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ABSTRACT. A nonlinear boundary value problem related to an equation of Kirchhoff type is considered.
The existence of multiple positive solutions is proved through Avery-Peterson Fixed Point Theorem. A
numerical method based on Levenberg-Marquadt algorithm combined with a heuristic process is present in
order to align numerical and theoretical aspects.
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1 INTRODUCTION

In this paper we present a study on second order equation Kirchhoff problem, given by{
M(‖u′‖2

2)u
′′+q(t) f (t,u,u′) = 0

u(0) = 0,u(1) = 0
(1.1)

where M : R→ R, f : [0,1]×R×R→ R and q : R+→ R are continuous maps.

Variations of (1.1) can be related to stationary state of Kirchhoff equation [8]. For example, as
elucidated in [11] considering argument reflection and later in [1] with more general boundary
conditions a stationary state of the Kirchhoff equation of kind of:

utt −
[

c0 + c1

∫ L

0
|ux|2dx

]
uxx = 0, (1.2)

can be associated with their respectives equations. This kind of equation commonly appear in the
context of free vibrations in elastic strings, consequently, they form a relevant object of study.

Many authors have studied problems related to (1.2). For a wide spectrum of study, we recom-
mend [2], [3], [6], [10] and more recently [5]. Concerning the problem (1.1) we can observe
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560 MULTIPLE SOLUTIONS FOR AN EQUATION OF KIRCHHOFF TYPE

by [12] that studies with theoretical aspects were developed using Banach’s Fixed Point Theo-
rem or Leray-Schauder Alternative combined with Krasnoselskii’s Theorem. Consequently, it is
natural to ask about existence results by using Avery-Peterson Theorem [4]. In this sense, this
work complement previous results of existence with the cited theorem, and this study is present
in Section 2.

Numerical studies related to second order equations, normally, are presented as illustration of
the existence Banach’s Fixed Point Theorem applied to equation but no strategy is given to ilus-
traste more general results (like the existence results provided by Avery-Peterson Theorem).
The common sense suggests that optimization methods combined with heuristic processes can
provide good results to find multiple numerical solutions. As consequence, a method based on
Levenberg-Maquardt [13, 9] is shown in Section 3 and comparisons with other methods using
classical strategies are established. Still, in Section 3, a simple but effective heuristic process is
introduced in order to find multiple numerical solutions. Final remarks are given in Section 4.

2 MULTIPLE SOLUTIONS

Let C1[0,1] be the Banach space of the continuously differentiable functions in [0,1]. Let us
consider E = {u ∈C1[0,1];u(0) = u(1) = 0} with the norm

‖u‖E = ‖u′‖∞.

We begin this section by observing that the solutions of (1.1) can be written as:

u(t) =
∫ 1

0
G(t,s)q(s)

f (s,u(s),u′(s))
M(‖u′‖2

2)
ds, (2.1)

where G is the Green’s function

G(t,s) =

{
s(1− t), s≤ t
t(1− s), t ≤ s

.

Considering the result that we will show, we must note some properties of the function G. In fact,
we have that

∂tG(t,s) =

{
−s, s≤ t
1− s, t ≤ s

,

then G satisfies:
G(t,s) = |G(t,s)| ≤ |∂tG(t,s)|. (2.2)

Let m be a constant in [0,1/2]. Thus, we can obtain the inequalities

G(t,s)≥ mG(s,s),∀x ∈ [m,1−m] (2.3)

and
G(t,s)≤ G(s,s),∀t ∈ [0,1]. (2.4)

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Thus, concerning the representation given in (2.1) we define the operator T : E→ E as:

T (u) =
∫ 1

0
G(t,s)q(s)

f (s,u(s),u′(s))
M(‖u′‖2

2)
ds,

where M and f are assumed to be continuous functions and there is a constant M0 > 0 such that
M(y)≥M0 for all y in the domain of M.

