elsayed, M. Secco, F. Zorzi, K. Schuhladen, R. Detsch, A.R. Boccaccini, E. Bernardo, Materials 12 (2019) 1.
  • 74
    F. Dogrul, P. Ożóg, M. Michálek, H. Elsayed, D. Galusek, L. Liverani, A.R. Boccaccini, E. Bernardo, Materials 14 (2021) 5170.
  • 75
    M.A. Sainz, S. Serena, M. Belmonte, P. Miranzo, M.I. Osendi, Mater. Sci. Eng. C 115 (2020) 110734.
  • 76
    H. Elsayed, A. Chmielarz, M. Potoczek, T. Fey, P. Colombo, Addit. Manuf. 28 (2019) 365.
  • 77
    I. Buj-Corral, A. Domínguez-Fernández, A. Gómez-Gejo, Materials 13 (2020) 2157.
  • 78
    Y. Lakhdar, C. Tuck, A. Terry, C. Spadaccini, R. Goodridge, J. Eur. Ceram. Soc. 41 (2021) 76.
  • 79
    L. del-Mazo-Barbara, M.P. Ginebra, J. Eur. Ceram. Soc. 41 (2021) 18.
  • 80
    M. Belmonte, G. Lopez-Navarrete, M.I. Osendi, P. Miranzo, J. Eur. Ceram. Soc. 41 (2021) 2407.
  • 81
    B. Nan, F.J. Galindo-Rosales, J.M.F. Ferreira, Mater. Today 35 (2020) 16.
  • 82
    J. Qiu, J. Tani, N. Yanada, Y. Kobayashi, H. Takahashi, J. Intell. Mater. Syst. Struct. 15 (2004) 643.
  • 83
    K. Zhu, D. Yang, Z. Yu, Y. Ma, S. Zhang, R. Liu, J. Li, J. Cui, H. Yuan, Ceram. Int. 46 (2020) 27254.
  • 84
    S.S.L. Chan, M.L. Sesso, G.V. Franks, J. Am. Ceram. Soc. 103 (2020) 5554.
  • 85
    K. Huang, H. Elsayed, G. Franchin, P. Colombo, Appl. Mater. Today 23 (2021) 101005.
  • 86
    H. Xiong, L. Zhao, H. Chen, X. Wang, K. Zhou, D. Zhang, J. Alloys Compd. 809 (2019) 151824.
  • 87
    3DPotter, “Printers”, 87 3DPotter, “Printers”, https://3dpotter.com , acc. 21/01/2022.
    » https://3dpotter.com
  • 88
    3DPotter, “3D-printing cement”, 88 3DPotter, “3D-printing cement”, https://3dpotter.com , acc. 21/01/2022.
    » https://3dpotter.com
  • 89
    Eazao, “Eazao Mega 5”, 89 Eazao, “Eazao Mega 5”, http://www.eazao.com , acc. 22/01/2022.
    » http://www.eazao.com
  • 90
    Eazao, “Eazao Zero”, 90 Eazao, “Eazao Zero”, http://www.eazao.com , acc. 21/01/2022.
    » http://www.eazao.com
  • 91
    Duraprinter 3D, “3D Printers”, 91 Duraprinter 3D, “3D Printers”, https://duraprinter3d.com , acc. 21/02/2022.
    » https://duraprinter3d.com
  • 92
    Lynxter, “PAS11, toolhead for 3d printing of ceramics”, 92 Lynxter, “PAS11, toolhead for 3d printing of ceramics”, https://lynxter.fr , acc. 21/01/2022.
    » https://lynxter.fr
  • 93
    Rapidia, “Materials ”, 93 Rapidia, “Materials ”, http://www.rapidia.com , acc. 21/01/2022.
    » http://www.rapidia.com
  • 94
    Aniwaa, “Metal 3D Printer”, 94 Aniwaa, “Metal 3D Printer”, http://www.aniwaa.com , acc. 21/01/2022.
    » http://www.aniwaa.com
  • 95
    StoneFlower, “3d-printer StoneFlower”, 95 StoneFlower, “3d-printer StoneFlower”, http://www.stoneflower3d.com , acc. 21/01/2022.
    » http://www.stoneflower3d.com
  • 96
    Wasp, “Delta WASP 2040 Clay”, 96 Wasp, “Delta WASP 2040 Clay”, http://www.3dwasp.com , acc. 21/01/2022.
    » http://www.3dwasp.com
  • 97
    Wasp, “Crane WASP”, 97 Wasp, “Crane WASP”, http://www.3dwasp.com , acc. 21/01/2022.
    » http://www.3dwasp.com
  • 98
    Wasp, “Delta WASP 3MT Concrete”, 98 Wasp, “Delta WASP 3MT Concrete”, http://www.3dwasp.com , acc. 20/01/2022.
    » http://www.3dwasp.com
  • 99
    Vorm Vrij, “Clay printers & accessories”, 99 Vorm Vrij, “Clay printers & accessories”, https://vormvrij.nl , acc. 24/01/2022.
    » https://vormvrij.nl
  • 100
    L. Gorjan, R. Tonello, T. Sebastian, P. Colombo, F. Clemens, J. Eur. Ceram. Soc. 39 (2019) 2463.
  • 101
    N.A. Conzelmann, L. Gorjan, F. Sarraf, L.D. Poulikakos, M.N. Partl, C.R. Müller, F.J. Clemens, Rapid Prototyp. J. 26 (2020) 1035.
  • 102
    L. Gorjan, C. Galusca, M. Sami, T. Sebastian, F. Clemens, Addit. Manuf. 36 (2020) 101391.
  • 103
    S. Esslinger, A. Grebhardt, J. Jaeger, F. Kern, A. Killinger, C. Bonten, R. Gadow, Materials 14 (2020) 156.
  • 104
    D. Nötzel, T. Hanemann, Materials 13 (2020) 4461.
  • 105
    M. Orlovská, M. Hain, M. Kitzmantel, P. Veteška, Z. Hajdúchová, M. Janek, M. Vozárová Bača, Addit. Manuf. 48 (2021).
  • 106
    A.C. Marsh, Y. Zhang, L. Poli, N. Hammer, A. Roch, M. Crimp, X. Chatzistavrou, Mater. Sci. Eng. C 118 (2021) 111516.
  • 107
    D. Nötzel, R. Eickhoff, C. Pfeifer, T. Hanemann, Materials 14 (2021) 5467.
  • 108
    P. Veteška, Z. Hajdúchová, J. Feranc, K. Tomanová, J. Milde, M. Kritikos, Ľ. Bača, M. Janek, Appl. Mater. Today 22 (2021) 100949.
  • 109
    G. Poszvek, C. Wiedermann, E. Markl, J.M. Bauer, R. Seemann, N.M. Durakbasa, M. Lackner, in “Digital conversion on the way to industry 4.0”, N.M. Durakbasa, M.G. Gençyilmaz (Eds.), Springer, Cham (2021) 121.
  • 110
    J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, C. Holzer, Materials 11 (2018) 840.
