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ABSTRACT: Leaf water content is an important parameter in environmental monitoring. The present study investigated the relation 
between leaf Equivalent Water Thickness (EWT) as a parameter to estimate the leaf water content and the reflectance in 400-2,500 nm 
spectral range. The data used were the well-known Leaf Optical Properties Experiment 93 (LOPEX93) field collected data. Four hundred 
leaf samples were used, 320 of which for modelling and the remaining 80 for testing the model. Four different approaches were 
investigated in this study: 1) linear regression between reflectance in individual wavelength and EWT; 2) the difference of reflectance in 
two wavelengths and EWT; 3) ratio of reflectance in two wavelengths and EWT; and finally 4) the normalized difference of reflectance 
in two different wavelengths and EWT. The results showed that the band combinations such as ratio and normalized difference had 
higher regressions with leaf water content. In addition, the findings of this study showed that some parts of the near infrared (NIR) and 
short wave infrared (SWIR) of the spectrum provided higher accuracies in EWT assessment, and correlations of more than 90% were 
achieved. Finally, this investigation showed that a wide range of wavelengths could be used for EWT assessment task. Despite the 
general belief in using water absorption bands for leaf water content assessment, this study shows that water absorption bands are not 
necessarily productive as other wavelengths have the potential to generate better results.
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INTRODUCTION
Water is an important parameter in determining 

biochemical characteristics as it constitutes 40-80% of the 
volume of plant leaves (Shen et al. 2005). Different indexes 
and wavelengths in different researches are claimed to have the 
highest correlations with the leaf water content. As Danson and 
Bowyer (2004) argue, the wavelength at which the strongest 
correlation with leaf water content is seen may depend on the 
magnitude and range of leaf water content in the leaf sample 
under study. Each one of these selected wavelengths is believed 
to be appropriate for determination of leaf water content in a 
particular vegetation species. 

From different indexes for measurement of leaf water 
content available in the literature (Ceccato et al. 2001, 
Danson  et  al. 1992, Wang et al. 2009), two of them, i.e. Full 
Moisture Content (FMC) and Equivalent Water Thickness 
(EWT) are more often addressed. FMC is the ratio of leaf 
water mass to either dry or wet mass of leaf and is shown by 
Equation 1 (Zhang et al. 2010):

	 FMC (%) = FW -DW
FW (or DW)

x 100 � (1)

Where FW is the leaf fresh mass and DW is the leaf dry 
mass. EWT is the weight of water (FW-DW) per unit area 
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(A) of leaf and is calculated by using Equation 2 (Bowyer and 
Danson 2004):

	 EWT = FW -DW
A

(g cm-2) � (2)

These two indexes are not necessarily related to each other 
and can vary with leaf characteristics. Ceccato et al. (2001) 
showed that the change in leaf reflectance values in short 
wave infrared (SWIR) region is more related to EWT than 
to FMC. This is because EWT is directly related to the depth 
of absorption bands in SWIR and consequently compared 
to FMC, so EWT has better correlation with leaf spectral 
parameters (Danson and Bowyer 2004, Shen et al. 2005).

Precise measurement of leaf water content in laboratory 
is time consuming if not expensive (Riaño et al. 2005a) and 
subjected to instrumental and human errors (Wang et al. 
2009). Different studies revealed wavelengths in which leaf 
reflectance is influenced by water content (Datt 1999, Wang 
et al. 2009, Zhang et al. 2012). Hence, using spectroradiometry 
and remote sensing technology, a possibility to reduce time and 
cost emerges. In addition, it may increase the accuracy of 
measurements in some extent. 

On this respect, studies have estimated leaf EWT by 
using either broad waveband ratios (Gao 1996) or narrow 
wavebands in the near infrared (NIR) and SWIR in simple 
ratios or normalized difference forms (Ceccato et al. 2001). 
To estimate leaf EWT, stepwise regression and leaf reflectance 
model inversion can also be used ( Jacquemoud et al. 2000). 
Many indexes have been introduced and most of them are 
empirical (Ceccato et al. 2002), mostly in the form of the ratio 
of two reflectance values or a combination of two or more 
reflectance values (Zhang et al. 2010). 