We claim that T is continuous and completely continuous. Continuity follows immediately from
the Lebesgue dominated convergence theorem and the fact that

|T (u)(t)−T (un)(t)| ≤
∫ 1

0
G(t,s)q(s)

∣∣∣∣ f (s,u(s),u′(s))
M(‖u′‖2

2)
− f (s,un(s),u′n(s))

M(‖u′n‖2
2)

∣∣∣∣ds,

≤
∫ 1

0
G(s,s)q(s)

∣∣∣∣ f (s,u(s),u′(s))
M(‖u′‖2

2)
− f (s,un(s),u′n(s))

M(‖u′n‖2
2)

∣∣∣∣ds,

≤
∫ 1

0
s(1− s)q(s)

∣∣∣∣ f (s,u(s),u′(s))
M(‖u′‖2

2)
− f (s,un(s),u′n(s))

M(‖u′n‖2
2)

∣∣∣∣ds,

with un,u ∈ E. To show complete continuity we will use the Arzela-Ascoli’s theorem. Let Ω⊆ E
be bounded, in other words, there exists Λ0 > 0 with ‖u‖ ≤ Λ0 for each u ∈Ω. Now if u ∈Ω we
have

|(Tu)′(t)| ≤
∫ 1

0
|G′(t,s)|HΛ0(s)ds

where HΛ0 is determined by the bounded set and functions q, f and M. It is easy to check
that HΛ0(s) ∈ L1[0,1]. Then imply that T Ω is a bounded equicontinuous family on [0,1].
Consequently the Arzela-Ascoli theorem implies T : E→ E is completely continuous.

Consider the following hypotheses:

(A1) There are positive constants d, A, B such that:

• q(t) f (t,u,v)≥ 0, ∀(t,u,v) ∈ [0,1]× [−d
2
,

d
2
]× [−d,d];

• ∀(t,u,v) ∈ [0,1]× [−d
2
,

d
2
]× [−d,d], then | f (t,u,v)| ≤ dA

r1
, where

r1 = max
t∈[0,1]

{∫ 1

0
|∂tG(t,s)q(s)|ds

}
;

• A≤M(‖u′‖2
2)≤ B, ∀ ‖u‖E ≤ d;

Next, we define a cone P by

P = {u ∈C1[0,1];u≥ 0,u(0) = u(1) = 0}.

Remark 1. Denoting

F(t) =
∫ 1

0
G(t,s)q(s)

f (s,u(s),u′(s))
M(‖u′‖2

2)
ds,

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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562 MULTIPLE SOLUTIONS FOR AN EQUATION OF KIRCHHOFF TYPE

we can extract some properties related to F. Since

F ′′(t) =−q(t)
f (t,u(t),u′(t))

M(‖u′‖2
2)

≤ 0,

from (A1), we find that F is concave, and since F(0) = F(1) = 0, we can conclude that

min
t∈[ 1

4 ,
3
4 ]

∫ 1

0
G(t,s)q(s)

f (s,u(s),u′(s))
M(‖u′‖2

2)
ds = min

{∫ 1

0
G(

1
4
,s)q(s)

f (s,u(s),u′(s))
M(‖u′‖2

2)
ds,

∫ 1

0
G(

3
4
,s)q(s)

f (s,u(s),u′(s))
M(‖u′‖2

2)
ds
}

For the purpose of this work we need to introduce the main tools.

Avery-Peterson theorem.

Now, we need to consider the convex sets

P(γ,d) = {x ∈ P|γ(x)< d}

P(γ,α,b,d) = {x ∈ P|b≤ α(x) and γ(x)< d}

P(γ,θ ,α,b,c,d) = {x ∈ P|b≤ α(x),θ(x)≤ c and γ(x)< d}

and the closed set
R(γ,ψ,a,d) = {x ∈ P|a≤ ψ(x) and γ(x)< d}.

Theorem 2. Let P be a cone in a real Banach space X. Let γ and θ nonnegative continuous
convex functionals on P, α be a nonnegative continuous concave functional on P, and ψ be a
nonnegative continuous functional on P satisfying ψ(λx)≤ λψ(x) for 0 ≤ λ ≤ 1, such that for
some positive numbers µ and d,

α(x)≤ ψ(x) and ‖x‖ ≤ µγ(x),

for all x ∈ P(γ,d). Suppose
T : P(γ,d)→ P(γ,d)

is completely continuous and there exist positive numbers a, b, c with a < b, such that

{u ∈ P(γ,θ ,α,b,c,d)|α(u)> b} 6= /0 and

u ∈ P(γ,θ ,α,b,c,d)⇒ α(Tu)> b (2.5)

α(Tu)> b for u ∈ P(γ,α,b,d) with θ(Tu)> c, (2.6)

0 6∈ R(γ,ψ,a,d) and ψ(Tu)< a for (2.7)

u ∈ R(γ,ψ,a,d) with ψ(u) = a.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Then T has at least three distinct fixed points in P(γ,d).