  • 111
    M. Orlovská, Z. Chlup, Bača M. Janek, M. Kitzmantel, J. Eur. Ceram. Soc. 40 (2020) 4837.
  • 112
    K. Sudan, P. Singh, A. Gökçe, V.K. Balla, K.H. Kate, Ceram. Int. 46 (2020) 23922.
  • 113
    A. Arnesano, S.K. Padmanabhan, A. Notarangelo, F. Montagna, A. Licciulli, Ceram. Int. 46 (2020) 2206.
  • 114
    D. Nötzel, R. Eickhoff, T. Hanemann, Materials 11 (2018) 1463.
  • 115
    M. Eickenscheidt, M. Langenmair, A. Dbouk, D. Nötzel, T. Hanemann, T. Stieglitz, Materials 14 (2021) 200.
  • 116
    Aniwaa, “3d-figo FFD 150H”, 116 Aniwaa, “3d-figo FFD 150H”, http://www.aniwaa.com , acc. 12/01/2022.
    » http://www.aniwaa.com
  • 117
    3d-figo, “Materials ”, 117 3d-figo, “Materials ”, http://3d-figo.de , acc. 12/01/2022.
    » http://3d-figo.de
  • 118
    Pollen, “Ceramic lattice structure”, 118 Pollen, “Ceramic lattice structure”, http://www.pollen.am , acc. 12/01/2022.
    » http://www.pollen.am
  • 119
    Pollen, “Pam Series MC 3D Printer”, 119 Pollen, “Pam Series MC 3D Printer”, http://www.pollen.am , acc. 12/01/2022.
    » http://www.pollen.am
  • 120
    Pollen, “Materials ”, 120 Pollen, “Materials ”, http://www.pollen.am , acc. 12/01/2022.
    » http://www.pollen.am
  • 121
    UPRISE 3D, “UPS-240D”, 121 UPRISE 3D, “UPS-240D”, http://www.uprise3d.com , acc. 05/05/2022.
    » http://www.uprise3d.com
  • 122
    UPRISE 3D, “UPGM-ZRO2”, 122 UPRISE 3D, “UPGM-ZRO2”, http://www.uprise3d.com , acc. 05/05/2022.
    » http://www.uprise3d.com
  • 123
    UPRISE 3D, “UPGM-AL2O3”, 123 UPRISE 3D, “UPGM-AL2O3”, http://www.uprise3d.com , acc. 05/05/2022.
    » http://www.uprise3d.com
  • 124
    UPRISE 3D, “UPS-250”, 124 UPRISE 3D, “UPS-250”, http://www.uprise3d.com , acc. 05/05/2022.
    » http://www.uprise3d.com
  • 125
    UPRISE 3D, “UPS-556”, 125 UPRISE 3D, “UPS-556”, http://www.uprise3d.com , acc. 05/05/2022.
    » http://www.uprise3d.com
  • 126
    Zetamix, “Filaments”, 126 Zetamix, “Filaments”, http://zetamix.fr , acc. 19/01/2022.
    » http://zetamix.fr
  • 127
    Zetamix, “Zetaprint Raise3D Pro2”, 127 Zetamix, “Zetaprint Raise3D Pro2”, http://zetamix.fr , acc. 19/01/2022.
    » http://zetamix.fr
  • 128
    Xerion, “Fusion Factory”, 128 Xerion, “Fusion Factory”, http://www.xerion.de , acc. 19/01/2022.
    » http://www.xerion.de
  • 129
    J.F. Valera-Jiménez, J.C. Pérez-Flores, M. Castro-García, J. Canales-Vázquez, Appl. Mater. Today 25 (2021) 101243.
  • 130
    S. Cano, J. Gonzalez-Gutierrez, J. Sapkota, M. Spoerk, F. Arbeiter, S. Schuschnigg, C. Holzer, C. Kukla, Addit. Manuf. 26 (2019) 117.
  • 131
    F. Sarraf, E. Abbatinali, L. Gorjan, T. Sebastian, P. Colombo, S.V. Churakov, F. Clemens, J. Eur. Ceram. Soc. 41 (2021) 6677.
  • 132
    T. Sebastian, M. Bach, A. Geiger, T. Lusiola, L. Kozielski, F. Clemens, Materials 14 (2021) 5927.
  • 133
    E. Willems, M. Turon-Vinas, B.C. dos Santos, B. Van Hooreweder, F. Zhang, B. Van Meerbeek, J. Vleugels, J. Eur. Ceram. Soc. 41 (2021) 5292.
  • 134
    J. Ebert, E. Ozkol, R. Telle, H. Fischer, K. Uibel, in Proc. 10th Eur. Ceram. Soc. Conf., ECERS (2008) 466.
  • 135
    Y. Oh, V. Bharambe, B. Mummareddy, J. Martin, J. McKnight, M.A. Abraham, J.M. Walker, K. Rogers, B. Conner, P. Cortes, E. MacDonald, J.J. Adams, Addit. Manuf. 27 (2019) 586.
  • 136
    M. Majumder, C.S. Rendall, J.A. Eukel, J.Y.L. Wang, N. Behabtu, C.L. Pint, T.-Y. Liu, A.W. Orbaek, F. Mirri, J. Nam, A.R. Barron, R.H. Hauge, H.K. Schmidt, M. Pasquali, J. Phys. Chem. B 116 (2012) 6536.
  • 137
    D. Graf, J. Jung, T. Hanemann, Micromachines 12 (2021) 1136.
  • 138
    E. Özkol, J. Ebert, K. Uibel, A.M. Wätjen, R. Telle, J. Eur. Ceram. Soc. 29 (2009) 403.
  • 139
    J. Ebert, E. Özkol, A. Zeichner, K. Uibel, Ö. Weiss, U. Koops, R. Telle, H. Fischer, J. Dent. Res. 88 (2009) 673.
  • 140
    E. Özkol, W. Zhang, J. Ebert, R. Telle, J. Eur. Ceram. Soc. 32 (2012) 2193.
  • 141
    P. Qu, D. Xiong, Z. Zhu, Z. Gong, Y. Li, Y. Li, L. Fan, Z. Liu, P. Wang, C. Liu, Z. Chen, Addit. Manuf. 48 (2021) 102394.
  • 142
    Xjet, “Materials ”, 142 Xjet, “Materials ”, http://www.xjet3d.com , acc. 10/02/2022.
    » http://www.xjet3d.com
  • 143
    Xjet, “XJet Carmel 1400C Ultimate Ceramic AM system”, 143 Xjet, “XJet Carmel 1400C Ultimate Ceramic AM system”, http://www.xjet3d.com , acc. 10/02/2022.
    » http://www.xjet3d.com
  • 144
    Tritone, “Materials ”, 144 Tritone, “Materials ”, https://tritoneam.com , acc. 10/02/2022.
    » https://tritoneam.com
  • 145
    Tritone, “Systems”, 145 Tritone, “Systems”, https://tritoneam.com , acc. 10/02/2022.
    » https://tritoneam.com
  • 146
    S. Pfeiffer, K. Florio, D. Puccio, M. Grasso, B.M. Colosimo, C.G. Aneziris, K. Wegener, T. Graule, J. Eur. Ceram. Soc. 41 (2021) 6087.
  • 147
    A.-N. Chen, J.-M. Wu, K. Liu, J.-Y. Chen, H. Xiao, P. Chen, C.-H. Li, Y.-S. Shi, Adv. Appl. Ceram. 117 (2018) 100.
