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ABSTRACT. We consider the conjugate gradient method for the normal equations in the solution of dis-
crete ill-posed problems arising from seismic tomography. We use a linear approach of traveltime tomog-
raphy that is characterized by an ill-conditioned linear system whose unknowns are the slownesses in each
block of the computational domain. The algorithms considered in this work regularize the linear system
by stopping the conjugate gradient method in an early iteration. They do not depend on the singular-value
decomposition and represent an attractive and economic alternative for large-scale problems. We review
two recently proposed stopping criteria and propose a modified stopping criterion that takes into account
the oscillations in the approximate solution.

Keywords: seismic tomography, conjugate gradient method, truncated iteration.

1 INTRODUCTION

Exploration seismology, or seismics, is the field of geophysics that is most employed for subsur-
face imaging in the oil industry, and uses an ensemble of techniques based upon the theory of

propagation of elastic and acoustic waves. One of such techniques is seismic tomography, that
became an important tool in reservoir geophysics due to its high resolution.

Tomographic reconstruction is a special kind of inversion procedure that allows one to estimate
material properties from their line integrals. Tomography first appeared in medicine for imaging

the human body. A set of sources and receivers (usually of X-rays) rotates around the patient in
order to get a complete scan, providing images of high resolution. Unlike medicine, in geophysics
one cannot make a complete turn around the object of study. And rather than using X-rays, one
uses electromagnetic waves with lower frequency, as well as mechanical waves, which is the

object of the present work.

There are two general classes of seismic tomography: waveform and traveltime tomography,
which are dynamical and kinematic approaches, respectively. Since the 1980s, these techniques

*Corresponding author: Saulo Pomponet Oliveira.
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have been adopted in exploration seismology as a data inversion method which is known for

its high resolution, when compared with conventional seismic acquisition geometries. We will
focus on traveltime tomography, which uses the traveltime between sources and receivers. These
traveltimes constitute the vector of parameters t , which is the input data in tomographic inversion.

The matrix G used in tomography describes the geometry of the rays that connect sources and
receivers. The output data of the tomographic inversion is the vector of model parameters, s,
which contains the slowness (the reciprocal of the velocity) field, in the isotropic case, or density

normalized elastic parameters, in the anisotropic case.

One of the most popular approaches to find the least-squares solution to the linear system Gs = t
is the singular-value decomposition (SVD) [9]. However, since the matrix G is usually sparse,
iterative methods are the usual choices for large-scale problems [8, 9, 16]. Taking into account

that several authors reported that iterative methods based on Krylov subspaces, such as the con-
jugate gradient method for the normal equations and the LSQR method [10], performed better
than stationary iterative methods such as SIRT and ART techniques [9, 7, 19], we focus on con-

jugate gradient methods in this work.

The difficulties on inversion arise from the fact that it typically involves ill-conditioned matrices,
in order that the solutions are highly sensitive to data perturbations, which characterizes an ill-
posed problem. Other sources of difficulties are the presence of noise, scarce information and an

inaccurate model discretization. Perhaps the most popular procedure to alleviate these drawbacks
is to resort to a regularization technique by means of derivative matrices, which is known in
the literature as Tikhonov regularization. This technique employs a regularization parameter λ
whose choice is crucial to the correctness of the solution. There are several classical techniques

available for selecting the regularization parameter, such as the L-curve and the generalized
cross-validation (GCV) method (see, e.g., [6]). Some examples of alternative techniques are
the�-curve [11, 12] and the fixed-point iteration [2].

One common alternative to Tikhonov regularization for iterative methods is to break the itera-
tions at an early stage [5, 13], which requires a more strict stopping criterion. In this work, we
consider two stopping criteria. The first criterion is based on an estimate of the GCV functional
that requires a small computational cost [15]. The second criterion, which has an even lower cost,

depends on the product of the norm of the residual and the norm of the current iterate [3, Sec.
4.1].

The remainder of this paper is organized as follows. In the next section, we review the math-
ematical model of linearized tomography and consider the simpler case of linear tomography,

where the inverse problem reduces to the solution of a linear system. In Section 3, we present
the conjugate gradient algorithm with truncated iteration and, motivated by the work of Van-
Decar and Snieder [20], who proposed a penalization of the first and second derivatives of the

estimated model parameters, we modify the minimal product criterion from [3] in order to take
into account the oscillations of the current iterate. These criteria are compared by means of
numerical experiments in Section 4 and further discussed in Section 5.
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2 LINEARIZED SEISMIC TOMOGRAPHY

The traveltime t between a source and a receiver is computed through the line integral of slow-
ness, along a ray path:

t =
∫

r(s)
s(x, z)dl , (2.1)

where r is the path of the trajectory along which the integration is performed, dl is the ray
element, and s(x, z) is the slowness of the medium at the point (x, z), where x and z represent

the horizontal and vertical coordinates, respectively.