In our main result (given by Theorem 2) we will show that the Problem 1.1 has at least three
positive solutions.

Theorem 3. Suppose that the hypothesis (A1) is satisfied. Suppose, in addition, that there exist
a, 0 < a < d such that f satisfies the following conditions:

(A2) | f (t,u,v)|< Aa
r2

, ∀(t,u,v) ∈ [0,1]× [0,a]× [−d,d],

where r2 = max
t∈[0,1]

{∫ 1

0
G(t,s)|q(s)|dt

}
.

(A3) | f (t,u,v)|> 2aB
r3

, ∀(t,u,v) ∈ [0,1]× [2a,8
√

2a]× [−d,d],

where r3 = min
{∫ 1

0
G(

1
4
,s)|q(s)|ds,

∫ 1

0
G(

3
4
,s)|q(s)|ds

}
.

Then, Problem (1.1) has at least three positive solutions.

Proof. We will apply Avery-Peterson theorem (as stated in [4]). Let us consider T and P as
defined before. Furthermore, we need define the following functionals

γ(u) = ‖u‖E ,

ψ(u) = max
t∈[0,1]

|u(t)|,

θ(u) =

[∫ 3
4

1
4

[u(t)]2dt

] 1
2

,

α(u) = min
t∈[ 1

4 ,
3
4 ]
|u(t)|.

Therefore, we need to verify that

T : P(γ,d)→ P(γ,d)

is completely continuous and there exist positive numbers b and c with a < b, such that

{u ∈ P(γ,θ ,α,b,c,d)|α(u)> b} 6= /0 and

u ∈ P(γ,θ ,α,b,c,d)⇒ α(Tu)> b (2.8)

α(Tu)> b for u ∈ P(γ,α,b,d) with θ(Tu)> c, (2.9)

0 6∈ R(γ,ψ,a,d) and ψ(Tu)< a for (2.10)

u ∈ R(γ,ψ,a,d) with ψ(u) = a.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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564 MULTIPLE SOLUTIONS FOR AN EQUATION OF KIRCHHOFF TYPE

Using (A1) we have Tu≥ 0 if γ(u) = ‖u‖E ≤ d, and obtain:

‖Tu‖E = ‖(Tu)′‖∞

≤ dA
r1

max
t∈[0,1]

∫ 1

0

|∂xG(t,s)q(s)|
M(‖u′‖2

2)
ds

≤ d.

Therefore T applies P(γ,d) in P(γ,d).

Now, we consider
b = 2a

and
c = 8

√
2a.

Clearly, we have {u ∈ P(γ,θ ,α,b,c,d)|α(u)> b} 6= /0. Let us demonstrate (2.8). Using (A3) we
obtain

α(Tu) = min
t∈[ 1

4 ,
3
4 ]
(Tu)(t)

= min
t∈[ 1

4 ,
3
4 ]

(∫ 1

0
G(t,s)q(s)

f (s,u(s),u′(s))
M(‖u′‖2

2)
ds
)

= min
x∈[ 1

4 ,
3
4 ]

∫ 1

0
G(t,s)|q(s)| | f (s,u(s),u

′(s))|
M(‖u′‖2

2)
ds

= min
{∫ 1

0
G(

1
4
,s)|q(s)| | f (s,u(s),u

′(s))|
M(‖u′‖2

2)
ds,
∫ 1

0
G(

3
4
,s)|q(s)| | f (s,u(s),u

′(s))|
M(‖u′‖2

2)
ds
}

>
2aB
r3

min
{∫ 1

0
G(

1
4
,s)

|q(s)|
M(‖u′‖2

2)
ds,
∫ 1

0
G(

3
4
,s)

|q(s)|
M(‖u′‖2

2)
ds
}

>
2a
r3

min
{∫ 1

0
G(

1
4
,s)|q(s)|ds,

∫ 1

0
G(

3
4
,s)|q(s)|ds

}
≥ 2a = b.