Zhang et al. (2010) have reported five absorption bands 
for water in 400–2,500 nm spectral region: 970; 1,200; 1,450; 
1,930 and 2,500 nm. Riaño et al. (2005b) specified that 1,400–
2,500 nm range provides the highest correlation with EWT. 
Danson et al. (1992) used six water absorption bands centred 
on 975; 1,175; 1,450; 1,650; 1,950 and 2,250 nm for leaf water 
content estimation. The linear correlation analysis showed 
that there exists a statistically significant correlation between 
water content parameters and leaf reflectance at 1,450, 1,650 
and 2,250 nm, however, this correlation was not seen at 
975  and 1,175 nm absorption bands. The study of Danson 
et  al. (1992) showed that when the leaf internal structure 
varies, the first derivative of leaf reflectance is superior to 
the original reflectance data for the estimation of leaf water 
content. It is believed that the variation in leaf structure 
causes the magnitude of leaf reflectance to change irrespective 
of the leaf water content. However, the relative “depths” of the 

water absorption features in the reflectance spectra seem not 
be affected by leaf structure (Danson et al. 1992). As the depth 
of an absorption feature increases, the slopes on the edges of 
the feature also increase. As a result, the first derivatives of the 
reflectance spectra at wavelengths corresponding to these 
slopes can be closely related to the water content of the leaves 
(Danson et al. 1992). 

A review of related studies shows that most of water 
absorption bands have been used for leaf water content 
assessment. However, there are still few spectral regions that 
have not received sufficient attention by the researchers. 
Additionally, most of the studies conducted so far have focused 
on one particular plant species and their results cannot equally 
be applied to other species. Therefore, it is important to define 
an index which can attain for a great number of plant species and 
also operates in a wider range of the electromagnetic spectrum. 
The present study was devoted to this task as we aimed to 
obtain wavelengths through which an accurate estimation of 
the EWT for most leaf species can be achieved. Thus, this work 
intended to find out the best possible wavelengths in order 
to cover a variety of available species. The best data in access 
were those collected in Leaf Optical Properties Experiment 
93 (LOPEX93) campaign. Finally, since the use of water 
vapor absorption bands was avoided in this study, it would 
be possible to use the results of this work in remote sensing 
of EWT where it is believed that the atmospheric water vapor 
content can no longer affect the results.

MATERIAL AND METHODS
The LOPEX93 data set was produced during an experiment 

conducted by the European Commission (Ispra, Italy) (Hosgood 
et al. 1994). Many researchers have used this data set in their 
studies (Bowyer and Danson 2004, Riaño et al. 2005a, Shen 
et al. 2005). This data set includes measurements of different 
parameters related to biochemical constituents along with the 
reflectance spectra of 120 different leaf species. The present 
study was based on LOPEX data where 320 spectra samples 
from 80 different species (Hosgood et al. 1994) were used and 
EWT for all these samples were calculated. The calculated EWT 
ranged from 0.0037–0.0525 g cm-2 with a mean of 0.0114 and a 
standard deviation of 0.0070 g cm-2.

In the LOPEX93 experiment, spectra were scanned over 
400–2,500 nm wavelength region. The spectral resolution varied 
from 1 to 2 nm in the visible/near infrared (400–1,000  nm) 
and from 4 to 5 nm in the middle infrared (1,000–2,500 nm) 
(Hosgood et al. 1994). Two sample reflectance spectral curves 
of the data are shown in Figure 1.

At the modelling stage, the data of 400 reflectance curves of 
80 sample species were used. These reflectance curves have been 
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measured by a spectroradiometer. All 400 reflectance curves 
from these 80 species were collected in the 400–2,500 nm 
wavelength region. Out of these data, 320 (80%) were used for 
modelling and another 80 sample data were kept for validation. 

By conducting two methods in this work, the linear 
relationship between leaf reflectance and its water content 
was investigated. In the first method, called (EWT-R), using 
least square method, the linear relationship between EWT 
and reflectance in each wavelength in different parts of 
electromagnetic spectrum (400–2,500 nm) was investigated. 
This enabled us to find those wavelengths at which the reflectance 
has a strong relationship with EWT. The second method called 
(EWT-I) was focused on the relationship between EWT and 
different indexes. These indexes are made from reflectance 
values in different parts of electromagnetic spectrum. In EWT-I 
method, the linear relationship between EWT and reflectance 
difference (Equation 3), simple ratio values of reflectance 
(Equation 4) and normalized difference of reflectance values 
(Equation 5) were investigated.

