Acessibilidade / Reportar erro

Structure and histochemistry of medicinal species of Solanum

ABSTRACT

Studies on native medicinal plants strengthen initiatives to preserve the environments where those species naturally occur, many of them already strongly menaced even before their potential to humankind is known. Root and stem barks, leaves, and pericarps samples of Solanum agrarium Sendtn., S. lycocarpum A. St.-Hil., S. palinacanthum Dunal, S. paniculatum L., and S. stipulaceum Roem. & Schult., species that occur in the Cerrado (Brazililan savanna) were processed according to common light microscopy techniques for structural analysis, and histochemical tests were performed to locate and identify classes of chemical compounds. The distinctive features identified were low concentration of crystal sand in the root and stem, presence of terpene resin in the root, and absence of hypodermis in the leaf, in S. agrarium; bright spots (group of sclereids) in the root, isobilateral mesophyll, thickened cell walls with hemicelluloses and strong aroma in the fruit, in S. lycocarpum; high concentration of crystal sand in the root and stem, oval-shaped limb, presence of isolated crystals in the exocarp, in S. palinacanthum; strong sclerification and rays with great height in the root and stem, in S. paniculatum; and accumulation of soluble protein in the root and stem, presence of conspicuous membranaceous stipules, absence of spiniform trichomes, in S. stipulaceum. This work identifies distinctive structural features, its ecological importance, and determines the distribution of secondary compounds associated with the medicinal properties reported for these species and contributes to the conservation of the natural environments where they occur.

Keywords:
Environmental conservation; Herbal medicine; Plant drug; Pharmacognosy; Phytochemical; Traditional medicine

Introduction

The botanical and chemical characterization of medicinal species is important for the validation of its traditional use and for studies to obtaining new products and innovation (Araújo et al., 2010Araújo, N.D., Coelho, V.P.M., Agra, M.F., 2010. The pharmacobotanical comparative study of leaves of Solanum crinitum Lam., Solanum gomphodes Dunal and Solanum lycocarpum A. St-Hil (Solanaceae). Rev. Bras. Farmacogn. 20, 666-674.; Nurit-Silva et al., 2011Nurit-Silva, K., Costa-Silva, R., Coelho, V.P.M., Agra, M.F., 2011. Pharmacobotanical study of vegetative organs of Solanum torvum Kiriaki. Rev. Bras. Farmacogn. 21, 568-574.; WHO, 2013World Health Organization, 2013. WHO Traditional Medicine Strategy 2014–2023. WHO Library Cataloguing-in-Publication Data, Geneva.). The structural analysis of plants identifies distinctive features useful for the determination of the authenticity of medicinal plant species and the identification of the plant organs where the highest concentrations of active substances are present, especially when the plants are fragmented for use in herbal drugs (Argyropoulou et al., 2010Argyropoulou, C., Akoumianaki-Ioannidou, A., Christodoulakis, N.S., Fasseas, C., 2010. Leaf anatomy and histochemistry of Lippia citriodora (Verbenaceae). Aust. J. Bot. 58, 398-409.; Ferreira et al., 2011Ferreira, P.R.F., Mendes, C.S.O., Reis, S.B., Rodrigues, C.G., Oliveira, D.A., Mercadante-Simões, M.O., 2011. Morphoanatomy, histochemistry and phytochemistry of Psidium guineense Sw. (Myrtaceae) leaves. J. Pharm. Res. 4, 942-944.; Coelho et al., 2012Coelho, V.P.M., Leite, J.P.V., Nunes, L.G., Ventrella, M.C., 2012. Anatomy, histochemistry and phytochemical profile of leaf and stem bark of Bathysa cuspidata (Rubiaceae). Aust. J. Bot. 60, 49-60.). These features have an ecological function, related to the environment where the plant occurs. The understanding of this function may help optimize their cultivation and collection (Adams et al., 2013Adams, S.J., Kuruvilla, G.R., Krishnamurthy, K.V., Nagarajan, M., Venkatasubramanian, P., 2013. Pharmacognostic and phytochemical studies on Ayurvedic drugs Ativisha and Musta. Rev. Bras. Farmacogn. 23, 398-409.; Moreira et al., 2013Moreira, A.S.F., Lemos Filho, J.P., Isaias, R.M.S., 2013. Structural adaptations of two sympatric epiphytic orchids (Orchidaceae) to a cloudy forest environment in rocky outcrops of Southeast Brazil. Rev. Biol. Trop. 61, 1053-1065.; Sampaio et al., 2014Sampaio, V.S., Araújo, N.D., Agra, M.F., 2014. Characters of leaf epidermis in Solanum (clade Brevantherum) species from Atlantic forest of Northeastern Brazil. S. Afr. J. Bot. 94, 108-113.).

Chemical studies performed using histochemical techniques allow a quick and inexpensive preliminary evaluation of the medicinal potential of taxonomically close species in the search for new pharmaceuticals (Coelho et al., 2012Coelho, V.P.M., Leite, J.P.V., Nunes, L.G., Ventrella, M.C., 2012. Anatomy, histochemistry and phytochemical profile of leaf and stem bark of Bathysa cuspidata (Rubiaceae). Aust. J. Bot. 60, 49-60.; Demarco et al., 2013Demarco., D., Castro, M.M., Ascensão, L., 2013. Two laticifer systems in Sapium haematospermum – new records for Euphorbiaceae. Botany 91, 545-554.; Araújo et al., 2014Araújo, N., Coelho, V.P.M., Ventrella, M.C., Agra, M.F., 2014. Leaf anatomy and histochemistry of three species of Ficus sect. Americanae supported by light and electron microscopy. Microsc. Microanal. 20, 296-304.; Mercadante-Simões et al., 2014Mercadante-Simões, M.O., Mazzottini-Dos-Santos, H.C., Nery, L.A., Ferreira, P.R.B., Ribeiro, L.M., Royo, V.A., Oliveira, D.A., 2014. Structure, histochemistry and phytochemical profile of the sobol and aerial stem of Tontelea micrantha (Celastraceae – Hippocrateoideae). An. Acad. Bras. Cienc. 83, 1167-1179.). This technique can minimize costs in the search for new pharmaceuticals and increase the safety of traditional medicines (Adams et al., 2013Adams, S.J., Kuruvilla, G.R., Krishnamurthy, K.V., Nagarajan, M., Venkatasubramanian, P., 2013. Pharmacognostic and phytochemical studies on Ayurvedic drugs Ativisha and Musta. Rev. Bras. Farmacogn. 23, 398-409.; Santos et al., 2013Santos, A.V., Defavieri, A.C.V., Bizzo, H.R., Gil, R.A.S.S., Sato, A., 2013. In vitro propagation, histochemistry, and analysis of essential oil from conventionally propagated and in vitro-propagated plants of Varronia curassavica Jacq. In Vitro Cell Dev. Biol. Plant 49, 405-413.), however histochemical studies are rare in Solanum (Araújo et al., 2010Araújo, N.D., Coelho, V.P.M., Agra, M.F., 2010. The pharmacobotanical comparative study of leaves of Solanum crinitum Lam., Solanum gomphodes Dunal and Solanum lycocarpum A. St-Hil (Solanaceae). Rev. Bras. Farmacogn. 20, 666-674.; Picoli et al., 2013Picoli, E.A.T., Isaias, R.M.S., Ventrella, M.C., Miranda, R.M., 2013. Anatomy, histochemistry and micromorphology of leaves of Solanum granuloso-leprosum Dunal. Biosci. J. 29, 655-666.).