Let us demonstrate (2.9). Let u ∈ P(γ,α,b,d) with θ(Tu)> c. Then

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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α(Tu) = min
t∈[ 1

4 ,
3
4 ]

{∫ 1

0
G(t,s)q(s)

f (s,u(s),u′(s))
M(‖u′‖2

2)
ds
}

≥ 1
4

(∫ 1

0
G(t,s)q(s)

f (s,u(s),u′(s))
M(‖u′‖2

2)
ds
)

≥ 1
4

max
t∈[0,1]

{∫ 1

0
G(t,s)q(s)

f (s,u(s),u′(s))
M(‖u′‖2

2)
ds
}

≥ 1
4
√

2
θ

(∫ 1

0
G(t,s)q(s)

f (s,u(s),u′(s))
M(‖u′‖2

2)
ds
)

≥ 1
4
√

2
θ(Tu)

>
1

4
√

2
c = b.

Now, let us show (2.10). Thus, let u ∈ R(γ,ψ,a,d) with ψ(u) = a. From (A1)− (A2) we have,

ψ(Tu) = max
t∈[0,1]

|Tu(t)|

≤ max
t∈[0,1]

(∫ 1

0
G(t,s)q(s)

f (s,u(s),u′(s))
M(‖u′‖2

2)
ds
)

≤ max
t∈[0,1]

(∫ 1

0
G(t,s)|q(s)| | f (s,u(s),u

′(s))|
M(‖u′‖2

2)
ds
)

≤ Aa
r2

max
x∈[0,1]

(∫ 1

0
G(t,s)

|q(s)|
M(‖u′‖2

2)
ds
)

≤ a
r2

max
x∈[0,1]

(∫ 1

0
G(t,s)|q(s)|ds

)
≤ a.

Applying Avery-Peterson theorem we obtain the result.

Example 2.1. This example shows a problem that has at least three positive solutions, according
to Theorem 3. Suppose that

q(t) = 1,

f (t,u,v) =

{
t +u3 +( v

55 )
2, 0≤ u≤ 3

t +24+u+( v
55 )

2, 3≤ u

and
M(y) = 0.7+0.4sin2(y).

Taking a = 1.5, d = 55, A = 0.7 and B = 1.1 we find

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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(A1) for (t,u,v) ∈ [0,1]× [0,55]× [−55,55]

r1 = max
x∈[0,1]

∫ 1

0
|∂tG(t,s)|ds =

1
2

0≤ f (t,u,v)≤ 1+24+55+1 = 76 < 77 =
55×0.7

0.5
=

dA
r1

A≤M(||u′||22)≤ B.

(A2) for (t,u,v) ∈ [0,1]× [0,1.5]× [−55,55]

f (t,u,v)≤ 1+(1.5)3 +1 = 5.375 < 8.4 =
λ1a
r2

where

r2 = max
t∈[0,1]

∫ 1

0
|G(t,s)|ds =

1
8
.

(A3) for (t,u,v) ∈ [0,1]× [3,12
√

2]× [−55,55]

f (t,u,v)≥ 27 > 26.4 =
2×1.5×1.1

1/8
=

2aB
r3

where r3 = min
{∫ 1

0
G(

1
4
, t)dt,

∫ 1

0
G(

3
4
, t)dt

}
=

1
8
.

Thus, from Theorem 3, the problem has at least three positive solutions.

3 NUMERICAL SOLUTIONS

In most studies, numerical solutions are obtained by fixed point methods, according to [12].
More specifically, an iterative sequence based on operator given by equation (2.1) define the
method. The basic idea of the proposed method is to use the Levenberg-Maquardt algorithm
[13]. This type of algorithm arises frequently in the context of optimization related to the data
adjustment problem [7]. The Levenberg-Marquardt algorithm can be easily used for the solution
of non-linear systems. Algorithm 1 briefly describes the ideas to solve the Problem (1.1).

The motivation for the Algorithm 1 is the fact that fixed point methods are tendentious to find
solutions in which the operator T is a contraction and consequently, chosen an initial approxima-
tion u0 we have generally two possibilities: the method converges to solution given by Banach’s
Theorem or the method diverges. Anyway, if we have multiple solutions (as in Theorem 3), we
can try to find these solutions. For this reason, our proposed algorithm, using an appropriated
initial approximation, allows to find others solutions. So the development of an heuristic to find
a better initial approximation is relevant.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Algorithm 1:

1. Define an uniformly spaced mesh {t j}, j = 1, . . . ,n.

2. Choose initial approximation u0
j = u0(t j).

3. Discretize the Problem (1) by finite difference.
For j = 2, . . . ,n−1

• u′′k(t j) =
uk(t j+1)−2∗uk(t j)+uk(t j−1)

h2 ;

• u′k(t j) =
uk(t j+1)−uk(t j−1)

2∗h

approaching ‖u′‖2
2 by using trapezoidal rule.