  • 148
    A. Awad, F. Fina, A. Goyanes, S. Gaisford, A.W. Basit, Adv. Drug Deliv. Rev. 174 (2021) 406.
  • 149
    H. Zhang, S. LeBlanc, in “Additive manufacturing of high-performance metals and alloys: modeling and optimization”, I. Shishkovsky (Ed.), IntechOpen (2018) 75832.
  • 150
    N.K. Tolochko, Y.V. Khlopkov, S.E. Mozzharov, M.B. Ignatiev, T. Laoui, V.I. Titov, Rapid Prototyp. J. 6 (2000) 155.
  • 151
    S.S. Liu, M. Li, J.M. Wu, A.N. Chen, Y.S. Shi, C.H. Li, Ceram. Int. 46 (2020) 4240.
  • 152
    W. Zheng, J.M. Wu, S. Chen, K.B. Yu, S. Bin Hua, C.H. Li, J.X. Zhang, Y.S. Shi, Addit. Manuf. 48 (2021) 102396.
  • 153
    C. Li, L. Hu, Y. Zou, J. Liu, J. Xiao, J. Wu, Y. Shi, Int. J. Appl. Ceram. Technol. 17 (2020) 255.
  • 154
    J.M. Wu, M. Li, S.S. Liu, Y.S. Shi, C.H. Li, W. Wang, Ceram. Int. 46 (2020) 26888.
  • 155
    A. Chen, M. Li, J. Wu, L. Cheng, R. Liu, Y. Shi, C. Li, J. Alloys Compd. 776 (2019) 486.
  • 156
    A. Chen, M. Li, J. Xu, C. Lou, J. Wu, L. Cheng, Y. Shi, J. Eur. Ceram. Soc. 38 (2018) 4553.
  • 157
    Y. Dong, H. Jiang, A. Chen, T. Yang, T. Zou, D. Xu, Ceram. Int. 46 (2020) 15159.
  • 158
    J. Zhang, W. Zheng, J.M. Wu, K.B. Yu, C.S. Ye, Y.S. Shi, Ceram. Int. 48 (2022) 1173.
  • 159
    Y. Zou, C.H. Li, J.A. Liu, J.M. Wu, L. Hu, R.F. Gui, Y.S. Shi, Ceram. Int. 45 (2019) 12654.
  • 160
    J.M. Wu, M. Li, S.S. Liu, Y.S. Shi, C.H. Li, W. Wang, Ceram. Int. 47 (2021) 15313.
  • 161
    D. Grossin, A. Montón, P. Navarrete-Segado, E. Özmen, G. Urruth, F. Maury, D. Maury, C. Frances, M. Tourbin, P. Lenormand, G. Bertrand, Open Ceram. 5 (2021) 100073.
  • 162
    Wuhan Huake 3D Technol., “HK C250”, , “HK C250”, http://www.huake3d.com , acc. 05/05/2022.
    » http://www.huake3d.com
  • 163
    I. Gibson, D. Rosen, B. Stucker, Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd ed., Springer Sci., New York (2015).
  • 164
    J.F.P. Lovo, I.L. de Camargo, R. Erbereli, M.M. Morais, C.A. Fortulan, Mater. Res. 23 (2020) e20200010.
  • 165
    J. Wang, Int. J. Precis. Eng. Manuf. 14 (2013) 485.
  • 166
    M. Borlaf, A. Serra-Capdevila, C. Colominas, T. Graule, J. Eur. Ceram. Soc. 39 (2019) 3797.
  • 167
    E. Zanchetta, M. Cattaldo, G. Franchin, M. Schwentenwein, J. Homa, G. Brusatin, P. Colombo, Adv. Mater. 28 (2016) 370.
  • 168
    J. Xiao, Y. Jia, D. Liu, H. Cheng, Ceram. Int. 46 (2020) 25802.
  • 169
    J.C. Wang, H. Dommati, S.J. Hsieh, Int. J. Adv. Manuf. Technol. 103 (2019) 2627.
  • 170
    U. Scheithauer, E. Schwarzer, T. Moritz, A. Michaelis, J. Mater. Eng. Perform. 27 (2018) 14.
  • 171
    V. Truxova, J. Safka, M. Seidl, I. Kovalenko, L. Volesky, M. Ackermann, MM Sci. J. 2020 (2020) 3905.
  • 172
    Admatec, “Admaflex 130”, 172 Admatec, “Admaflex 130”, https://admateceurope.com , acc. 25/01/2022.
    » https://admateceurope.com
  • 173
    M. Pagac, J. Hajnys, Q.-P. Ma, L. Jancar, J. Jansa, P. Stefek, J. Mesicek, Polymers 13 (2021) 598.
  • 174
    I.L. de Camargo, R. Erbereli, H. Taylor, C.A. Fortulan, Mater. Res. 24 (2021) e20200457.
  • 175
    L. Wei, J. Zhang, F. Yu, W. Zhang, X. Meng, N. Yang, S. Liu, Int. J. Hydrog. Energy 44 (2019) 6182.
  • 176
    I.L. de Camargo, R. Erbereli, J.F.P. Lovo, C.A. Fortulan, in 11th Braz. Congr. Manuf. Eng., ABCM (2021).
  • 177
    M.L. Griffith, J.W. Halloran, J. Am. Ceram. Soc. 79 (1996) 2601.
  • 178
    K.J. Jang, J.H. Kang, J.G. Fisher, S.W. Park, Dent. Mater. 35 (2019) e97.
  • 179
    Z. Wu, W. Liu, H. Wu, R. Huang, R. He, Q. Jiang, Y. Chen, X. Ji, Z. Tian, S. Wu, Mater. Chem. Phys. 207 (2018) 1.
  • 180
    M. Zhou, W. Liu, H. Wu, X. Song, Y. Chen, L. Cheng, F. He, S. Chen, S. Wu, Ceram. Int. 42 (2016) 11598.
  • 181
    B. Xing, C. Cao, W. Zhao, M. Shen, C. Wang, Z. Zhao, J. Eur. Ceram. Soc. 40 (2020) 1418.
  • 182
    L. Wang, X. Liu, G. Wang, W. Tang, S. Li, W. Duan, R. Dou, Mater. Sci. Eng. A 770 (2020) 138537.
  • 183
    M. Borlaf, N. Szubra, A. Serra-Capdevila, W.W. Kubiak, T. Graule, J. Eur. Ceram. Soc. 40 (2020) 1574.
  • 184
    J. Zhang, L. Wei, X. Meng, F. Yu, N. Yang, S. Liu, Ceram. Int. 46 (2020) 8745.
  • 185
    T. Zheng, W. Wang, J. Sun, J. Liu, J. Bai, Ceram. Int. 46 (2020) 8682.
  • 186
    X. Wu, Q. Lian, D. Li, X. He, J. Meng, X. Liu, Z. Jin, Ceram. Int. 45 (2019) 3687.
  • 187
    Z. Xing, W. Liu, Y. Chen, W. Li, Ceram. Int. 44 (2018) 19939.
  • 188
    H. Xing, B. Zou, S. Li, X. Fu, Ceram. Int. 43 (2017) 16340.
  • 189
    J.C. Wang, H. Dommati, Int. J. Adv. Manuf. Technol. 98 (2018) 1537.