Solanaceae is widely distributed with 269 species of the genus Solanum L. described in Brazil (Stehmann et al., 2014Stehmann, J.R., Mentz, L.A., Agra, M.F., Vignoli-Silva, M., Giacomin, L., Rodrigues, I.M.C., 2014. Solanaceae. Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro, Available from: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB14716 (accessed 19.10.15).
http://floradobrasil.jbrj.gov.br/jabot/f...
). Some of the species occurring in the Cerrado biome are traditionally used for the control of diabetes, and have been recognized for their medicinal properties: Solanum agrarium Sendtn. has anti-inflammatory effects (Agra et al., 2007Agra, M.F., Baracho, G.S., Basílio, I.J.D., Nurit, K., Coelho, V.P., Barbosa, D.A., 2007. Sinopse da flora medicinal do Cariri paraibano. Oecol. Bras. 11, 323-330.; Castro et al., 2011Castro, J.A., Brasileiro, B.P., Lyra, D.H., Pereira, D.A., Chaves, J.J., Amaral, C.L.F., 2011. Ethnobotanical study of traditional uses of medicinal plants: the flora of caatinga in the community of Cravolândia-BA, Brazil. J. Med. Plant Res. 5, 1905-1917.), S. lycocarpum A. St.-Hil is hypoglycemic (Farina et al., 2010Farina, F., Piassi, F.G., Moysés, M.R., Bazzolli, D.M.S., Bissoli, N.S., 2010. Glycemic and urinary volume responses in diabetic mellitus rats treated with Solanum lycocarpum. Appl. Physiol. Nutr. Metab. 35, 40-44.), S. palinacanthum Dunal is used as antimicrobial and hypoglycemic (Pereira et al., 2008Pereira, A.C., Oliveira, D.F., Silva, G.H., Figueiredo, H.C.P., Cavalheiro, A.J., Carvalho, D.A., Souza, L.P., Chalfoun, S.M., 2008. Identification of the antimicrobial substances produced by Solanum palinacanthum (Solanaceae). An. Acad. Bras. Cienc. 80, 427-432.), S. paniculatum L. has antioxidant and anticarcinogenic action (Ribeiro et al., 2007Ribeiro, S.R., Fortes, C.C., Oliveira, S.C.C., Castro, C.F.S., 2007. Avaliação da atividade antioxidante de Solanum paniculatum (Solanaceae). A. Cien. S. Univ. Paran. 11, 179-183.; Endringer et al., 2010Endringer, D.C., Valadares, Y.M., Campana, P.R.V., Campos, J.J., Guimarães, K.G., Pezzuto, J.M., Braga, F.C., 2010. Evaluation of Brazilian plants on cancer chemoprevention targets in vitro. Phytother. Res. 24, 928-933.), and S. stipulaceum Roem. & Schult. is used as a blood pressure regulator (Ribeiro et al., 2002Ribeiro, E.A.N., Batitucci, M.C.P., Lima, J.A.T., Araújo, I.A.G., Mauad, H., Medeiros, I.A., 2002. Cardiovascular effects induced by the aqueous fraction of the ethanol extract of the stem of Solanum stipulaceum in rats. Rev. Bras. Farmacogn. 12, 34-35.).

Most pharmacognostic analyses in Solanum species were performed on leaves of only one or two species (Araújo et al., 2010Araújo, N.D., Coelho, V.P.M., Agra, M.F., 2010. The pharmacobotanical comparative study of leaves of Solanum crinitum Lam., Solanum gomphodes Dunal and Solanum lycocarpum A. St-Hil (Solanaceae). Rev. Bras. Farmacogn. 20, 666-674.; Nurit-Silva et al., 2011Nurit-Silva, K., Costa-Silva, R., Coelho, V.P.M., Agra, M.F., 2011. Pharmacobotanical study of vegetative organs of Solanum torvum Kiriaki. Rev. Bras. Farmacogn. 21, 568-574.), and anatomical studies on a larger number of species are on taxonomy (Sampaio et al., 2014Sampaio, V.S., Araújo, N.D., Agra, M.F., 2014. Characters of leaf epidermis in Solanum (clade Brevantherum) species from Atlantic forest of Northeastern Brazil. S. Afr. J. Bot. 94, 108-113.; Nurit-Silva et al., 2012Nurit-Silva, K., Costa-Silva, R., Basílio, I.J.L.D., Agra, M.F., 2012. Leaf epidermal characters of Brazilian species of Solanum section Torva as taxonomic evidence. Can. J. Microbiol. 58, 806-814.). Therefore the goal of the present study was to identify distinctive structural features on the root and stem barks, leaves and pericarps of S. agrarium, S. lycocarpum, S. palinacanthum, S. paniculatum, and S. stipulaceum, its ecological importance, determine the distribution of secondary compounds associated with the medicinal properties reported for these species and contribute to the conservation of the natural environments where they occur.

Materials and methods

Plant material

Fragments of root and stem (apices and bark, considering bark the tissues external to the vascular cambium, sensuFahn, 1990Fahn, A., 1990. Plant Anatomy. Butterworth-Heinemann Ltd, Oxford.), leaf, pericarp, and root and stem apexes were collected from three individuals of Solanum agrarium Sendtn., S. lycocarpum A. St.-Hil., S. palinacanthum Dunal, S. paniculatum L., and S. stipulaceum Roem. & Schult., occurring in the Brazilian Cerrado, in the municipality of Montes Claros (16º50′06.1″ S, 43º55′24.8″ W; 16º30′53.2″ S, 44º04′28.0″ W). Vouchers were obtained from fertile material and deposited at the BHCB Herbarium of the Departamento de Botânica, do Instituto de Ciências Biológicas, da Universidade Federal de Minas Gerais, Brazil (116081, 168587-168590; LL Giacomin).

Structural characterization

Morphological analysis was performed on all fresh plant material using a binocular stereo-microscope, model 0766ZL (Motic, Richmond, Canada) according to nomenclature proposed by Junikka (1994)Junikka, L., 1994. Survey of English macroscopic bark terminology. IAWA J. 15, 3-45.. For structural analysis, the plant material was evaluated fresh or fixed in Karnovsky solution (Karnovsky, 1965Karnovsky, M.J., 1965. A formaldehyde–glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137-138.) for 12 h, dehydrated in a graded ethanol series (Jensen, 1962Jensen, W.A., 1962. Botanical Histochemistry: Principles and Practices. W.H. Freeman and Company, San Francisco.), and cold-embedded (Paiva et al., 2011Paiva, E.A.S., Pinho, S.Z., Oliveira, D.M.T., 2011. Large plant samples: how to process for GMA embedding? In: Chiarini-Garcia, H., Melo, R.C.N. (orgs.). Light Microscopy: Methods and Protocols. Springer Humana Press, New York, pp. 37–49.) in hydroxyethyl-methacrylate resin (Leica Microsystem Inc., Heidenbeg, Germany). Cross sections and paradermic sections were obtained using a LPC table microtome (Rolemberg and Bhering, Belo Horizonte, Brazil). Cross sections and longitudinal sections, 5 µm thick, were obtained using a rotary microtome (Atago, Tokyo, Japan). The sections were stained with toluidine blue pH 4.7 (O'Brien et al., 1964O'Brien, T.P., Feder, N., Mccully, M.E., 1964. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59, 368-373., modified), and mounted in acrylic resin (Itacril, Itaquaquecetuba, Brazil).

Histochemical tests

Histochemical tests were performed on sections obtained from fresh material as described above using the following reagents: Lugol (Johansen, 1940Johansen, D.A., 1940. Plant Microtechnique. McGraw-Hill Book, New York.) for detection of starch, tannic acid (Pizzolato and Lillie, 1973Pizzolato, T.D., Lillie, R.D., 1973. Mayer's tannic acid-ferric chloride stain for mucins. J. Histochem. Cytochem. 21, 56-64.) and ruthenium red (Johansen, 1940Johansen, D.A., 1940. Plant Microtechnique. McGraw-Hill Book, New York.) for acid polysaccharides, xylidine Ponceau (XP) (Vidal, 1970Vidal, B.C., 1970. Dichroism in collagen bundles stained with xylidine-Ponceau 2R. Ann. Histochem. 15, 289-296.) and Coomassie blue (Fisher, 1968Fisher, D.B., 1968. Protein staining of ribboned epon sections for light microscopy. Histochemie 16, 92-96.) for protein, Sudan red IV and Sudan black B (Pearse, 1980Pearse, A.G.E., 1980. Histochemistry Theoretical and Applied. Churchill Livingston, Edinburgh.) for total lipophilic compounds, Nile blue (Cain, 1947Cain, A.J., 1947. The use of Nile Blue in the examination of lipoids. Q. J. Microsc. Sci. 88, 383-392.) for acid and neutral lipids, α-naphthol and dimethylparaphenylenediamine hydrochloride (NADI) (David and Carde, 1964David, R., Carde, J.P., 1964. Coloration différentielle des inclusions lipidique et terpéniques des pseudophylles du Pin maritime au moyen du reactif Nadi. C. R. H. Acad. Sci. Paris 258, 1338-1340.) for essential oils and oleoresins, Ellram, Dittmar (Furr and Malhberg, 1981Furr, M., Malhberg, P.G., 1981. Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. J. Nat. Prod. 44, 53-159.), and Dragendorff reagents (Svendsen and Verpoorte, 1983Svendsen, A.B., Verpoorte, R., 1983. Chromatography of Alkaloids. Elsevier Scientific Publishing Company, New York.) for alkaloids, potassium dichromate (Gabe, 1968Gabe, M., 1968. Techniques histologiques. Masson and Cie, Paris.) and iron chloride (Johansen, 1940Johansen, D.A., 1940. Plant Microtechnique. McGraw-Hill Book, New York.) for phenols; vanillin chloride (Mace and Howell, 1974Mace, M.E., Howell, C.R., 1974. Histochemistry and identification of condensed tannin precursor in roots of cotton seedlings. Can. J. Bot. 52, 2423-2426.) for tannins; and p-dimethylaminocinnamaldehyde (DMACA) (Feucht et al., 1986Feucht, W., Schmid, P.P.S., Christ, E., 1986. Distribution of flavonols in meristematic and mature tissues of Prunus avium shoots. J. Plant Physiol. 125, 1-8.) for flavonoids. Control tests were performed simultaneously according to the recommendations of the respective authors.