The slowness model can be parameterized using a regular grid of N blocks,

s(x, z) =
N∑

j=1

s j B j (x, z) , (2.2)

where the basis function B j (x, z) is the characteristic function, which is 1 on the j -th block and
zero otherwise. This model representation leads to the relation

t ≡ g(s), g(s) ≡
N∑

j=1

s j

∫
r(s)

B j (x, z)dl, (2.3)

which is nonlinear, since the ray path depends on the slowness. The vector t ∈ RM represents
the observed travel times of each ray. The vector s ∈ RN represents the slowness in each block.
We consider a first-order truncated Taylor series approximation around s(0):

t = t(0) + ∂g
∂s
(s − s(0)), t(0) = g(s(0)), (2.4)

and carry out an iterative process where, at each step k, we have the following linear relation
between the the vector t(k) of traveltimes of all rays and the vector s(k) with the current estimated

slowness field:
t(k) = G(k)s(k). (2.5)

The matrix G(k) contains elements gi j that correspond to the distances that the i-th ray travels in
the j -th block. This matrix can be constructed with a ray tracing algorithm [1]3. Let us denote
by tobs the observed traveltime. By applying the expansion (2.4) on each component of tobs and

using approximation (2.5), we find

�t(k) = G(k)�s(k), (2.6)

where �t(k) = tobs − t(k) and �s(k) = s(k+1) − s(k).

We want to find the vector �s(k) that minimizes ‖ G(k)�s(k) − �t(k) ‖2. This is called a least
squares problem, which can be formally stated as finding the minimum of the following objective
function:

�(�s(k)) = (�t(k) − G(k)�s(k))T (�t (k) − G(k)�s(k)). (2.7)

3A FORTRAN ray tracing program for this purpose is available in [17].
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The estimated solution, also called least squares solution, is

[G(k)]T G(k)�s(k),est = [G(k)]T�t(k). (2.8)

Least-squares solutions very often do not provide good results and sometimes they do not even
exist. In order to solve this problem we use a tool of regularization or smoothing: the ill-
conditioning of the matrix G(k) is regularized and the unstable least-squares estimate �s(k),est

is consequently smoothed to greatly reduce the possibility of wild noise-induced fluctuation in
�t(k) , hopefully without distorting the resulting smoothed image too far from the true solution
�s(k) [18].

In this work, we have considered linear tomography, where the geometry of the rays does not
depend on the distribution of velocities [7]. In other words, the rays are straight, and there is no
need to do further ray tracing, nor to update the vector of estimated slowness. In general, this
approximation is valid only for small velocity (or slowness) contrasts.

Thus, eq. (2.8) now becomes
GT Gs = GT t, (2.9)

where the solution s = sest will be obtained through conjugate gradient schemes as presented
in the next section.

3 CONJUGATE GRADIENT METHOD AND STOPPING CRITERIA

We consider the classical conjugate gradient method for normal equations to solve the least-
squares linear system (2.9), which is often referred to as CGLS [3, 10, 15]. Given a initial guess
s0 and a maximum number of iterations kmax,

r0← t − Gs0, z0← GT r0, and p0 ← z0;
repeat

wk ← G pk ;
αk ← (zT

k zk)/(w
T
k wk);

sk+1 ← sk + αk pk ;
rk+1← rk − αkwk ;
zk+1 ← GT rk+1

βk ← (zk+1
T zk+1)/(zT

k zk);
pk+1 ← zk+1 + βk pk ;

until�(k) reaches a local minimum or k > kmax

The matrix GT G is not explicitly computed, since it usually has a higher number of nonzero
entries and a higher condition number than G [16].

The stopping criterion is driven by the function�(k). We consider the following approaches:

• Monte-Carlo GCV [15]:

Given w ∼ N(0, IM×M ) ∈ RM , δ = 10−4,

�(k) = VN L (k) = ‖t − Gsk‖2
M�N L (k)

, (3.1)

Tend. Mat. Apl. Comput., 16, N. 3 (2015)
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�N L(k) =
(

wT [w − G(sk+ − sk−)/(2δ)]
wT w

)2

, (3.2)

where sk± are conjugate gradient iterates corresponding to the right-hand side t ± δw.

• Minimal product [3]:
�(k) = ψ(k) = ‖t − Gsk‖‖sk‖. (3.3)

Recalling the penalization of the first and second derivatives of the estimated model parameters
proposed in [20], we modify the minimal product criterion from [3] by introducing an additional

term that penalizes large oscillations in the current iterate:

�(k) = ψ(k) = ‖t − Gsk‖
√
‖sk‖2 + ‖Dsk‖2, (3.4)

where D is the first-order finite difference operator given in matrix form as

D = 1

h

⎡
⎢⎢⎢⎢⎣
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
. . .

...