  • 190
    W. Liu, H. Wu, Z. Tian, Y. Li, Z. Zhao, M. Huang, X. Deng, Z. Xie, S. Wu, J. Am. Ceram. Soc. 102 (2019) 2257.
  • 191
    H. Xing, B. Zou, Q. Lai, C. Huang, Q. Chen, X. Fu, Z. Shi, Powder Technol. 338 (2018) 153.
  • 192
    Y. Lu, Z. Mei, J. Zhang, S. Gao, X. Yang, B. Dong, L. Yue, H. Yu, J. Eur. Ceram. Soc. 40 (2020) 826.
  • 193
    K. Hu, Y. Wei, Z. Lu, L. Wan, P. Li, 3D Print. Addit. Manuf. 5 (2018) 311.
  • 194
    X. Shuai, Y. Zeng, P. Li, J. Chen, J. Mater. Sci. 55 (2020) 6771.
  • 195
    R. He, W. Liu, Z. Wu, D. An, M. Huang, H. Wu, Q. Jiang, X. Ji, S. Wu, Z. Xie, Ceram. Int. 44 (2018) 3412.
  • 196
    X.B. Li, H. Zhong, J.X. Zhang, Y. Sen Duan, D.L. Jiang, J. Inorg. Mater. 35 (2020) 231.
  • 197
    Q. Zeng, C. Yang, D. Tang, J. Li, Z. Feng, J. Liu, K. Guan, J. Mater. Sci. Technol. 35 (2019) 2751.
  • 198
    I.L. de Camargo, R. Erbereli, C.A. Fortulan, J. Eur. Ceram. Soc. 41 (2021) 7182.
  • 199
    S. Sobhani, S. Allan, P. Muhunthan, E. Boigne, M. Ihme, Adv. Eng. Mater. 22 (2020) 2000158.
  • 200
    D. Wang, T. Chen, Y. Zeng, X. Chen, W. Xing, Y. Fan, X. Qiao, J. Memb. Sci. 643 (2022) 120066.
  • 201
    T. Chen, D. Wang, X. Chen, M. Qiu, Y. Fan, Ceram. Int. 48 (2022) 304.
  • 202
    Y. Ye, Y. Du, T. Hu, J. You, B. Bao, Y. Wang, T. Wang, Ind. Eng. Chem. Res. 60 (2021) 9368.
  • 203
    S.S. Ray, H. Dommati, J.-C. Wang, S.-S. Chen, Ceram. Int. 46 (2020) 12480.
  • 204
    J.-H. Kang, K. Sakthiabirami, K.-J. Jang, J.-G. Jang, G.-J. Oh, C. Park, J.G. Fisher, S.-W. Park, Mater. Des. 214 (2022) 110372.
  • 205
    Y.S. Cho, S. Yang, E. Choi, K.H. Kim, S.-J. Gwak, Ceram. Int. 47 (2021) 35134.
  • 206
    Q. Tang, X. Li, C. Lai, L. Li, H. Wu, Y. Wang, X. Shi, Bioact. Mater. 6 (2021) 169.
  • 207
    D. Van Hede, B. Liang, S. Anania, M. Barzegari, B. Verlée, G. Nolens, J. Pirson, L. Geris, F. Lambert, Adv. Funct. Mater. 32 (2022) 2105002.
  • 208
    R. Erbereli, I.L. de Camargo, M.M. Morais, C.A. Fortulan, J. Braz. Soc. Mech. Sci. Eng. 44 (2022) 170.
  • 209
    Y. Du, T. Hu, J. You, Y. Ye, B. Zhang, B. Bao, M. Li, Y. Liu, Y. Wang, T. Wang, Int. J. Appl. Ceram. Technol. 19 (2022) 268.
  • 210
    Q. Chen, B. Zou, Q. Lai, Y. Wang, K. Zhu, Y. Deng, C. Huang, Ceram. Int. 47 (2021) 20352.
  • 211
    F. Baino, G. Magnaterra, E. Fiume, A. Schiavi, L. Tofan, M. Schwentenwein, E. Verné, J. Am. Ceram. Soc. 105 (2022) 1648.
  • 212
    Y. Yao, W. Qin, B. Xing, N. Sha, T. Jiao, Z. Zhao, J. Adv. Ceram. 10 (2021) 39.
  • 213
    Y. Zeng, Y. Yan, H. Yan, C. Liu, P. Li, P. Dong, Y. Zhao, J. Chen, J. Mater. Sci. 53 (2018) 6291.
  • 214
    Z. Wang, C. Huang, J. Wang, B. Zou, Ceram. Int. 45 (2019) 3902.
  • 215
    C. Feng, K. Zhang, R. He, G. Ding, M. Xia, X. Jin, C. Xie, J. Adv. Ceram. 9 (2020) 360.
  • 216
    H. Liang, Y. Wang, S. Chen, Y. Liu, Z. Liu, J. Bai, Int. J. Bioprinting 8 (2022) 502.
  • 217
    H. Zhang, H. Zhang, Y. Xiong, L. Dong, X. Li, Mater. Sci. Eng. C 130 (2021) 112437.
  • 218
    H. Zhang, Y. Xiong, L. Dong, Y. Shen, H. Hu, H. Gao, S. Zhao, X. Li, Ceram. Int. 47 (2021) 25863.
  • 219
    X. Wu, Q. Lian, D. Li, Z. Jin, Rapid Prototyp. J. 25 (2019) 277.
  • 220
    M. Pfaffinger, M. Hartmann, M. Schwentenwein, J. Stampfl, Int. J. Appl. Ceram. Technol. 14 (2017) 499.
  • 221
    S. Xu, H. Zhang, X. Li, X. Zhang, H. Liu, Y. Xiong, R. Gao, S. Yu, Proc. Inst. Mech. Eng. H 236 (2022) 286.
  • 222
    M.T. Remy, A. Akkouch, L. He, S. Eliason, M.E. Sweat, T. Krongbaramee, F. Fei, F. Qian, B.A. Amendt, X. Song, L. Hong, ACS Biomater. Sci. Eng. 7 (2021) 4521.
  • 223
    S. Liu, L. Mo, G. Bi, S. Chen, D. Yan, J. Yang, Y.-G. Jia, L. Ren, Ceram. Int. 47 (2021) 21108.
  • 224
    X. Huang, H. Dai, Y. Hu, P. Zhuang, Z. Shi, Y. Ma, J. Eur. Ceram. Soc. 41 (2021) 3743.
  • 225
    S. Liu, J. Chen, T. Chen, Y. Zeng, Ceram. Int. 47 (2021) 13187.
  • 226
    Y. Chen, T. Furukawa, T. Ibi, Y. Noda, S. Maruo, Opt. Mater. Express 11 (2021) 105.
  • 227
    C. Paredes, F.J. Martínez-Vázquez, H. Elsayed, P. Colombo, A. Pajares, P. Miranda, J. Eur. Ceram. Soc. 41 (2021) 892.
  • 228
    Y. Wu, R. Chen, G. Zhao, X. Chen, X. Qu, Y. Liu, J. Eur. Ceram. Soc. 40 (2020) 4323.
  • 229
    A. Safonov, E. Maltsev, S. Chugunov, A. Tikhonov, S. Konev, S. Evlashin, D. Popov, A. Pasko, I. Akhatov, Appl. Sci. 10 (2020) 7138.