Photographic documentation was performed using an AxioCam MRc camera coupled to an AxioVision LE photomicroscope (Zeiss, Oberkochen, Germany) and an A 620 digital camera (Canon, Tokyo, Japan) coupled to a Eclipse E-200 light microscope (Nikon, Tokyo, Japan).

Results

Structural and histochemical characters reported for the four organs of the five species of Solanum are presented by species, in Figs. 15, and by organs in Tables 18. The data presented by species can contribute to the elaboration of monographs, and presented by the organs are to contribute to the quality control of the drug obtained from the species.

Fig. 1
Structural and histochemical features of Solanum agrarium Sendt. (A, C–L) Cross sections and (B) radial longitudinal section. (A–D) Root. (A) Suber with resin accumulation. (B) Voluminous intercellular spaces (asterisk). (C) Cortex with starch accumulation stained black with Lugol (arrow). (D) Cortex with protein reserve (arrow) stained red with XP. (E–H) Leaf with lipophilic compounds in the glandular trichome, with a long stalk. (E) Black with Sudan B black. (F) Red with Sudan IV. (G) Blue and lilac with Nile blue. (H) Blue with NADI. (I–L) Mesocarp with lipophilic compounds. (I) Black with Sudan B black. (J) Orange with Sudan IV. (K) Pink with Nile blue. (L) Blue with NADI. (co) cortex, (nu) nucleus, (pe) periderm, (ph) phloem, (re) resin, (su) suber.
Fig. 2
Structural and histochemical features of Solanum lycocarpum A. St.-Hil. (A–G, I–L, N, O) Cross sections. (H, M) Radial longitudinal section. (A) Root primary structure showing settlement of phellogen at the cortex (arrow). (B–I) Stem. (B) Primary structure with high density of tector trichomes. (C) Bicollateral bundle. (D) Settlement of phellogen at the cortex (arrow). (E and F) Cortical cells with plastids presenting terpenoids. (E) Pink with Nile blue. (F) Blue with NADI. (G) Sieve tube elements of large diameter. (H) Oblique compound sieve plates. (I) Accumulation of crystal sand in the rays and axial parenchyma. (J–L) leaf. (J) Isobilateral mesophyll presenting crystal sand. (K and L) Palisade parenchyma. (K) Lipids stained pink with Nile blue. (L) Alkaloids stained yellow with Ellram reagent. (M–O) Pericarp. (M) Mesocarp cells presenting cellulose walls with pronounced thickness. (N) Low pectin concentration in mesocarp cell walls. (O) Exocarp and mesocarp with alkaloids stained brown with Dragendorff. (ap) axial parenchyma, (ca) cambium, (cc) companion cell, (cl) collenchyma, (co) cortex, (cs) crystal sand, (ec) epidermis cell, (ex) exocarp, (me) mesocarp, (oc) oblique compound plate, (pc) pectin, (ph) phloem, (pi) pith, (pl) plastids, (pp) palisade parenchyma, (pr) protoplast, (ra) ray, (si) sieve plate, (sp) spongy parenchyma, s(t) sieve tube element, (su) suber, (tr) tector trichome, (va) vascular bundle, (xy) xylem, (wa) wall.
Fig. 3
Structural and histochemical features of Solanum palinacanthum Dunal. (A, D–I, K–S) Cross sections. (B–C, J) (tangential longitudinal sections. (A–E) Root bark. (A) Cortex with alkaloids stained brown with Dragendorff. (B) Axial parenchyma with crystal idioblast. (C) Wide rays. (D) Starch reserve in radial cell. (E) Formation of conducing elements at the cambium. (F–J) Stem bark. (F) Establishment of phellogen at the epidermis. (G) Phelloderm presenting flavonoids stained red with DMACA. (H) Crystal sand at the phloem. (I and J) Formation of lysigenous duct containing crystal sand. (K–R) Leaf. (K–M) Short glandular trichome. (K) Mucilage stained red with XP. (L) Lipids stained blue with Nile blue. (M) Phenol stained brown with iron chloride. (N–P) Median vein. (N) Mucilage stained black with tannic acid. (O) Phenols stained brown with iron chloride. (P) Alkaloids stained yellow with Ellram. (Q-R) Palisade parenchyma. (Q) Flavonoids stained red with DMACA. (R) Alkaloids stained yellow-brown with Dittmar. (S) Exocarp with undulated cuticle and single crystals. (ap) axial parenchyma, (ca) cambium, (cc) companion cell, (co) cortex, (cr) crystals, (cs) crystal sand, (ec) epidermis cell, (he) head, l(y) lysigenous duct, (ms) mesophyll, (nu) nucleus, p(a) parenchyma, (pe) periderm, (ph) phloem, (pl) phelloderm, (pp) palisade parenchyma, (ra) ray, (si) sieve plate, (sg) starch grains, (st) sieve tube element, (su) suber, (pd) peduncle, (uc) undulated cuticle, (va) vascular bundle, (wi) width, (wl) cell wall lysis, (xy) xylem.
Fig. 4
Structural and histochemical features of Solanum paniculatum L. (A, G–I) Longitudinal radial sections. (B, C, E, F, L–R) Cross sections. (D, J–K) Tangential longitudinal sections. (A–D) Root bark. (A) Sclerified cortex with voluminous intercellular spaces (asterisk). (B) Cortex with phenols stained brown with dichromate. (C) Phloem with higher proportion of conducing elements (rectangle) than the axial parenchyma (circle) and close rays (dotted line). (D) High radial height. (E–H) stem bark. (E) Sieve tube elements at the pith. (F) Cortex with flavonoids stained red with DMACA. (G) Pectin projections in cortical cells. (H) Sclereids with observable pit. (I–K) sieve tube elements. (I) Oblique plates. (J) Compound plates. (K) Small-diameter sieve areas. (L–R) leaf. (L–M) Glandular trichome. (L) Alkaloids stained brown with Dittmar. (M) Mucilage stained red with XP. (N) Dorsiventral mesophyll. (O–Q) palisade parenchyma, o mucilage stained black with tannic acid. (P) Phenols stained brown with dichromate. (Q) Flavonoids stained red with DMACA. (R) Lignified hypodermis at the abaxial surface of the median vein. (cl) collenchyma, (co) cortex, (cs) crystal sand, (ec) epidermis cell, (ep) external phloem, (ip) internal phloem, (he) head, (hi) height, (hy) hypodermis, (oc) oblique compound plate, (op) oblique plate, (pc) pectin, (pe) periderm, (ph) phloem, (pi) medulla, (pp) palisade parenchyma, (pt) pit, (ra) ray, (sa) sieve areas, (sc) sclerification, (sp) spongy parenchyma, (st) sieve tube element, (xy) xylem.
Fig. 5
Structural and histochemical features of Solanum stipulaceum Roem. & Schult. (A–G, J–M) Cross sections. (H and I) Tangential longitudinal sections. (A–E) root bark. (A) Tangential expansion (dotted line) of ray forming the pseudocortex. (B–E) Protein accumulation at the phloem parenchyma. (B, D) Stained red with XP. (C, E) Stained blue with Coomassie blue. (C) Control test. (F–J) Stem bark. (F) Lipids at the external cortex stained black with Sudan black B. (G) Evident annual rings. (H) Oblique compound plates with several sieve areas. (I) Lateral sieve areas with large diameter. (J) Axial parenchyma presenting cells with large caliber. (K–M) Leaf. (K) Petiole with tector trichomes. (L–M) terpenoids at the vein. (L) Pink and blue with Nile blue. (M) Blue with NADI. (ap) axial parenchyma, (cc) companion cell, (co) cortex, (cs) crystal sand, (fp) functional phloem, (np) non-conducting phloem, (oc) oblique compound plates, (pa) parenchyma, (pe) periderm, (ra) ray, (sa) sieve areas, (sg) starch grains, (st) sieve tube element, (tr) tector trichome, (va) vascular bundle.