0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎦ , h = 1

N
. (3.5)

4 NUMERICAL RESULTS

We consider the model shown in Figure 1 (left), which is described as a non symmetric anticlinal

with tectonic origin. Such situation has great relevance in oil exploration, since it has structural
traps with folds that could accumulate hydrocarbons. The reservoir is represented by a porous
sandstone (2,100 m/s) and the sealing by a impermeable shale (2,500 m/s). The model was
discretized in N = 800 blocks, where each block is a 10 m × 10 m square.

For the simulations we considered 31 sources in one borehole and 31 receivers in the other, in
such a way that we have M = 961 rays (Fig. 1, right). The observed data tobs was perturbed with
the addition of a uniformly distributed random noise with amplitude α, with α = 0, 10−4, 10−3,
and 10−2. We denote these perturbed vectors as tα .

In the following we evaluate the following relative mean square errors: the error of the perturbed
data with respect to the observed data, the calculated traveltimes with respect to the perturbed
data, and the estimated velocities and slownesses with respect to the true model. These errors are

defined as follows:

εα = ‖t
α − tobs‖2
‖tobs‖2 , εt = ‖t

calc − tα‖2
‖tα‖2 (tcalc = Gsest ),

εv = ‖v
est − vtrue‖2
‖vtrue‖2 , εs = ‖s

est − strue‖2
‖strue‖2 .

(4.1)

Tend. Mat. Apl. Comput., 16, N. 3 (2015)
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Figure 1: Synthetic model, true velocities (left) and ray tracing diagram (right).

Figures 2-3 compare the error of the k-th iterate with the functions �(k) for each approach

considered in previous section. We employed kmax = N . In analogy with [15], the error is
normalized so that its scale is comparable with the scale of the stopping criterion functions. The
minimal product (MP) function is the most economical criterion, but did not predict early enough

the error increase when the perturbations were given by α = 10−3 and α = 10−2. On the other
hand, the modified minimal product (MMP) function, whose computational complexity is similar
to MP, had similar results to the Monte-Carlo CGV (MC-GCV).
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Figure 2: Stopping criteria for α = 0 and α = 10−4.

The iterative scheme (2.9) with the MMP criterion yields the reconstructed models shown in
Figures 4-5. Table 1 shows the number of iterations and the mean square errors of each inversion.

Tend. Mat. Apl. Comput., 16, N. 3 (2015)
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Figure 3: Stopping criteria for α = 10−3 and α = 10−2.
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Figure 4: Reconstructed models with α = 0 (left) and α = 10−4 (right).

Table 1: Number of iterations and mean square errors (in percentage).

α k εα εt εv εs

0 800 0 0.001093 10.6299 10.095

10−4 800 0.005749 0.003459 10.7056 10.126

10−3 161 0.056209 0.031956 11.5065 10.778

10−2 28 0.569306 0.408862 12.5892 11.995

The estimated models are satisfactory, allowing the identification (location and velocity) of the
different layers, including the target reservoir. However, for the simulation with the highest noise
level (α = 10−2), the layered geometry is not well delineated.
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Figure 5: Reconstructed models with α = 10−3 (left) and α = 10−2 (right).

5 CONCLUSIONS

We considered the solution of an ill-conditioned least-squares problem arising from the dis-
cretization of a model for linear seismic tomography, which is a tool with wide application in

reservoir geophysics. The discrete problem was presented as a system of linear equations, which
we solved by the standard conjugate gradient method regularized by stopping in an early stage.

In the numerical experiments with a synthetic geological model, we perturbed the observed data
with different levels of noise. The estimated model parameters were all satisfactory, although the

resolution in the reconstructed velocity tomograms were compromised when the noise level was
higher.

We expect that the effectiveness of the stopping criteria would be better in the absence of noise

(or for low noise) if an appropriate preconditioning of the linear system is employed. We have
also performed numerical experiments with conjugate gradient methods with Tikhonov regular-
ization and noticed that, also in this case, a large number of iterations is needed for convergence.
Some of the preconditioners proposed in the literature that might be appropriate are based on the

Fast Fourier Transform [4] and on the Algebraic Reconstruction Technique [14]. Moreover, the
preliminary results presented herein do not provide sufficient evidence that the MMP criterion is
a robust alternative to the MP and the MC-GCV criteria. This motivates further testing and an

error analysis in future works.
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RESUMO. Consideramos o uso do método do gradientes conjugados para as equações nor-

mais na solução de problemas inversos decorrentes da tomografia sı́smica. Empregamos um

modelo linear de tomografia de tempos de trânsito, que é caracterizado por um sistema li-

near mal condicionado em que as incógnitas representam a vagarosidade em cada bloco do

domı́nio computacional. Os algoritmos estudados neste trabalho regularizam o sistema linear

interrompendo precocemente as iterações do método do gradientes conjugados. Estes algo-

ritmos não dependem da decomposição em valores singulares, representando uma alternativa

atraente para problemas de grande porte. Revisamos dois critérios de parada recentes e desen-

volvemos um critério de parada modificado que penaliza oscilações na solução aproximada.

Palavras-chave: tomografia sı́smica, método de gradientes conjugados, iteração truncada.
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