  • 230
    H. Elsayed, P. Colombo, M.C. Crovace, E.D. Zanotto, E. Bernardo, Ceram. Int. 47 (2021) 8200.
  • 231
    M. Mirkhalaf, J. Goldsmith, J. Ren, A. Dao, P. Newman, A. Schindeler, M.A. Woodruff, C.R. Dunstan, H. Zreiqat, Appl. Mater. Today 25 (2021) 101230.
  • 232
    M. Mirkhalaf, X. Wang, A. Entezari, C.R. Dunstan, X. Jiang, H. Zreiqat, Appl. Mater. Today 25 (2021) 101168.
  • 233
    M. Mirkhalaf, A. Dao, A. Schindeler, D.G. Little, C. Dunstan, H. Zreiqat, SSRN Electron. J. (2020) 3737306.
  • 234
    J. Schmidt, H. Elsayed, E. Bernardo, P. Colombo, J. Eur. Ceram. Soc. 38 (2018) 4580.
  • 235
    R. Wu, Y. Li, M. Shen, X. Yang, L. Zhang, X. Ke, G. Yang, C. Gao, Z. Gou, S. Xu, Bioact. Mater. 6 (2021) 1242.
  • 236
    F. Lu, R. Wu, M. Shen, L. Xie, M. Liu, Y. Li, S. Xu, L. Wan, X. Yang, C. Gao, Z. Gou, J. Eur. Ceram. Soc. 41 (2021) 1672.
  • 237
    Y.-H. Lee, J.-W. Lee, S.-Y. Yang, H. Lee, Y.-H. Koh, H.-E. Kim, Ceram. Int. 47 (2021) 11285.
  • 238
    J.-W. Lee, Y.-H. Lee, H. Lee, Y.-H. Koh, H.-E. Kim, Ceram. Int. 47 (2021) 3252.
  • 239
    Y. Wei, D. Zhao, Q. Cao, J. Wang, Y. Wu, B. Yuan, X. Li, X. Chen, Y. Zhou, X. Yang, X. Zhu, C. Tu, X. Zhang, ACS Biomater. Sci. Eng. 6 (2020) 1787.
  • 240
    A.K. Teotia, K. Dienel, I. Qayoom, B. van Bochove, S. Gupta, J. Partanen, J. Seppälä, A. Kumar, ACS Appl. Mater. Interfaces 12 (2020) 48340.
  • 241
    H.-K. Lim, S.-J. Hong, S.-J. Byeon, S.-M. Chung, S.-W. On, B.-E. Yang, J.-H. Lee, S.-H. Byun, Int. J. Mol. Sci. 21 (2020) 6942.
  • 242
    J.-W. Kim, B.-E. Yang, S.-J. Hong, H.-G. Choi, S.-J. Byeon, H.-K. Lim, S.-M. Chung, J.-H. Lee, S.-H. Byun, Int. J. Mol. Sci. 21 (2020) 4837.
  • 243
    S.-B. Hua, X. Yuan, J.-M. Wu, J. Su, L.-J. Cheng, W. Zheng, M.-Z. Pan, J. Xiao, Y.-S. Shi, Ceram. Int. 48 (2022) 3020.
  • 244
    S.-B. Hua, J. Su, Z.-L. Deng, J.-M. Wu, L.-J. Cheng, X. Yuan, F. Chen, H. Zhu, D.-H. Qi, J. Xiao, Y.-S. Shi, Addit. Manuf. 45 (2021) 102074.
  • 245
    H. Zhu, M. Li, X. Huang, D. Qi, L.P. Nogueira, X. Yuan, W. Liu, Z. Lei, J. Jiang, H. Dai, J. Xiao, Appl. Mater. Today 25 (2021) 101166.
  • 246
    D.S. Larionov, M.A. Kuzina, P.V. Evdokimov, A.V. Garshev, N.K. Orlov, V.I. Putlyaev, Russ. J. Inorg. Chem. 65 (2020) 312.
  • 247
    H. Zhang, C. Jiao, Z. Liu, Z. He, M. Ge, Z. Tian, C. Wang, Z. Wei, L. Shen, H. Liang, J. Mech. Behav. Biomed. Mater. 121 (2021) 104642.
  • 248
    C. Jiao, J. Gu, Y. Cao, D. Xie, H. Liang, R. Chen, T. Shi, L. Shen, C. Wang, Z. Tian, X. Yi, J. Eur. Ceram. Soc. 40 (2020) 6087.
  • 249
    S. Zakeri, T. Vastamäki, M. Honkanen, M. Järveläinen, M. Vippola, E. Levänen, Mater. Des. 210 (2021) 110115.
  • 250
    O. Santoliquido, F. Camerota, M. Pelanconi, D. Ferri, M. Elsener, P.D. Eggenschwiler, A. Ortona, Appl. Sci. 11 (2021) 8239.
  • 251
    H. Wang, P. Wang, Q. Wang, R. Zhang, L. Zhang, Ind. Eng. Chem. Res. 60 (2021) 13107.
  • 252
    A. Valotta, M.C. Maier, S. Soritz, M. Pauritsch, M. Koenig, D. Brouczek, M. Schwentenwein, H. Gruber-Woelfler, J. Flow Chem. 11 (2021) 675.
  • 253
    P.A. Nikulshin, V.S. Dorokhov, O.L. Ovsienko, M.V. Rogozina, N.A. Anikeev, I.V. Sidel’nikov, S.S. Chugunov, Pet. Chem. 61 (2021) 1207.
  • 254
    N. Kovacev, S. Li, S. Zeraati-Rezaei, H. Hemida, A. Tsolakis, K. Essa, Int. J. Adv. Manuf. Technol. 112 (2021) 1115.
  • 255
    N. Merilaita, T. Vastamäki, A. Ismailov, E. Levänen, M. Järveläinen, Ceram. Int. 47 (2021) 10742.
  • 256
    S. Zhang, I.A. Sutejo, J. Kim, Y. Choi, H. Park, H. Yun, J. Am. Ceram. Soc. 105 (2022) 3827.
  • 257
    B. Hu, W. Zou, W. Wu, J. Tang, R. Chen, H. Zhou, C. Du, B. Shan, J. Eur. Ceram. Soc. 42 (2022) 1694.
  • 258
    H. Li, Y. Liu, P. Colombo, W. Li, Y. Liu, K. Hu, Z. Lu, J. Am. Ceram. Soc. 105 (2022) 181.
  • 259
    H. Li, Y. Liu, Y. Liu, Q. Zeng, J. Wang, K. Hu, Z. Lu, J. Liang, J. Eur. Ceram. Soc. 40 (2020) 4825.
  • 260
    H. Li, Y. Liu, Y. Liu, Q. Zeng, K. Hu, Z. Lu, J. Liang, J. Adv. Ceram. 9 (2020) 220.
  • 261
    H. Li, Y. Liu, Y. Liu, K. Hu, Z. Lu, J. Liang, ACS Omega 5 (2020) 27455.
  • 262
    H. Li, Y. Liu, Y. Liu, Q. Zeng, K. Hu, Z. Lu, J. Liang, J. Manuf. Process. 57 (2020) 380.
  • 263
    H. Li, K. Hu, Y. Liu, Z. Lu, J. Liang, Scr. Mater. 194 (2021) 113665.
  • 264
    C.J. Bae, D. Kim, J.W. Halloran, J. Eur. Ceram. Soc. 39 (2019) 618.