Table 1
Structural features of root of Solanum agrarium Sendtn., Solanum lycocarpum A. St.-Hil., Solanum palinacanthum Dunal, Solanum paniculatum L., and Solanum stipulaceum Roem. & Schult.
Table 2
Histochemical features of root of Solanum agrarium Sendtn., Solanum lycocarpum A. St.-Hil., Solanum palinacanthum Dunal, Solanum paniculatum L., and Solanum stipulaceum Roem. & Schult.
Table 3
Structural features of stem of Solanum agrarium Sendtn., Solanum lycocarpum A. St.-Hil., Solanum palinacanthum Dunal, Solanum paniculatum L., and Solanum stipulaceum Roem. & Schult.
Table 4
Histochemical features of stem Solanum agrarium Sendtn., Solanum lycocarpum A. St.-Hil., Solanum palinacanthum Dunal, L., and Solanum stipulaceum Roem. & Schult.
Table 5
Leaf structural features of Solanum agrarium Sendtn., Solanum lycocarpum A. St.-Hil., Solanum palinacanthum Dunal, Solanum paniculatum L., and Solanum stipulaceum Roem. & Schult.
Table 6
Histochemical leaf features of Solanum agrarium Sendtn., Solanum lycocarpum A. St.-Hil., Solanum palinacanthum Dunal, Solanum paniculatum L., and Solanum stipulaceum Roem. & Schult.
Table 7
Structural features of pericarps of Solanum agrarium Sendtn., Solanum lycocarpum A. St.-Hil., Solanum palinacanthum Dunal, Solanum paniculatum L., and Solanum stipulaceum Roem. & Schult.
Table 8
Histochemical features of pericarps of Solanum agrarium Sendtn., Solanum lycocarpum A. St.-Hil., Solanum palinacanthum Dunal, Solanum paniculatum L., and Solanum stipulaceum Roem. & Schult.

S. agrarium presented root bark with a corrugated internal texture, resin accumulation at the suber, voluminous intercellular spaces, low lignification, and considerable starch and protein reserves (Fig. 1AD and Tables 1 and 2). The stem bark had a strong bitter taste and low sclerification; the cortex had voluminous intercellular spaces, high starch accumulation, and a small quantity of crystal sand; the volume occupied by the axial parenchyma was significantly larger than that of the sieve tube elements at the phloem (Tables 3 and 4). Leaves presented a median vein composed of polyhedric epidermis cells, no hypodermis, and accumulation of terpenoids in the secretory trichomes; the lower-caliber vascular bundles at the petiole were collateral and not surrounded by pericyclic fibers (Fig. 1EH and Table 5). The exocarp was purple, and alkaloids and terpenoids accumulated at the mesocarp (Fig. 1IL and Tables 7 and 8).

In S. lycocarpum, the establishment of phellogen in the root at the peripheral cortical cells, and the secondary phloem presented a compact arrangement of axial parenchyma, homogeneous ray height, and sieve tube elements with diminute caliber and pores (Fig. 2A and Tables 1 and 2). The stem in primary structure was pilous; the stem bark presented lenticels and cuboid-shaped suber cells; the cortex accumulated terpenoids; and the phloem had thin-walled sieve tube elements (Fig. 2BI and Tables 3 and 4). The mesophyll was isobilateral. The median vein region presented epidermal cells with straight anticlinal walls, accumulation of crystal sand, and high sclerification index (Fig. 2JL and Table 5). The fruit had a strong aroma, the exocarp exhibited thick collenchyma, and the cells of the mesocarp had thick walls with low concentration of pectin but high concentration of mucilage, protein, and starch, and an alkaloid-rich protoplast (Fig. 1MO and Tables 7 and 8).

S. palinacanthum presented significant accumulation of alkaloids and crystal sand at the root bark and phloem rays with large variation in width (Fig. 3AE and Tables 1 and 2). The stem bark had phloem with short rays, and significant accumulation of mucilage, tannins, flavonoids, alkaloids, and crystal sand (Fig. 3FJ and Tables 3 and 4). The leaf limb was oval-shaped with a cordate basis. The mesophyll accumulated tannins, had acid polysaccharide-rich cell walls, and showed annular collenchyma at the median vein cortex (Fig. 3KR and Tables 5 and 6). Its exocarp was yellow and had single crystals at the epidermis; its mesocarp had a light white color, voluminous intercellular spaces, and alkaloid-rich cells (Fig. 1S and Tables 7 and 8).

S. paniculatum presented strong aggregation of sclereids, observable under stereomicroscope as bright spots, at the suber and cortex of the root bark; the phloem presented numerous sieve tube elements and rays with large height (Fig. 4AD and Tables 1 and 2). The stem bark presented alkaloid accumulation at the cortex and voluminous sclereids; the bicollateral vascular bundles presented internal phloem penetrating deeply into the medulla, and rays of large height at the phloem (Fig. 4EK and Tables 3 and 4). Heterophylly was pronounced; the mesophyll had voluminous intercellular spaces, and temporary cellular accumulation of starch and flavonoids (Fig. 4LR and Tables 5 and 6). Accumulation of soluble sugars was observed in the fruit, which conferred a sweet taste to the pericarp (Tables 7 and 8).

S. stipulaceum is the most distantly species to the other studied species. The root bark developed a voluminous pseudocortex with evenly spaced rays, it was rich in soluble protein reserves, and was oriented adjacent to the phloem axial elements. The axial parenchyma was voluminous (Fig. 5AE and Tables 1 and 2). The stem bark had no spiniform trichomes, and the internal surface was corrugated. The phloem presented accumulation of terpenoids, well-defined annual rings, and sieve tube elements with plates presenting numerous sieve areas (Fig. 5FJ and Tables 3 and 4). The leaves presented large membranaceous stipules that were distinctive morphological features easily observable, and accumulation of terpenoids (Fig. 5KM and Tables 5 and 6). The fruit was notable for the accumulation of tannins (Tables 7 and 8).

The data presented in Figs. 15 and Tables 18 show structural characters useful for identification and adaptation of the studied species to the environment where they occur, and chemical compounds related to their therapeutic use: (a) in S. agrarium, low concentration of crystal sand in the root and stem, the presence of terpene resin in the root, and absence of hypodermis in the leaf; (b) in S. lycocarpum, bright spots (group of sclereids) in the root, isobilateral mesophyll, thickened cell walls with hemicelluloses and strong aroma in the fruit; (c) in S. palinacanthum, high concentration of crystal sand in the root and stem, oval-shaped limb, and presence of isolated crystals in the exocarp; (d) in S. paniculatum, strong sclerification in the root and stem, and rays with great height; and (e) in S. stipulaceum, accumulation of soluble protein in the root and stem, presence of conspicuous membranaceous stipules, and absence of spiniform trichomes.

Discussion

Structural data on medicinal plant are secure characters for species identification and quality control of plant drug and reveal their relationship with the environment. Roots, stems, leaves and fruits, dehydrated and fragmented are widely used as herbal drugs. They may be substituted for each other resulting in fraud in the preparation of herbal medicines (Adams et al., 2013Adams, S.J., Kuruvilla, G.R., Krishnamurthy, K.V., Nagarajan, M., Venkatasubramanian, P., 2013. Pharmacognostic and phytochemical studies on Ayurvedic drugs Ativisha and Musta. Rev. Bras. Farmacogn. 23, 398-409.).

The phellogen establishment at the root and stem constitute an important distinctive feature for these organs. At the roots, the formation of periderm always starts at the more peripheral cortical layers (Metcalfe and Chalk, 1957Metcalfe, C.R., Chalk, L., 1957. Anatomy of the Dicotyledons. Oxford University Press, Oxford.). The vascular bundles in all studied species in this work were bicollateral, that is a characteristic of Solanaceae and the occurrence of intramedullary phloem bundles, situated deeply in the pith, in S. paniculatum has been reported for species of other genera of Solanaceae (Metcalfe and Chalk, 1957Metcalfe, C.R., Chalk, L., 1957. Anatomy of the Dicotyledons. Oxford University Press, Oxford.). A wide variation of sieve tube elements and pores diameters was observed, and indicates that these features can be reliably used to distinguish species of this genus. A wide variation of the characteristics of these conducting cells, including the inclination and number of sieve areas, has been reported for the genus Solanum (Chavan et al., 2000Chavan, R.R., Braggins, J.E., Harris, P.J., 2000. Companion cells in the secondary phloem of Indian dicotyledonous species: a quantitative study. New Phytol. 146, 107-118.). Species presenting sieve tubes of large diameter and especially wide pores can benefit from higher nutrient flow rates into developing organs (Mullendore et al., 2010Mullendore, D.L., Windt, C.W., Van As, H., Knoblauch, M., 2010. Sieve tube geometry in relation to phloem flow. Plant Cell 22, 579-593.).