Thus we have the following linear system

r(uk) = 0,

where

r(uk) =
{

M(‖u′‖2
2)u
′′k(t j)+q(t j) f (t j,uk(t j),u′k(t j)) = 0; j = 2, . . . ,n−1.

4. For k = 1,2,3, . . . (Levenberg-Maquardt)

(a) Compute rk = (r1,r2, . . . ,rn)
T and Ak = (ai j)n×n;

ri = ri(uk), ai j = ∇ri(uk)

(b) Find ∆k such that:
(AT

k Ak)∆
k =−AT

k rk.

(c) Determines αk such that the Armijo’s condition is satisfied.

(d) Compute
uk+1 = uk +αk∆k.

5. Convergence test.

3.1 An heuristic procedure for initial approximations

We know the solutions that we are looking for must be concave or convex and will satisfy the
condition u(0) = u(1) = 0. Thus, approaches by parabolas are reasonable ways of approaching
the solution. In this sense, the heuristic procedure proposed in this paper consists in generating
parables about initial points as follows:

u0(x) = nrx(1− x)

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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where nr is a random number in [−d
2
,

d
2
]. For practical purposes, the proposed procedure is

defined by Algorithm 2.

Algorithm 2:

1. Choose a vector nr ∈ [− d
2 ,

d
2 ]

p.

2. For k = 1, ...,N do:
(a) Compute u0

k,i = u0
k(xi) = nrkxi(1− xi), i = 1, ...,n

(b) Run Algorithm 1 with initial approximation u0
k .

Naturally, this procedure returns multiple answers. So we need to establish a way to compare
solutions in order to distinguish them. Note that the magnitude of the solutions may be different.
In this sense, we say that the numerical solutions u∗ and u∗∗ are equivalent if

‖u∗−u∗∗‖ ≤max{10−8,10−6 min{‖u∗‖,‖u∗∗‖}}. (3.1)

is satisfied.

Additional tests are run by using an algorithm based on the Banach Fixed Point Theorem. Con-
sidering some hypothesis about the functions f and M, we can demonstrate, using the Banach
Fixed Point Theorem (details in [12]), the local convergence of algorithms that use the iterative
sequence

uk+1 = T (uk).

This procedure is described by Algorithm 3, which is a version of the algorithm proposed in [12].

Algorithm 3:

1. Define a uniformly spaced mesh {x j} em [0,1].

2. Choose initial approximation u0
j = u0(x j).

3. For k = 1,2,3, . . .

(a) Compute u′kj by central-differences.

(b) Compute uk+1
j using

uk+1 = T (uk)

where the integrals are computed using trapezoidal rule.

4. Convergence test.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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For practical purposes, the procedure is formalized by Algorithm 4, which is equivalent to
Algorithm 2 and it calculates possible multiple solutions.

Algorithm 4:

1. Choose a vector nr ∈ [− d
2 ,

d
2 ]

p.

2. For k = 1, ...,N do:
(a) Compute u0

k,i = u0
k(xi) = nrkxi(1− xi), i = 1, ...,n

(b) Run Algorithm 3 with initial approximation u0
k .

3.2 Examples

The examples below show how the Algorithm 2 can be promissor in order to find multiple solu-
tions. We run Algorithm 2 and 4 with N = 10. For Algorithm 3, we consider as stopping criteria:
‖uk+1−uk‖< 10−4 and for Algorithm 1 we consider ‖uk+1−uk‖< 10−6.

Example 3.1. Consider Problem (1.1) defined by

f (t,u,u′) = u,

and
M(y) =

1
π4 y+

1
2π2

The solutions are u(x) = sin(πt) and u(x) = 0. In this example we consider d = 10 and n = 20
points for the spaced mesh. The numerical results are compared with the exact solution.