  • 265
    Q. Li, J. Liang, Y. Zhang, J. Li, Y. Zhou, X. Sun, Scr. Mater. 208 (2022) 114342.
  • 266
    G. Zhao, K. Hu, Q. Feng, Z. Lu, Ceram. Int. 47 (2021) 17719.
  • 267
    S. Chugunov, A. Smirnov, A. Kholodkova, A. Tikhonov, O. Dubinin, I. Shishkovsky, Appl. Sci. 12 (2022) 412.
  • 268
    X. Chen, J. Sun, B. Guo, Y. Wang, S. Yu, W. Wang, J. Bai, Ceram. Int. 48 (2022) 1285.
  • 269
    L. He, X. Wang, F. Fei, L. Chen, X. Song, Addit. Manuf. 48 (2021) 102407.
  • 270
    A. Sotov, A. Kantyukov, A. Popovich, V. Sufiiarov, Ceram. Int. 47 (2021) 30358.
  • 271
    K. Liu, C. Zhou, J. Hu, S. Zhang, Q. Zhang, C. Sun, Y. Shi, H. Sun, C. Yin, Y. Zhang, Y. Fu, J. Eur. Ceram. Soc. 41 (2021) 5909.
  • 272
    W. Wang, J. Sun, B. Guo, X. Chen, K.P. Ananth, J. Bai, J. Eur. Ceram. Soc. 40 (2020) 682.
  • 273
    X. Hu, X. Li, K. Yan, X. Qi, W. Chen, D. Wu, Ceram. Int. 47 (2021) 32376.
  • 274
    Y. Chen, X. Bao, C.M. Wong, J. Cheng, H. Wu, H. Song, X. Ji, S. Wu, Ceram. Int. 44 (2018) 22725.
  • 275
    W. Chen, F. Wang, K. Yan, Y. Zhang, D. Wu, Ceram. Int. 45 (2019) 4880.
  • 276
    D. Xiang, Y. Xu, W. Bai, H. Lin, Ceram. Int. 47 (2021) 28837.
  • 277
    C. Zhang, Z. Jiang, L. Zhao, W. Guo, X. Gao, Ceram. Int. 47 (2021) 13344.
  • 278
    Q. Lian, W. Sui, X. Wu, F. Yang, S. Yang, Rapid Prototyp. J. 24 (2018) 114.
  • 279
    J.-H. Kim, W.-Y. Maeng, Y.-H. Koh, H.-E. Kim, Ceram. Int. 46 (2020) 28211.
  • 280
    F. Chen, H. Zhu, J.M. Wu, S. Chen, L.J. Cheng, Y.S. Shi, Y.C. Mo, C.H. Li, J. Xiao, Ceram. Int. 46 (2020) 11268.
  • 281
    Y. Zhao, P. Li, P. Dong, Y. Zeng, J. Chen, Ceram. Int. 47 (2021) 1053.
  • 282
    H. Lerner, K. Nagy, N. Pranno, F. Zarone, O. Admakin, F. Mangano, J. Dent. 113 (2021) 103792.
  • 283
    W. Wang, J. Sun, J. Prosthet. Dent. 125 (2021) 657.
  • 284
    H. Li, L. Song, J. Sun, J. Ma, Z. Shen, Adv. Appl. Ceram. 119 (2020) 236.
  • 285
    X. Li, H. Zhong, J. Zhang, Y. Duan, J. Li, D. Jiang, Int. J. Appl. Ceram. Technol. 17 (2019) 844.
  • 286
    C.-Y. Su, J.-C. Wang, D.-S. Chen, C.-C. Chuang, C.-K. Lin, Ceram. Int. 46 (2020) 28701.
  • 287
    H. Li, L. Song, J. Sun, J. Ma, Z. Shen, Adv. Appl. Ceram. 118 (2019) 30.
  • 288
    M. Dehurtevent, L. Robberecht, A. Thuault, E. Deveaux, A. Leriche, F. Petit, C. Denis, J.-C. Hornez, P. Béhin, J. Prosthet. Dent. 125 (2021) 453.
  • 289
    M. Dehurtevent, L. Robberecht, J.C. Hornez, A. Thuault, E. Deveaux, P. Béhin, Dent. Mater. 33 (2017) 477.
  • 290
    C.P. Jiang, H.J. Hsu, S.Y. Lee, Int. J. Precis. Eng. Manuf. 15 (2014) 2413.
  • 291
    F. Chen, Y.-R. Wu, J.-M. Wu, H. Zhu, S. Chen, S.-B. Hua, Z.-X. He, C.-Y. Liu, J. Xiao, Y.-S. Shi, Addit. Manuf. 44 (2021) 102055.
  • 292
    B. Yang, S. Wang, G. Wang, X. Yang, J. Mech. Behav. Biomed. Mater. 124 (2021) 104859.
  • 293
    S. Baumgartner, R. Gmeiner, J.A. Schönherr, J. Stampfl, Mater. Sci. Eng. C 116 (2020) 111180.
  • 294
    J.A. Schönherr, S. Baumgartner, M. Hartmann, J. Stampfl, Materials 13 (2020) 1492.
  • 295
    S. Masciandaro, M. Torrell, P. Leone, A. Tarancón, J. Eur. Ceram. Soc. 39 (2019) 9.
  • 296
    D.A. Komissarenko, P.S. Sokolov, A.D. Evstigneeva, I.V. Slyusar, A.S. Nartov, P.A. Volkov, N.V. Lyskov, P.V. Evdokimov, V.I. Putlayev, A.E. Dosovitsky, J. Eur. Ceram. Soc. 41 (2021) 684.
  • 297
    L. Lin, H. Wu, P. Ni, Y. Chen, Z. Huang, Y. Li, K. Lin, P. Sheng, S. Wu, Addit. Manuf. 52 (2022) 102671.
  • 298
    W. Duan, S. Li, G. Wang, R. Dou, L. Wang, Y. Zhang, H. Li, H. Tan, J. Eur. Ceram. Soc. 40 (2020) 3535.
  • 299
    L. Lin, H. Wu, Y. Xu, K. Lin, W. Zou, S. Wu, Mater. Chem. Phys. 249 (2020) 122969.
  • 300
    T. Rieger, T. Schubert, J. Schurr, A. Kopp, M. Schwenkel, D. Sellmer, A. Wolff, J. Meese-Marktscheffel, T. Bernthaler, G. Schneider, Materials 14 (2021) 7631.