The foliar features presented in this study are useful for diagnostic purposes, especially the epidermal features which are well preserved in the raw material. The types of trichomes and stomata, and outline of cell walls are well described on Solanum (Araújo et al., 2010Araújo, N.D., Coelho, V.P.M., Agra, M.F., 2010. The pharmacobotanical comparative study of leaves of Solanum crinitum Lam., Solanum gomphodes Dunal and Solanum lycocarpum A. St-Hil (Solanaceae). Rev. Bras. Farmacogn. 20, 666-674.; Nurit-Silva et al., 2012Nurit-Silva, K., Costa-Silva, R., Basílio, I.J.L.D., Agra, M.F., 2012. Leaf epidermal characters of Brazilian species of Solanum section Torva as taxonomic evidence. Can. J. Microbiol. 58, 806-814.; Sampaio et al., 2014Sampaio, V.S., Araújo, N.D., Agra, M.F., 2014. Characters of leaf epidermis in Solanum (clade Brevantherum) species from Atlantic forest of Northeastern Brazil. S. Afr. J. Bot. 94, 108-113.). The leaves are widely used as drugs, and are desirable to replace stem and root barks per leaves, because the harvest of barks is damaging for the individual.

The fruits of all the studied species were berries which is in accordance with previous reports for Solanum species (Feliciano and Salimena, 2011Feliciano, E.A., Salimena, F.R.G., 2011. Solanaceae in the Serra Negra, Rio Preto, Minas Gerais. Rodriguésia 62, 55-76.), and the presence of calcium oxalate crystals, and voluminous intercellular spaces were related by Chiarini and Barboza (2009)Chiarini, F.E., Barboza, G.E., 2009. Fruit anatomy of species of Solanum sect. Acanthophora (Solanaceae). Flora 204, 146-156.. Very thick walls, rich in acids and basic polysaccharides, as observed for S. lycocarpum mesocarp, constitute water and nutrient reserve mechanisms (Neves et al., 2013Neves, S.C., Ribeiro, L.M., Cunha, I.R.G., Pimenta, M.A.S., Mercadante-Simões, M.O., Lopes, P.S.N., 2013. Diaspore structure and germination ecophysiology of the babassu palm (Attalea vitrivir). Flora 208, 68-78.).

Analyzing the data obtained for S. stipulaceum, some features in particular, such as the absence of spiniform trichomes, presence of stipules, sclerification of the vascular system and medulla of the stem primary structure, and pronounced accumulation of terpenoids in almost all organs, indicate its larger structural difference from the remaining studied species. In fact, according to recent taxonomy revisions, S. agrarium, S. lycocarpum, S. palinacanthum, and S. paniculatum are included in the subgenus Leptostemonum (Dunal) Bitter (Levin et al., 2006Levin, R.A., Myers, N.R., Bohs, L., 2006. Phylogenetic relationships among the “spiny solanums” (Solanum subgenus Leptostemonum, Solanaceae). Am. J. Bot. 93, 157-169.), whereas S. stipulaceum is included in the subgenus Brevantherum Seithe (Roe, 1972Roe, K.E., 1972. A revision of Solanum section Brevantherum (Solanaceae). Brittonia 24, 239-278.; Bohs, 2005Bohs, L., 2005. Major clades in Solanum based in ndhF sequences. In: Keating, R.C., Hollowwell, V.C., Croat, T.B. (org.). A festschrift for William G. D'Arcy: The Legacy of a Taxonomist. Monographs in Systematic Botany from the Missouri Botanical Garden. Missouri Botanical Garden Press, St. Louis, pp. 27–49.).

Some anatomical features can reveal the species adaptation mechanisms for these habitats. Aspects of leaf anatomy are informative of the environment where the individuals live (Rossatto and Kolbm, 2012Rossatto, D.R., Kolbm, R.M., 2012. Structural and functional leaf traits of two Gochnatia species from distinct growth forms in a sclerophyll forest site in Southeastern Brazil. Acta Bot. Bras. 26, 849-856.). The presence of tector and glandular trichomes with a variety of shapes has been reported for Solanum (Nurit-Silva et al., 2011Nurit-Silva, K., Costa-Silva, R., Coelho, V.P.M., Agra, M.F., 2011. Pharmacobotanical study of vegetative organs of Solanum torvum Kiriaki. Rev. Bras. Farmacogn. 21, 568-574.). A high density of both types of trichomes indicated adaptation to high light, low water availability, and high herbivory rate, typical of the Cerrado. The same occurred for the hypodermis observed in all studied species, which constitutes an additional xeromorphic feature (Rossatto and Kolbm, 2012Rossatto, D.R., Kolbm, R.M., 2012. Structural and functional leaf traits of two Gochnatia species from distinct growth forms in a sclerophyll forest site in Southeastern Brazil. Acta Bot. Bras. 26, 849-856.). The presence of isobilateral mesophyll in S. lycocarpum has been previously reported for Solanum species growing in habitats with high light but is not in accordance with the dorsiventral mesophyll usually observed for this family (Metcalfe and Chalk, 1957Metcalfe, C.R., Chalk, L., 1957. Anatomy of the Dicotyledons. Oxford University Press, Oxford.). Strong sclerification was observed in S. lycocarpum. Sclerophylly results in the increase of mechanical resistance, as an adaptation to environmental stresses. High levels of sclerophylly can be induced by low water availability, high light intensity, and low concentration of macronutrients, which are common conditions in the Cerrado (Costa et al., 2012Costa, V.P., Hayashi, A.H., Carvalho, M.A.M., Silva, E.A., 2012. Aspectos fisiológicos anatômicos e ultra-estruturais do rizoma de Costus arabicus L. (Costaceae) sob condições de déficit hídrico. Hoehnea 39, 125-137.; Rossatto and Kolbm, 2012Rossatto, D.R., Kolbm, R.M., 2012. Structural and functional leaf traits of two Gochnatia species from distinct growth forms in a sclerophyll forest site in Southeastern Brazil. Acta Bot. Bras. 26, 849-856.).

S. agrarium is the only annual species of the five studied species. The presence of loose parenchyma at the roots may be related to its short life cycle, which occurs during the short rainfall period that occurs in the Cerrado, when the soil presents high water saturation. Voluminous intercellular spaces favor aeration in organs developing in water saturated soils (Somavilla and Graciano-Ribeiro, 2012Somavilla, N.S., Graciano-Ribeiro, D., 2012. Ontogeny and characterization of aerenchymatous tissues of Melastomataceae in the flooded and well-drained soils of a Neotropical savanna. Flora 207, 212-222.). Decreased intercellular spaces minimize excessive water loss, which is relevant in species growing under the predominantly dry Cerrado climate conditions (Milaneze-Gutierre et al., 2003Milaneze-Gutierre, M.A., Mello, J.C.P., Delaporte, R.H., 2003. Efeito da intensidade luminosa sobre a morfo-anatomia foliar de Bouchea fluminensis (Vell) Mold. (Verbenaceae) e sua importância no controle de qualidade da droga vegetal. Rev. Bras. Farmacogn. 13, 23-33.). The investment in starch and protein reserves at the root and stem may be associated with the fact that this species is annual, with the need for fast metabolism due to the emission of a large number of sprouts in a short period of time during the rainy season (Nurit-Silva et al., 2011Nurit-Silva, K., Costa-Silva, R., Coelho, V.P.M., Agra, M.F., 2011. Pharmacobotanical study of vegetative organs of Solanum torvum Kiriaki. Rev. Bras. Farmacogn. 21, 568-574.).