	 EWT= a(Rλi -Rλj) +b,          i, j= 1,2,...,i ≠ j � (3)

	
Rλi

Rλj

+bEWT= a � (4)

	
Rλi -Rλj

Rλi +Rλj

+bEWT= a � (5)

Where Rλi is reflectance at wavelength λi and a and b are 
regression coefficients. 

To select the most appropriate wavelength, a complete 
analysis was carried out using a combination of reflectance 
values for every wavelength in 400–2,500 nm region.

RESULTS
The results for the EWT-R method are partly in line with the 

findings of Riaño et al. (2005b). The mentioned authors studied 
245 samples of fresh leaves from 37 different species in the 
region of 1,400–2,500 nm. Their findings show that the highest 
and lowest values of R2 are within SWIR region of the spectrum, 
i.e. from 1,300–2,500 nm. The R2 values calculated for the first 
method in the present study also give support to the findings of 
Riaño et al. (2005b) and are shown in Figure 2.

The lowest value of R2 (0.00001) is at 1,318 nm 
wavelength and the highest value (0.63) is at 1,400 nm; the 
latter wavelength is an important water absorbing point. 
1,900 nm is another strong water absorption band with R2 
value of 0.35. However, as Wang et al. (2009) pointed out, 
other crests and troughs in the curve of Figure 2 are also 
potentially important. The most important wavelength of 
Figure 2 is shown in Table 1.

The results of EWT-I method are shown in Figures 3A–C. 
These three figures display the reflectance difference, the simple 
ratio of two reflectance values and the normalized difference of 
two reflectance values, respectively. To analyse the results in 
this case, the values of calculated R2 was grouped into 4 classes: 
below 0.5, 0.5–0.8, 0.8–0.9, and larger than 0.9.

Figure 3A shows the results of regression between EWT and 
indexes in the form of Equation 3 for two reflectance values of 
Rli and Rlj. As it was expected, the visible region up to 1,200 nm 
for the first reflectance (Rli) and up to 800 nm for the second 
reflectance (Rlj) produce very low R2 values in a linear formula. To 
this, we might add some other parts in SWIR and NIR with low 
values of R2 (lower than 0.5). As Figure 3A shows, the wavelength 
region for R2 values larger than 0.8 are confined between 740–
1,400 nm for Rli and 740–1,840 nm for Rlj (red and green colours). 
To limit our attentions to R2 values larger than 0.9 (red colour), 

Figure 1. Samples of Alfalfa spectral reflectance curves.
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Figure 2. R2 values of linear regression between Equivalent Water 
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the sparse points in 1,140–1,176 nm and 1,070–1,140 nm regions 
are selected for Rli and Rlj, respectively. This is also true for 1,315–
1,340 nm and 1,264–1,300 nm regions. The highest R2 of 0.92 for 
subtraction formula is for reflectance values in 1,152 and 1,134 nm 
for Rli and Rlj, respectively. It should be noted that the correlation 
between EWT and individual reflectance values in these 
wavelengths are as low as 0.05 and 0.165, respectively (Figure 2).

Figure 3B shows the results of regression between EWT and 
indexes in the form of Equation 4 for the two reflectance values 
of Rli and Rlj. The reflectance ratios in the visible up to 800 nm 
region have the lowest correlation with EWT. This situation also 
holds for wavelength larger than 1,850 nm in the SWIR region. 
The region for R2 values larger than 0.8 is confined between 750–
1,960 nm for the numerator reflectance and from 720–1,840 nm 
for the reflectance at the denominator (red and green colours). 
For R2 values larger than 0.9 (red colour), this is confined to the 
regions 1,050–1,870 nm and 741–1,376 nm for numerator and 
denominator reflectance, respectively. The highest R2 values are 
for the ratio of reflectance in 1,128 nm to the reflectance in 1,152 
nm with a value of 0.95. 

Finally, Figure 3C shows the results of regression 
between EWT and indexes in the form of Equation 5 for 
two reflectance values of Rli and Rlj. As can be seen in Figure 
3C, the reflectance values in the visible region up to 900 nm 
produce the lowest value for R2. This is also true for the 
wavelength region beyond 1,850 nm.