  • 301
    Y. Sun, M. Li, Y. Jiang, B. Xing, M. Shen, C. Cao, C. Wang, Z. Zhao, Adv. Eng. Mater. 23 (2021) 2001475.
  • 302
    H. Wang, L.Y. Liu, P. Ye, Z. Huang, A.Y.R. Ng, Z. Du, Z. Dong, D. Tang, C.L. Gan, Adv. Mater. 33 (2021) 2007072.
  • 303
    G. Ding, R. He, K. Zhang, N. Zhou, H. Xu, Ceram. Int. 46 (2020) 18785.
  • 304
    G. Zhang, Y. Wu, Addit. Manuf. 47 (2021) 102271.
  • 305
    J. Hostaša, M. Schwentenwein, G. Toci, L. Esposito, D. Brouczek, A. Piancastelli, A. Pirri, B. Patrizi, M. Vannini, V. Biasini, Scr. Mater. 187 (2020) 194.
  • 306
    F. Wang, Z. Li, Y. Lou, F. Zeng, M. Hao, W. Lei, X. Wang, X. Wang, G. Fan, W. Lu, Addit. Manuf. 47 (2021) 102244.
  • 307
    Z. Zou, Y. Lou, X. Song, H. Jiang, K. Du, C. Yin, W. Lu, X. Wang, X. Wang, M. Fu, W. Lei, Adv. Mater. Interfaces 8 (2021) 2100584.
  • 308
    Y. Lou, F. Wang, Z. Li, Z. Zou, G. Fan, X. Wang, W. Lei, W. Lu, Ceram. Int. 46 (2020) 16979.
  • 309
    L. Cai, X. Hu, G. Tan, G. Li, Y. Zhang, J. Eur. Ceram. Soc. 41 (2021) 2114.
  • 310
    Y. Liu, Z. Chen, J. Li, B. Gong, L. Wang, C. Lao, P. Wang, C. Liu, Y. Feng, X. Wang, Addit. Manuf. 35 (2020) 101348.
  • 311
    S. Zakeri, M. Vippola, E. Levänen, Addit. Manuf. 35 (2020) 101177.
  • 312
    S.A. Rasaki, D. Xiong, S. Xiong, F. Su, M. Idrees, Z. Chen, J. Adv. Ceram. 10 (2021) 442.
  • 313
    3DCeram, “Ceramics ”, 313 3DCeram, “Ceramics ”, https://3dceram.com , acc. 25/01/2022.
    » https://3dceram.com
  • 314
    3DCeram, “C900 Hybrid”, 314 3DCeram, “C900 Hybrid”, https://3dceram.com , acc. 25/01/2022.
    » https://3dceram.com
  • 315
    3DCeram, “C100 Easy Fab”, 315 3DCeram, “C100 Easy Fab”, https://3dceram.com , acc. 25/01/2022.
    » https://3dceram.com
  • 316
    3DCeram, “C100 Easy Lab”, 316 3DCeram, “C100 Easy Lab”, https://3dceram.com , acc. 25/01/2022.
    » https://3dceram.com
  • 317
    3DCeram, “C900 Flex”, 317 3DCeram, “C900 Flex”, https://3dceram.com , acc. 25/01/2022.
    » https://3dceram.com
  • 318
    3DCeram, “C3600 Ultimate”, 318 3DCeram, “C3600 Ultimate”, https://3dceram.com , acc. 25/01/2022.
    » https://3dceram.com
  • 319
    10dim Tech, “Autocera-Multi”, 319 10dim Tech, “Autocera-Multi”, https://en.10dim.com , acc. 25/01/2022.
    » https://en.10dim.com
  • 320
    10dim Tech, “Materials ”, 320 10dim Tech, “Materials ”, http://www.en.10dim.com , acc. 25/01/2022.
    » http://www.en.10dim.com
  • 321
    10dim Tech, “Products”, 321 10dim Tech, “Products”, https://en.10dim.com , acc. 25/01/2022.
    » https://en.10dim.com
  • 322
    10dim Tech, “Autocera-R”, 322 10dim Tech, “Autocera-R”, https://en.10dim.com , acc. 25/01/2022.
    » https://en.10dim.com
  • 323
    10dim Tech, “Autocera-U”, 323 10dim Tech, “Autocera-U”, https://en.10dim.com , acc. 25/01/2022.
    » https://en.10dim.com
  • 324
    10dim Tech, “Autocera-L”, 324 10dim Tech, “Autocera-L”, https://en.10dim.com , acc. 25/01/2022.
    » https://en.10dim.com
  • 325
    10dim Tech, “Autocera-X”, 325 10dim Tech, “Autocera-X”, https://en.10dim.com , acc. 25/01/2022.
    » https://en.10dim.com
  • 326
    Admatec, “Admaflex 300”, 326 Admatec, “Admaflex 300”, https://admateceurope.com , acc. 25/01/2022.
    » https://admateceurope.com
  • 327
    Admatec, “Ceramics ”, 327 Admatec, “Ceramics ”, https://admateceurope.com , acc. 25/01/2022.
    » https://admateceurope.com
  • 328
    AON, “3D Printers”, 328 AON, “3D Printers”, http://www.aoninni.com , acc. 25/01/2022.
    » http://www.aoninni.com
  • 329
    AON, “Material”, 329 AON, “Material”, http://www.aoninni.com , acc. 25/01/2022.
    » http://www.aoninni.com
  • 330
    Carima, “IMC”, 330 Carima, “IMC”, https://carima.com , acc. 25/01/2022.
    » https://carima.com
  • 331
    Carima, “Ceramic”, 331 Carima, “Ceramic”, https://carima.com , acc. 25/01/2022.
    » https://carima.com
  • 332
    Tethon 3D, “Shop”, 332 Tethon 3D, “Shop”, https://tethon3d.com , acc. 25/01/2022.
    » https://tethon3d.com
  • 333
    Fortify, “Flux series 3D printers”, 333 Fortify, “Flux series 3D printers”, https://3dfortify.com , acc. 25/01/2022.
    » https://3dfortify.com
  • 334
    Lithoz, “Materials ”, 334 Lithoz, “Materials ”, http://www.lithoz.com , acc. 11/02/2022.
    » http://www.lithoz.com
  • 335
    Lithoz, “3D Printers”, 335 Lithoz, “3D Printers”, http://www.lithoz.com , acc. 11/02/2022.
    » http://www.lithoz.com
  • 336
    Photocentric, “Research”, 336 Photocentric, “Research”, https://photocentricgroup.com , acc. 25/01/2022.
    » https://photocentricgroup.com
  • 337
    Prodways, “Movinglight DLP”, 337 Prodways, “Movinglight DLP”, https://www.prodways.com , acc. 25/01/2022.
    » https://www.prodways.com
  • 338
    Prodways, “ProMaker V6000”, 338 Prodways, “ProMaker V6000”, https://pdf.directindustry.com , acc. 25/01/2022.
    » https://pdf.directindustry.com
  • 339
    Prodways, “Print3D tricalcium phosphate”, 339 Prodways, “Print3D tricalcium phosphate”, http://www.prodways.com , acc. 25/01/2022.
    » http://www.prodways.com
  • 340
    SK Fine, “Ceramic parts business”, 340 SK Fine, “Ceramic parts business”, https://sk-fine.co.jp , acc. 25/01/2022.