The presence of crystal sand is a unifying feature of the genus Solanum (Metcalfe and Chalk, 1957Metcalfe, C.R., Chalk, L., 1957. Anatomy of the Dicotyledons. Oxford University Press, Oxford.), remaining identifiable even in calcined materials (Furr and Malhberg, 1981Furr, M., Malhberg, P.G., 1981. Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. J. Nat. Prod. 44, 53-159.). Calcium oxalate crystals are synthesized from endogenous oxalic acid and calcium originating from the environment (Franceschi and Nakata, 2005Franceschi, V.R., Nakata, P.A., 2005. Calcium oxalate in plants: formation and function. Ann. Rev. Plant Biol. 56, 41-71.). In addition to accumulating at the vacuoles, they can be found at the apoplast, in ducts resulting from lysis of crystal idioblasts (Liang et al., 2006Liang, S.J., Wu, H., Lun, X., Lu, D.W., 2006. Secretory cavity development and its relationship with the accumulation of essential oil in fruits of Citrus medica L. var. sarcodactylis (Noot.) Swingle. J. Integr. Plant Biol. 48, 573-583.). The main function of their formation, especially in developing tissues, seems to be the regulation of calcium concentration, which is needed for the expansion of cells undergoing division (Franceschi and Nakata, 2005Franceschi, V.R., Nakata, P.A., 2005. Calcium oxalate in plants: formation and function. Ann. Rev. Plant Biol. 56, 41-71.; Paiva and Machado, 2005Paiva, E.A.S., Machado, S.R., 2005. Role of intermediary cells in Peltodon radicans (Lamiaceae) in the transfer of calcium and formation of calcium oxalate crystals. Braz. Arch. Biol. Technol. 48, 147-153.). They can also be involved in protection against herbivores and aluminum detoxification (Nakata, 2003Nakata, P.A., 2003. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci. 164, 901-909.), which are characteristic of the Cerrado biome. The development of crystal ducts from breaking idioblasts, which have cell walls composed mainly of pectin, in recently formed phloem cells close to the cambium layer, was observed in the present study was not related before for the genus.

The medicinal properties mentioned for the species may be associated with the distribution of secondary compounds in the different organs. Histochemical techniques are fast and cheap methods that can be used to identify bioactive classes of compounds in tissues, and cell compartments (Coelho et al., 2012Coelho, V.P.M., Leite, J.P.V., Nunes, L.G., Ventrella, M.C., 2012. Anatomy, histochemistry and phytochemical profile of leaf and stem bark of Bathysa cuspidata (Rubiaceae). Aust. J. Bot. 60, 49-60.; Demarco et al., 2013Demarco., D., Castro, M.M., Ascensão, L., 2013. Two laticifer systems in Sapium haematospermum – new records for Euphorbiaceae. Botany 91, 545-554.; Bedetti et al., 2014Bedetti, C.S., Modolo, L.V., Isaias, R.M.S., 2014. The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr (Fabaceae: Mimosoideae). Biochem. Syst. Ecol. 55, 53-59.). The location of compounds of interest facilitates studies of domestication or obtainment of active principles through biotechnology because it allows the identification of target compartments for plant improvement. The interpretation of histochemical results allows us to compare organs, species, or materials originating from different environments or seasons (Coelho et al., 2012Coelho, V.P.M., Leite, J.P.V., Nunes, L.G., Ventrella, M.C., 2012. Anatomy, histochemistry and phytochemical profile of leaf and stem bark of Bathysa cuspidata (Rubiaceae). Aust. J. Bot. 60, 49-60.; Adams et al., 2013Adams, S.J., Kuruvilla, G.R., Krishnamurthy, K.V., Nagarajan, M., Venkatasubramanian, P., 2013. Pharmacognostic and phytochemical studies on Ayurvedic drugs Ativisha and Musta. Rev. Bras. Farmacogn. 23, 398-409.). Previous histochemical screening can minimize the search for interesting compounds in related plant species, resulting in decreased costs for pharmaceutical research (Saslis-Lagoudakisa et al., 2012Saslis-Lagoudakisa, C.H., Savolainen, V., Williamsond, E.M., Forestc, F., Wagstaffe, S.J., Baralf, S.R., Watsong, M.F., Pendryg, C.A., Hawkinsa, J.A., 2012. Phylogenies reveal predictive power of traditional medicine in bioprospecting. Proc. Natl. Acad. Sci. U. S. A. 25, 15835-15840.).

The anti-inflammatory action attributed to S. agrarium (Agra et al., 2007Agra, M.F., Baracho, G.S., Basílio, I.J.D., Nurit, K., Coelho, V.P., Barbosa, D.A., 2007. Sinopse da flora medicinal do Cariri paraibano. Oecol. Bras. 11, 323-330.) may be related to the accumulation of the flavonoid kaempferol (Silva et al., 2004Silva, T.M.S., Nascimento, R.J.B., Câmara, C.A., Castro, R.N., Braz-Filho, R., Agra, M.F., Carvalho, M.G., 2004. Distribution of flavonoids and N-transcaffeoyl-tyramine in Solanum subg. Leptostemonum. Biochem. Syst. Ecol. 32, 513-516.), which possesses anti-inflammatory properties (García-Mediavilla et al., 2007García-Mediavilla, V., Crespo, I., Collado, P.S., Esteller, A., Sánchez-Campos, S., Tuñón, M.J., González-Gallego, J., 2007. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang liver cells. Eur. J. Pharmacol. 557, 221-229.). The fruit powder of S. lycocarpum, rich in carbohydrates (Rocha et al., 2012Rocha, D.A., Abreu, C.M.P., Sousa, R.V., Corrêa, A.D., 2012. Método de obtenção e análise da composição centesimal do polvilho da fruta-de-lobo (Solanum lycocarpum St. Hil). Rev. Bras. Frut. 34, 248-254.), is known for its hypoglycemic properties. The accumulation of alkaloids at the pericarp cells also seems to be related to the traditional use of this species for the control of diabetes (Farina et al., 2010Farina, F., Piassi, F.G., Moysés, M.R., Bazzolli, D.M.S., Bissoli, N.S., 2010. Glycemic and urinary volume responses in diabetic mellitus rats treated with Solanum lycocarpum. Appl. Physiol. Nutr. Metab. 35, 40-44.) because glycoalkaloids inhibit the increase of blood glucose (Yoshikawa et al., 2007Yoshikawa, M., Nakamura, S., Ozaki, K., Kumahara, A., Morikawa, T., Matsuda, H., 2007. Structures of steroidal alkaloid oligoglycosides, robeneosides A and B, and antidiabetogenic constituents from the Brazilian medicinal plant Solanum lycocarpum. J. Nat. Prod. 70, 210-214.). Alkaloids are precursors in the synthesis of corticosteroid drugs (Goswami et al., 2003Goswami, A., Kotoky, R., Rastogi, R.C., Ghosh, A.C., 2003. A one-pot efficient process for 16-dehydropregnenolone acetate. Org. Proc. Res. Dev. 7, 306-308.), which may be related to the recommendation of this species as anti-inflammatory (Vieira et al., 2003Vieira Jr., G., Ferreira, P.M., Matos, L.G., Ferreira, E.C., Rodovalho, W., Ferri, P.H., Ferreira, H.D., Costa, E.A., 2003. Anti-inflammatory effect of Solanum lycocarpum fruits. Phytother. Res. 17, 892-896.) and may be linked to terpene chains of hypoglycemic steroid glycoalkaloids (Yoshikawa et al., 2007Yoshikawa, M., Nakamura, S., Ozaki, K., Kumahara, A., Morikawa, T., Matsuda, H., 2007. Structures of steroidal alkaloid oligoglycosides, robeneosides A and B, and antidiabetogenic constituents from the Brazilian medicinal plant Solanum lycocarpum. J. Nat. Prod. 70, 210-214.). The alkaloid chlorogenic acid inhibits maltase activity in S. palinacanthum, decreasing the release of glucose into the blood (Pereira et al., 2008Pereira, A.C., Oliveira, D.F., Silva, G.H., Figueiredo, H.C.P., Cavalheiro, A.J., Carvalho, D.A., Souza, L.P., Chalfoun, S.M., 2008. Identification of the antimicrobial substances produced by Solanum palinacanthum (Solanaceae). An. Acad. Bras. Cienc. 80, 427-432.; Kumar et al., 2011Kumar, S., Narwal, S., Kumar, V., Prakash, O., 2011. α-Glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn. Rev. 5, 19-29.). This indicates a possible use of this species for the control of diabetes, which has not been traditionally explored. Rutin, a flavonoid with anti-microbial action, has been isolated from its leaves (Pereira et al., 2008Pereira, A.C., Oliveira, D.F., Silva, G.H., Figueiredo, H.C.P., Cavalheiro, A.J., Carvalho, D.A., Souza, L.P., Chalfoun, S.M., 2008. Identification of the antimicrobial substances produced by Solanum palinacanthum (Solanaceae). An. Acad. Bras. Cienc. 80, 427-432.). The accumulation of flavonoids in S. paniculatum seems to be related to its antioxidant action (Ribeiro et al., 2007Ribeiro, S.R., Fortes, C.C., Oliveira, S.C.C., Castro, C.F.S., 2007. Avaliação da atividade antioxidante de Solanum paniculatum (Solanaceae). A. Cien. S. Univ. Paran. 11, 179-183.). The hypotensive action of S. stipulaceum may be related to the presence of terpenoids, saponins, and alkaloids (Ribeiro et al., 2002Ribeiro, E.A.N., Batitucci, M.C.P., Lima, J.A.T., Araújo, I.A.G., Mauad, H., Medeiros, I.A., 2002. Cardiovascular effects induced by the aqueous fraction of the ethanol extract of the stem of Solanum stipulaceum in rats. Rev. Bras. Farmacogn. 12, 34-35.).