The highest R2 value of 0.95 belongs to the reflectances 
at 1,152 and 1,128 nm. These two wavelengths were also 
in simple ratio formula where 1,152 nm was one of the 
selected  wavelengths in subtraction formula. It should be 
noted that the wavelength is located at the shoulder of 1,200 
nm water absorption band. This is more reliable compared to 

Table 1. The extreme values of regression values (R2) based on 
different wavelengths 
Wavelength 
(nm)

Point type in the curve 
of Figure 2 (Local) R2 (Regression value)

425 max 0.223
686 min 0.056
750 max 0.284
979 min 0.158
1,073 max 0.242
1,318 min (global) 0.00001
1,375 mean 0.334
1,400 max (global) 0.635
1,526 max 0.631
1,672 min 0.399
1,865 max 0.619
1,905 mean 0.303
1,928 min 0.212

Figure 3. R2 values for regression between Equivalent Water 
Thickness and (A) difference of reflectances in two wavelengths, 
(B)  simple ratio of reflectance values in two wavelengths, and 
(C)  normalized differences of two reflectance values. The vertical 
and horizontal axes are wavelengths in nanometers. Vertical axes 
are for λi and horizontal axes are for λj.
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the Normalized Difference Water Index (NDWI) of Bowyer 
and Danson (2004), in which reflectance values at 860 and 
1,240  nm in the form of normalized difference index are 
used and a R2 of 0.64 with EWT is achieved. As can be seen 
in Figure 3C, the region of the spectrum that can produce R2 
values of more than 0.8 is confined between 740–1,860 nm 
region (red and green colours). However, if the higher values 
of R2 (i.e. larger than 0.9) are of interest, then the wavelength 
region is 1,030–1,380  nm (red colour). Therefore, by using 
reflectance values in these regions and a linear regression 
between EWT and normalized difference equation, one can 
estimate EWT with confidences more than 90%. 

DISCUSSION
As Figure 2 shows, the leaf reflectance in visible and NIR 

region has the least correlation with EWT. This could be due to 
the strong effects of leaf chlorophyll content that can cover the 
effects of water in these wavelengths. 

A sudden drop in the R2 value at 1,928 nm is an unexpected 
phenomenon. Even in the shoulder of water absorption region 
of the spectrum, there are wavelengths to which the leaf 
water content might not be sensitive. From 2,340 nm, the R2 
decreases and the leaf reflectance loses its linear correlation 
with EWT values. Therefore, not all wavelengths in the SWIR 
can have reflectance values highly correlated to EWT.  

Despite high correlation between water absorption bands 
and EWT, the use of these bands in airborne and spaceborne 
remote sensing is not recommended. This is mostly due to the 
atmospheric water content, and the distinction between these 
two bands is nearly impossible (Datt 1999). Moreover, Figure 2 
shows a lack of strong relationship between single reflectance 
and EWT in one particular wavelength (the highest value is 
0.63), where this level of correlation is insufficient in the 
applied and theoretical applications. The findings of this study 
show that it is possible to use a combination of  reflectance 
in wavelengths, in which the correlation between EWT and 
reflectance is extreme.

The results of the Equations 3 to 5 and their combinations 
were not the same. This is shown in Figure 3, in which different 
regression in different parts of the spectrum regions can be 
seen. The results of the two methods (EWT-R and EWT-
I) support the findings of other studies, such as Ceccato et 
al. (2001) and Zhang et al. (2012). The comparison of the 
results of the three algorithms (Equations  3 to 5) leads us 
to some interesting conclusions. The results in Figure 3, 
compared to those in Figure 2, show that there might exist 
two reflectance values having poor correlation with EWT 
individually; but when they are used in an index, this index is 
highly correlated to EWT. 

Compared to Figures 3A and C, Figure 3B has a wider area 
with R2 more than 0.9 (red colour). This suggests that simple 
ratio indexes may have more correlation with EWT compared to 
the other tested equations. The region of R2 values greater than 
0.8 for reflectance difference (Figure 3A) is very small compared 
to the other two indexes. It can be inferred from this finding 
that the reflectance difference is weaker for EWT estimation. 
For the R2 values larger than 0.9, the simple ratio is the most 
suitable index for EWT estimation. However, as the asymmetry 
of Figure 3B reveals, the place of insertion of the two reflectance 
values (numerator and denominator) is important.

The findings of this study show that, despite the researcher’s 
belief in using normalized difference indexes, the simple ratio 
is more suitable for EWT assessment. Also, the use of either 
of these indexes should not be confined to only two particular 
wavelengths and any other pair of reflectance values in these 
regions is equally allowed. This is important when we have 
sensors with low spectral resolution or when we have some 
noisy bands in hyperspectral products and we have to replace 
them by other bands.