Running Algorithm 2, the procedure converged to the solution in 9 out of 10 times in which
the Algorithm 1 was called. After 7 iterations of Algorithm 1, six initializations converged
to the solution u and the obtained accuracy is max |u7 − u| = 0.006189. After 4 iterations of
Algorithm 1, three initializations converged to the solution u and the obtained accuracy is
max |u4− u| = 1.092× 10−13. The divergence means that the maximum number of iterations,
i = 50, was extrapolated. At the point where the execution stopped, the solution was near of u.

On the other hand, running Algorithm 4, the procedure converged to the solution u (the less
norm) in 8 out of 10 times in which the Algorithm 3 was called and reached the required accu-
racy (‖uk+1− uk‖ < 10−4) after k iterations, with 11 ≤ k ≤ 14. The two divergences mean that
Algorithm 3 stopped running since the function M became null and then there was a divide by
zero. For accuracy or order < 10−4, the algorithm diverges in most of times, due to divide by
zero.

Example 3.2. Consider the Problem (1.1) defined by

f (t,u,u′) = u(π2u2 +u′2),

Tend. Mat. Apl. Comput., 19, N. 3 (2018)



i
i

“A12-1235-6075-1-LE” — 2018/11/19 — 17:13 — page 570 — #12 i
i

i
i

i
i

570 MULTIPLE SOLUTIONS FOR AN EQUATION OF KIRCHHOFF TYPE

and

M(y) = 0.1+
9
√

2(y2)
1
4

10π

The solutions are u(x) = sin(πt), u(x) = −sin(πt) and u(x) = 0. In this example, we consider
d = 10 and n = 20 points for the spaced mesh. The numerical results are compared with the
exacts solutions.

Running Algorithm 2, the procedure converged to the solution in 10 out of 10 times in which
the Algorithm 1 was called. After 5 iterations of Algorithm 1, five initializations converged
to the solution u and the obtained accuracy is max |u5 − u| = 0.00532072. After 5 iterations
of Algorithm 1, three initializations converged to the solution u and the obtained accuracy is
max |u5− u| = 0.00574833. After 12 iterations of Algorithm 1, two initializations converged to
the solution u and the obtained accuracy is max |u12−u|= 0.000063816.

On the other hand, running Algorithm 4, the procedure converged to the solution null (the less
norm) in 10 out of 10 times in which the Algorithm 3 was called and reached the required
accuracy (‖uk+1−uk‖< 10−4) after k iterations, with 5≤ k ≤ 7.

We have conducted an additional test, which run Algorithm 2 using the functions defined in
Example 1. In this example, we defined n = 20 and d = 55. Using the criterion established in
(3.1), we obtain that the 3 solutions are different. These results illustrate the result of existence
given by Theorem 3. Figure 1 shows a graphical representation of these solutions.

0 2 4 6 8 10 12 14 16 18 20
0
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1

1.5

2
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Solution 1

Solution 2

Solution 3

Figure 1: Solutions founded by running Algorithm 2 using Example 1.
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Running Algorithm 4, the procedure converged to the solution of less norm in 9 out of 10 times
in which the Algorithm 3 was called (according to the criteria described in 3.1) and reached the
required accuracy (‖uk+1−uk‖< 10−4) after 5 iterations.

As a conclusion, Algorithm 4 have found only the solution of less norm in all the run examples.
On the other hand, Algorithm 2 have found, to the same run examples, all the possible solutions.
Therefore, Algorithm 2 is more robust and suitable to determine multiple solutions.

4 FINAL REMARKS

Considering the numerical aspects of this work, we present a new algorithm (Algorithm 1) and
a new heuristic that allows obtain multiple solutions. The method has robustness to solve second
order equation Kirchhoff problem. Of course, the cost of this robustness is a slightly higher cost
of computer processing, especially when we compare the method presented in last section with
fixed-point methods (using the operator given by (7)).

Fortunately, the level of processing is not absurd even considering finer meshes. Furthermore, the
method can be adapted for parallel programming and consequently, new features can be exploited
in the computational field.

RESUMO. Um problema de valor de fronteira associado é uma equação do tipo Kirchhoff
é considerado. Resultados de existência de múltiplas soluções são provados utilizando o
teorema de Avery-Peterson. Um método numérico baseado no algoritmo de Levenberg-
Maquardt combinado com um processo heurı́stico é apresentado com finalidade de elucidar
aspectos numéricos e teóricos.

Palavras-chave: Múltiplas soluções, equação de Kirchhoff, soluções numéricas.
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