Conclusions

The identification of structural diagnostic features and classes of chemical compounds with known biological activity present in different organs of the studied species increases the reliability of preparations of pharmaceutical formulations, and reveals a vast area of research in the chemical characterization of molecules related to their traditional medicinal use. Studies relating the structural features with the environmental pressure on the medicinal species, and studies to test the popularly believed properties of native medicinal plants strengthen initiatives to preserve the environments where those species occur naturally, many of them already strongly menaced even before their potential to humankind is known.

Acknowledgments

The authors wish to thank the FAPEMIG for the Research and Technological Development Incentive Scholarship to M.O. Mercadante-Simões (CRA-BIPID-00152-12) and L.M. Ribeiro (CRA-BIPIT-00137-11); the CNPq and FINEP for the Industrial Technology Development scholarship to L.J. Matias (DTI-III-381914/2012-7); the Research Pro-Rectory of the State University of Montes Claros for the Scientific Initiation Scholarship to Ariadna Conceição dos Santos; and Waldimar Ferreira Ruas for collecting the plant material.

References

  • Adams, S.J., Kuruvilla, G.R., Krishnamurthy, K.V., Nagarajan, M., Venkatasubramanian, P., 2013. Pharmacognostic and phytochemical studies on Ayurvedic drugs Ativisha and Musta. Rev. Bras. Farmacogn. 23, 398-409.
  • Agra, M.F., Baracho, G.S., Basílio, I.J.D., Nurit, K., Coelho, V.P., Barbosa, D.A., 2007. Sinopse da flora medicinal do Cariri paraibano. Oecol. Bras. 11, 323-330.
  • Araújo, N.D., Coelho, V.P.M., Agra, M.F., 2010. The pharmacobotanical comparative study of leaves of Solanum crinitum Lam., Solanum gomphodes Dunal and Solanum lycocarpum A. St-Hil (Solanaceae). Rev. Bras. Farmacogn. 20, 666-674.
  • Araújo, N., Coelho, V.P.M., Ventrella, M.C., Agra, M.F., 2014. Leaf anatomy and histochemistry of three species of Ficus sect. Americanae supported by light and electron microscopy. Microsc. Microanal. 20, 296-304.
  • Argyropoulou, C., Akoumianaki-Ioannidou, A., Christodoulakis, N.S., Fasseas, C., 2010. Leaf anatomy and histochemistry of Lippia citriodora (Verbenaceae). Aust. J. Bot. 58, 398-409.
  • Bedetti, C.S., Modolo, L.V., Isaias, R.M.S., 2014. The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr (Fabaceae: Mimosoideae). Biochem. Syst. Ecol. 55, 53-59.
  • Bohs, L., 2005. Major clades in Solanum based in ndhF sequences. In: Keating, R.C., Hollowwell, V.C., Croat, T.B. (org.). A festschrift for William G. D'Arcy: The Legacy of a Taxonomist. Monographs in Systematic Botany from the Missouri Botanical Garden. Missouri Botanical Garden Press, St. Louis, pp. 27–49.
  • Cain, A.J., 1947. The use of Nile Blue in the examination of lipoids. Q. J. Microsc. Sci. 88, 383-392.
  • Castro, J.A., Brasileiro, B.P., Lyra, D.H., Pereira, D.A., Chaves, J.J., Amaral, C.L.F., 2011. Ethnobotanical study of traditional uses of medicinal plants: the flora of caatinga in the community of Cravolândia-BA, Brazil. J. Med. Plant Res. 5, 1905-1917.
  • Chavan, R.R., Braggins, J.E., Harris, P.J., 2000. Companion cells in the secondary phloem of Indian dicotyledonous species: a quantitative study. New Phytol. 146, 107-118.
  • Chiarini, F.E., Barboza, G.E., 2009. Fruit anatomy of species of Solanum sect. Acanthophora (Solanaceae). Flora 204, 146-156.
  • Coelho, V.P.M., Leite, J.P.V., Nunes, L.G., Ventrella, M.C., 2012. Anatomy, histochemistry and phytochemical profile of leaf and stem bark of Bathysa cuspidata (Rubiaceae). Aust. J. Bot. 60, 49-60.
  • Costa, V.P., Hayashi, A.H., Carvalho, M.A.M., Silva, E.A., 2012. Aspectos fisiológicos anatômicos e ultra-estruturais do rizoma de Costus arabicus L. (Costaceae) sob condições de déficit hídrico. Hoehnea 39, 125-137.
  • David, R., Carde, J.P., 1964. Coloration différentielle des inclusions lipidique et terpéniques des pseudophylles du Pin maritime au moyen du reactif Nadi. C. R. H. Acad. Sci. Paris 258, 1338-1340.
  • Demarco., D., Castro, M.M., Ascensão, L., 2013. Two laticifer systems in Sapium haematospermum – new records for Euphorbiaceae. Botany 91, 545-554.
  • Endringer, D.C., Valadares, Y.M., Campana, P.R.V., Campos, J.J., Guimarães, K.G., Pezzuto, J.M., Braga, F.C., 2010. Evaluation of Brazilian plants on cancer chemoprevention targets in vitro Phytother. Res. 24, 928-933.
  • Fahn, A., 1990. Plant Anatomy. Butterworth-Heinemann Ltd, Oxford.
  • Farina, F., Piassi, F.G., Moysés, M.R., Bazzolli, D.M.S., Bissoli, N.S., 2010. Glycemic and urinary volume responses in diabetic mellitus rats treated with Solanum lycocarpum Appl. Physiol. Nutr. Metab. 35, 40-44.
  • Feliciano, E.A., Salimena, F.R.G., 2011. Solanaceae in the Serra Negra, Rio Preto, Minas Gerais. Rodriguésia 62, 55-76.
  • Ferreira, P.R.F., Mendes, C.S.O., Reis, S.B., Rodrigues, C.G., Oliveira, D.A., Mercadante-Simões, M.O., 2011. Morphoanatomy, histochemistry and phytochemistry of Psidium guineense Sw. (Myrtaceae) leaves. J. Pharm. Res. 4, 942-944.
  • Feucht, W., Schmid, P.P.S., Christ, E., 1986. Distribution of flavonols in meristematic and mature tissues of Prunus avium shoots. J. Plant Physiol. 125, 1-8.
  • Fisher, D.B., 1968. Protein staining of ribboned epon sections for light microscopy. Histochemie 16, 92-96.
  • Franceschi, V.R., Nakata, P.A., 2005. Calcium oxalate in plants: formation and function. Ann. Rev. Plant Biol. 56, 41-71.
  • Furr, M., Malhberg, P.G., 1981. Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa J. Nat. Prod. 44, 53-159.
  • Gabe, M., 1968. Techniques histologiques. Masson and Cie, Paris.
  • García-Mediavilla, V., Crespo, I., Collado, P.S., Esteller, A., Sánchez-Campos, S., Tuñón, M.J., González-Gallego, J., 2007. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang liver cells. Eur. J. Pharmacol. 557, 221-229.
  • Goswami, A., Kotoky, R., Rastogi, R.C., Ghosh, A.C., 2003. A one-pot efficient process for 16-dehydropregnenolone acetate. Org. Proc. Res. Dev. 7, 306-308.
  • Jensen, W.A., 1962. Botanical Histochemistry: Principles and Practices. W.H. Freeman and Company, San Francisco.
  • Johansen, D.A., 1940. Plant Microtechnique. McGraw-Hill Book, New York.
  • Junikka, L., 1994. Survey of English macroscopic bark terminology. IAWA J. 15, 3-45.
  • Karnovsky, M.J., 1965. A formaldehyde–glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27, 137-138.
  • Kumar, S., Narwal, S., Kumar, V., Prakash, O., 2011. α-Glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn. Rev. 5, 19-29.
  • Levin, R.A., Myers, N.R., Bohs, L., 2006. Phylogenetic relationships among the “spiny solanums” (Solanum subgenus Leptostemonum, Solanaceae). Am. J. Bot. 93, 157-169.
  • Liang, S.J., Wu, H., Lun, X., Lu, D.W., 2006. Secretory cavity development and its relationship with the accumulation of essential oil in fruits of Citrus medica L. var. sarcodactylis (Noot.) Swingle. J. Integr. Plant Biol. 48, 573-583.