Based on the best regressions values achieved, the 
Equation 6 takes the following form (Figure 4):

	
R1,128

R1,152

-0.3434EWT= 0.3418 � (6)

It can be seen in Figure 4 that the values for the ratio R1,128/
R1,152 are confined between 1.007–1.08 (horizontal axis). To 
evaluate the model, i.e. Equation 6, the remaining 80 samples 

Figure 4. The linear relationship between Equivalent Water 
Thickness (EWT) and the ratio of two reflectance values at 1,128 
and 1,152 nm for 320 spectral signatures.
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Table 2. Data related to those species having relative errors more than 25%
Sample name (as in LOPEX) Measured EWT (g cm-2) Model predicted EWT (g cm-2) Relative error (%)
Rice 2/2 0.010 0.013 26.569
Lettuce 0.021 0.015 28.156
Willow 0.011 0.014 32.401
Oak 1/2 0.007 0.005 33.564
Hazelnut  2 0.005 0.003 41.773
Rice dry leaves 0.008 0.012 46.278

LOPEX: Leaf Optical Properties Experiment; EWT: Equivalent Water Thickness.

Figure 5. The scatter plot of laboratory measured Equivalent 
Water Thickness (EWT) (80 samples) versus those calculated 
from model (Equation 6).
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were used. The result is shown in a scatter plot (Figure 5) 
against laboratory-measured values.

The relative Root Mean Square Error (RMSE) with respect 
to the mean measured values was calculated. The value of 18% 
was found for the total 80 samples and, for 6 of these samples, 
i.e. Lettuce, Oak, Rice, Hazelnut, Willow, and Rice dry leaves 
(Table 2), the relative RMSE was higher than 25% (between 
26-46%). Overall, as can be seen in Figure 5, a robust linear 
positive relationship is identified between model’s predicted 
and laboratories measured values. The bulk of available research 
on the relationship between the leaf reflecting properties and 
its water content (especially EWT) is mostly confined to some 
special species and for some particular wavelengths. However, in 
this work, it is tried not to limit ourselves to a particular species 
and to a particular wavelength region and, consequently, the 
method can be applied to every species for calculation of EWT.

This paper started investigating the most appropriate 
wavelengths in which the leaf reflectance and the indexes made 
by these reflectance values, have the highest correlation with 

the leaf EWT. In order to obtain wavelengths through which 
an accurate estimation of the EWT for most leaf species can be 
achieved, LOPEX93 data were used.

Two methods of EWT-R and EWT-I were introduced 
in this work. In EWT-R, the linear relationship between 
EWT and reflectance in each wavelength in different parts of 
electromagnetic spectrum (400–2,500 nm) was investigated. 
The  least value of R2 (0.00001) was at 1,318 nm wavelength 
and  the highest value (0.63) was at 1,400 nm; the latter 
wavelength is an important water absorbing point. In the 
second method (EWT-I), the relationship between EWT 
and indexes such as reflectance difference, simple ratio and 
normalized difference of reflectance values were investigated. 
For EWT-I method, to limit our attentions to R2 values larger 
than 0.9, the sparse points in 1,140–1,176 nm and 1,070–
1,140 nm regions were appropriate. This is also true for 1,315–
1,340 nm and 1,264–1,300 nm regions. The highest R2 of 0.92 
for subtraction formula is for reflectance values in 1,152 and 
1,134 nm.

For the reflectance ratios, the region for R2 values larger 
than 0.8 is confined between 750–1,960 nm for the numerator 
reflectance and from 720–1,840 nm for the reflectance at 
the denominator. For R2 values larger than 0.9, it is confined 
to the  regions 1,050–1,870 nm and 741–1,376 nm for 
numerator and denominator reflectance, respectively. The 
highest R2 values are for the ratio of reflectance in 1,128 nm 
to the reflectance in 1,152 nm with a value of 0.95. Finally, 
for normalized difference index, the results of regression with 
EWT show that the reflectance values in the visible region up 
to 900 nm produce the lowest value for R2. This is also true for 
the wavelength region beyond 1,850 nm. The highest R2 value 
of 0.95 belongs to the reflectance values at 1,152 and 1,128 
nm. These two wavelengths were also in simple ratio formula 
in which 1,152 nm was one of the selected wavelengths in 
subtraction formula. 
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