    » https://sk-fine.co.jp
  • 341
    SK Fine, “Planning and sales business for 3D printers for ceramics”, 341 SK Fine, “Planning and sales business for 3D printers for ceramics”, https://sk-fine.co.jp , acc. 25/01/2022.
    » https://sk-fine.co.jp
  • 342
    Soonsolid, “Industrial ceramic printer”, 342 Soonsolid, “Industrial ceramic printer”, http://www.soonser.com , acc. 25/01/2022.
    » http://www.soonser.com
  • 343
    Soonsolid, “Desktop ceramic printer”, 343 Soonsolid, “Desktop ceramic printer”, http://www.soonser.com , acc. 25/01/2022.
    » http://www.soonser.com
  • 344
    Tethon 3D, “Bison 1000 DLP printer”, 344 Tethon 3D, “Bison 1000 DLP printer”, https://tethon3d.com , acc. 25/01/2022.
    » https://tethon3d.com
  • 345
    M. Wang, C. Xie, R. He, G. Ding, K. Zhang, G. Wang, D. Fang, J. Am. Ceram. Soc. 102 (2019) 5117.
  • 346
    J. Schmidt, P. Colombo, J. Eur. Ceram. Soc. 38 (2018) 57.
  • 347
    Z. Li, Z. Chen, J. Liu, Y. Fu, C. Liu, P. Wang, M. Jiang, C. Lao, Virtual Phys. Prototyp. 15 (2020) 163.
  • 348
    S. Li, W. Duan, T. Zhao, W. Han, L. Wang, R. Dou, G. Wang, J. Eur. Ceram. Soc. 38 (2018) 4597.
  • 349
    S. Li, Y. Zhang, T. Zhao, W. Han, W. Duan, L. Wang, R. Dou, G. Wang, RSC Adv. 10 (2020) 5681.
  • 350
    X. Wang, F. Schmidt, D. Hanaor, P.H. Kamm, S. Li, A. Gurlo, Addit. Manuf. 27 (2019) 80.
  • 351
    X. Xu, P. Li, C. Ge, W. Han, D. Zhao, X. Zhang, ChemistrySelect 4 (2019) 6862.
  • 352
    N.R. Brodnik, J. Schmidt, P. Colombo, K.T. Faber, Addit. Manuf. 31 (2020) 100957.
  • 353
    J. Xiao, D. Liu, H. Cheng, Y. Jia, S. Zhou, M. Zu, Ceram. Int. 46 (2020) 19393.
  • 354
    W.A. Sarwar, J.-H. Kang, H.-I. Yoon, Materials 14 (2021) 3446.
  • 355
    P.A.J.M. Kuijpers, “Additive manufacturing system for manufacturing a three dimensional object”, Patent, WO2015107066A1, WIPO (2015).
  • 356
    T. Hafkamp, G. Van Baars, B. De Jager, P. Etman, in Proc. 28th Ann. Int. Solid Free. Fabr. Symp. (2017) 687.
  • 357
    I.L. de Camargo, R. Erbereli, J.F.P. Lovo, C.A. Fortulan, in Proc. 6th Braz. Technol. Symp., Springer, Cham (2021) 609.
  • 358
    G. Varghese, M. Moral, M. Castro-García, J.J. López-lópez, J.R. Marín-Rueda, V. Yagüe-Alcaraz, L. Hernández-Afonso, J.C. Ruiz-Morales, J. Canales-Vázquez, Bol. Soc. Esp. Ceram. V. 57 (2018) 9.
  • 359
    Diptanshu G. Miao, C. Ma, Manuf. Lett. 21 (2019) 20.
  • 360
    F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T.M. Nargang, C. Richter, D. Helmer, B.E. Rapp, Nature 544 (2017) 337.
  • 361
    W. Du, J. Roa, J. Hong, Y. Liu, Z. Pei, C. Ma, J. Manuf. Sci. Eng. 143 (2021) 91002.
  • 362
    T. Koyanagi, K. Terrani, S. Harrison, J. Liu, Y. Katoh, J. Nucl. Mater. 543 (2021) 152577.
  • 363
    R. He, G. Ding, K. Zhang, Y. Li, D. Fang, Ceram. Int. 45 (2019) 14006.
  • 364
    C.A. Díaz-Moreno, Y. Lin, A. Hurtado-Macías, D. Espalin, C.A. Terrazas, L.E. Murr, R.B. Wicker, Ceram. Int. 45 (2019) 13620.
  • 365
    H. Wu, W. Liu, R. He, Z. Wu, Q. Jiang, X. Song, Y. Chen, L. Cheng, S. Wu, Ceram. Int. 43 (2017) 968.
  • 366
    L. Zhang, J. Huang, Z. Xiao, Y. He, K. Liu, B. He, B. Xiang, J. Zhai, L. Kong, Ceram. Int. 48 (2022) 14026.
  • 367
    H. Wu, Y. Cheng, W. Liu, R. He, M. Zhou, S. Wu, X. Song, Y. Chen, Ceram. Int. 42 (2016) 17290.
  • 368
    Y. Li, M. Wang, H. Wu, F. He, Y. Chen, S. Wu, J. Eur. Ceram. Soc. 39 (2019) 4921.
  • 369
    Z. Tian, Y. Yang, Y. Wang, H. Wu, W. Liu, S. Wu, Mater. Lett. 236 (2019) 144.
  • 370
    R.J. Huang, Q.G. Jiang, H.D. Wu, Y.H. Li, W.Y. Liu, X.X. Lu, S.H. Wu, Ceram. Int. 45 (2019) 5158.
  • 371
    H.A. Colorado, E.I.G. Velásquez, S.N. Monteiro, J. Mater. Res. Technol. 9 (2020) 8221.
  • 372
    V.J. Ferreira, D. Wolff, A. Hornés, A. Morata, M. Torrell, A. Tarancón, C. Corchero, Appl. Energy 291 (2021) 116803.
  • 373
    G. Marchelli, R. Prabhakar, D. Storti, M. Ganter, Rapid Prototyp. J. 17 (2011) 187.
  • 374
    A. Dasan, P. Ożóg, J. Kraxner, H. Elsayed, E. Colusso, L. Grigolato, G. Savio, D. Galusek, E. Bernardo, Materials 14 (2021) 5083.
  • 375
    E. Ordoñez, H.A. Colorado, in “Energy technology 2020: recycling, carbon dioxide management, and other technologies”, X. Chen, Y. Zhong, L. Zhang, J.A. Howarter, A.A. Baba, C. Wang, Z. Sun, M. Zhang, E. Olivetti, A. Luo, A. Powell (Eds.), Springer, Cham (2020) 307.

Publication Dates

  • Publication in this collection
    16 Sept 2022
  • Date of issue
    Jul-Sep 2022

History

  • Received
    22 Mar 2022
  • Reviewed
    20 May 2022
  • Accepted
    28 May 2022
Associação Brasileira de Cerâmica Av. Prof. Almeida Prado, 532 - IPT - Prédio 36 - 2º Andar - Sala 03 , Cidade Universitária - 05508-901 - São Paulo/SP -Brazil, Tel./Fax: +55 (11) 3768-7101 / +55 (11) 3768-4284 - São Paulo - SP - Brazil
E-mail: ceram.abc@gmail.com