  • Mace, M.E., Howell, C.R., 1974. Histochemistry and identification of condensed tannin precursor in roots of cotton seedlings. Can. J. Bot. 52, 2423-2426.
  • Metcalfe, C.R., Chalk, L., 1957. Anatomy of the Dicotyledons. Oxford University Press, Oxford.
  • Mercadante-Simões, M.O., Mazzottini-Dos-Santos, H.C., Nery, L.A., Ferreira, P.R.B., Ribeiro, L.M., Royo, V.A., Oliveira, D.A., 2014. Structure, histochemistry and phytochemical profile of the sobol and aerial stem of Tontelea micrantha (Celastraceae – Hippocrateoideae). An. Acad. Bras. Cienc. 83, 1167-1179.
  • Milaneze-Gutierre, M.A., Mello, J.C.P., Delaporte, R.H., 2003. Efeito da intensidade luminosa sobre a morfo-anatomia foliar de Bouchea fluminensis (Vell) Mold. (Verbenaceae) e sua importância no controle de qualidade da droga vegetal. Rev. Bras. Farmacogn. 13, 23-33.
  • Moreira, A.S.F., Lemos Filho, J.P., Isaias, R.M.S., 2013. Structural adaptations of two sympatric epiphytic orchids (Orchidaceae) to a cloudy forest environment in rocky outcrops of Southeast Brazil. Rev. Biol. Trop. 61, 1053-1065.
  • Mullendore, D.L., Windt, C.W., Van As, H., Knoblauch, M., 2010. Sieve tube geometry in relation to phloem flow. Plant Cell 22, 579-593.
  • Nakata, P.A., 2003. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci. 164, 901-909.
  • Neves, S.C., Ribeiro, L.M., Cunha, I.R.G., Pimenta, M.A.S., Mercadante-Simões, M.O., Lopes, P.S.N., 2013. Diaspore structure and germination ecophysiology of the babassu palm (Attalea vitrivir). Flora 208, 68-78.
  • Nurit-Silva, K., Costa-Silva, R., Coelho, V.P.M., Agra, M.F., 2011. Pharmacobotanical study of vegetative organs of Solanum torvum Kiriaki. Rev. Bras. Farmacogn. 21, 568-574.
  • Nurit-Silva, K., Costa-Silva, R., Basílio, I.J.L.D., Agra, M.F., 2012. Leaf epidermal characters of Brazilian species of Solanum section Torva as taxonomic evidence. Can. J. Microbiol. 58, 806-814.
  • O'Brien, T.P., Feder, N., Mccully, M.E., 1964. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59, 368-373.
  • Paiva, E.A.S., Machado, S.R., 2005. Role of intermediary cells in Peltodon radicans (Lamiaceae) in the transfer of calcium and formation of calcium oxalate crystals. Braz. Arch. Biol. Technol. 48, 147-153.
  • Paiva, E.A.S., Pinho, S.Z., Oliveira, D.M.T., 2011. Large plant samples: how to process for GMA embedding? In: Chiarini-Garcia, H., Melo, R.C.N. (orgs.). Light Microscopy: Methods and Protocols. Springer Humana Press, New York, pp. 37–49.
  • Pearse, A.G.E., 1980. Histochemistry Theoretical and Applied. Churchill Livingston, Edinburgh.
  • Pereira, A.C., Oliveira, D.F., Silva, G.H., Figueiredo, H.C.P., Cavalheiro, A.J., Carvalho, D.A., Souza, L.P., Chalfoun, S.M., 2008. Identification of the antimicrobial substances produced by Solanum palinacanthum (Solanaceae). An. Acad. Bras. Cienc. 80, 427-432.
  • Picoli, E.A.T., Isaias, R.M.S., Ventrella, M.C., Miranda, R.M., 2013. Anatomy, histochemistry and micromorphology of leaves of Solanum granuloso-leprosum Dunal. Biosci. J. 29, 655-666.
  • Pizzolato, T.D., Lillie, R.D., 1973. Mayer's tannic acid-ferric chloride stain for mucins. J. Histochem. Cytochem. 21, 56-64.
  • Ribeiro, E.A.N., Batitucci, M.C.P., Lima, J.A.T., Araújo, I.A.G., Mauad, H., Medeiros, I.A., 2002. Cardiovascular effects induced by the aqueous fraction of the ethanol extract of the stem of Solanum stipulaceum in rats. Rev. Bras. Farmacogn. 12, 34-35.
  • Ribeiro, S.R., Fortes, C.C., Oliveira, S.C.C., Castro, C.F.S., 2007. Avaliação da atividade antioxidante de Solanum paniculatum (Solanaceae). A. Cien. S. Univ. Paran. 11, 179-183.
  • Rocha, D.A., Abreu, C.M.P., Sousa, R.V., Corrêa, A.D., 2012. Método de obtenção e análise da composição centesimal do polvilho da fruta-de-lobo (Solanum lycocarpum St. Hil). Rev. Bras. Frut. 34, 248-254.
  • Roe, K.E., 1972. A revision of Solanum section Brevantherum (Solanaceae). Brittonia 24, 239-278.
  • Rossatto, D.R., Kolbm, R.M., 2012. Structural and functional leaf traits of two Gochnatia species from distinct growth forms in a sclerophyll forest site in Southeastern Brazil. Acta Bot. Bras. 26, 849-856.
  • Sampaio, V.S., Araújo, N.D., Agra, M.F., 2014. Characters of leaf epidermis in Solanum (clade Brevantherum) species from Atlantic forest of Northeastern Brazil. S. Afr. J. Bot. 94, 108-113.
  • Santos, A.V., Defavieri, A.C.V., Bizzo, H.R., Gil, R.A.S.S., Sato, A., 2013. In vitro propagation, histochemistry, and analysis of essential oil from conventionally propagated and in vitro-propagated plants of Varronia curassavica Jacq. In Vitro Cell Dev. Biol. Plant 49, 405-413.
  • Saslis-Lagoudakisa, C.H., Savolainen, V., Williamsond, E.M., Forestc, F., Wagstaffe, S.J., Baralf, S.R., Watsong, M.F., Pendryg, C.A., Hawkinsa, J.A., 2012. Phylogenies reveal predictive power of traditional medicine in bioprospecting. Proc. Natl. Acad. Sci. U. S. A. 25, 15835-15840.
  • Silva, T.M.S., Nascimento, R.J.B., Câmara, C.A., Castro, R.N., Braz-Filho, R., Agra, M.F., Carvalho, M.G., 2004. Distribution of flavonoids and N-transcaffeoyl-tyramine in Solanum subg. Leptostemonum Biochem. Syst. Ecol. 32, 513-516.
  • Somavilla, N.S., Graciano-Ribeiro, D., 2012. Ontogeny and characterization of aerenchymatous tissues of Melastomataceae in the flooded and well-drained soils of a Neotropical savanna. Flora 207, 212-222.
  • Stehmann, J.R., Mentz, L.A., Agra, M.F., Vignoli-Silva, M., Giacomin, L., Rodrigues, I.M.C., 2014. Solanaceae. Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro, Available from: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB14716 (accessed 19.10.15).
    » http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB14716
  • Svendsen, A.B., Verpoorte, R., 1983. Chromatography of Alkaloids. Elsevier Scientific Publishing Company, New York.
  • Vidal, B.C., 1970. Dichroism in collagen bundles stained with xylidine-Ponceau 2R. Ann. Histochem. 15, 289-296.
  • Vieira Jr., G., Ferreira, P.M., Matos, L.G., Ferreira, E.C., Rodovalho, W., Ferri, P.H., Ferreira, H.D., Costa, E.A., 2003. Anti-inflammatory effect of Solanum lycocarpum fruits. Phytother. Res. 17, 892-896.
  • World Health Organization, 2013. WHO Traditional Medicine Strategy 2014–2023. WHO Library Cataloguing-in-Publication Data, Geneva.
  • Yoshikawa, M., Nakamura, S., Ozaki, K., Kumahara, A., Morikawa, T., Matsuda, H., 2007. Structures of steroidal alkaloid oligoglycosides, robeneosides A and B, and antidiabetogenic constituents from the Brazilian medicinal plant Solanum lycocarpum J. Nat. Prod. 70, 210-214.

Publication Dates

  • Publication in this collection
    Mar-Apr 2016

History

  • Received
    12 June 2015
  • Accepted
    04 Nov 2015
Sociedade Brasileira de Farmacognosia Universidade Federal do Paraná, Laboratório de Farmacognosia, Rua Pref. Lothario Meissner, 632 - Jd. Botânico, 80210-170, Curitiba, PR, Brasil, Tel/FAX (41) 3360-4062 - Curitiba - PR - Brazil
E-mail: revista@sbfgnosia.org.br