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ABSTRACT. In this work we deal with the Solow economic growth model, when the labor force is ruled by
the Malthusian law added by a constant migration rate. Considering a Cobb-Douglas production function,
we prove some stability issues and find a closed-form solution for the emigration case, involving Gauss’
Hypergeometric functions. In addition, we prove that, depending on the value of the emigration rate, the
economy could collapse, stabilize at a constant level, or grow more slowly than the standard Solow model.
Immigration also can be analyzed by the model if the Malthusian manpower is declining.

Keywords: Solow growth model, migration, hypergeometric function.

1 INTRODUCTION

The Solow one-sector model for economic growth [10], [11] is a landmark in the neoclassic
theory of growth, which originated an enormous literature. One of the main assumptions of this
model is the labor force ruled by a Malthusian Law, namely an exponential population growth.

Joining to this a Cobb-Douglas production function, this model has a well known analytical so-
lution. Relatively recent works have replaced the Malthusian Law by other population growth
models. Donghan [5] proposed the replacement by the Verhulst (logistic) Law in the Solow
model, without actually solving it, but proving the reaching of a steady state. In the same paper,

he proves a comparison, a limit and a stability theorem for the capital per capita evolution, under
the assumption of a strictly increasing and bounded labor force. In [9] Mingari Scarpello and
Ritelli have shown that for the case of the Verhulst (logistic) Law, the model admits a closed-

form solution in terms of the Gauss’ Hypergeometric function 2 F1. After that, in [4] the Von
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148 CLOSED-FORM SOLUTION FOR THE SOLOW MODEL WITH CONSTANT MIGRATION

Bertalanffy Law was considered arriving at a closed-form solution involving 2F1, and in [1] was

introduced the Richards Law (a generalized logistic model). In our paper we talk about “migra-
tions” meaning the impact of a constant additional manpower I to the classic Malthusian law
which feeds the Solow model. We show that this model also has a closed-form solution in terms

of the function 2 F1, for I < 0 (labor force emigration). This kind of model can be applied to
study the brain drain phenomena [7], for example. In the following section we review the classic
Solow Model, and in Section 3 we present the model modified by the migration term, discuss

the stability and steady-state of the capital and output per capita, and solve it. In Section 4 we
discuss briefly the case in which we have immigration (I > 0), and in Section 5 we present some
simulations. Finally, in Section 6 we state our conclusions.

2 THE SOLOW MODEL FOR ECONOMIC GROWTH

The Solow growth model [10] assumes a production function f depending on the accumulated
stock of capital K (t) and labor force L(t) at a time t , and on a constant factor A, a given param-
eter representing the technological level of the economy:

Y = f (K , L , A), with K , L , A > 0 (2.1)

This production function must meet the following properties:

i) f (·) is an increasing function in both state variables, capital and labor force(
∂ f

∂K
> 0,

∂ f

∂L
> 0

)
, with decreasing marginal returns

(
∂2 f

∂K 2
< 0,

∂2 f

∂L2
< 0

)
.

ii) f (·) shall have constant returns to scale, f (λK , λL) = λ f (K , L), ∀ λ > 0.

iii) f (·) satisfies the Inada conditions:

lim
K →0

∂ f

∂K
= lim

L→0

∂ f

∂L
= +∞ and lim

K →+∞
∂ f

∂K
= lim

L→+∞
∂ f

∂L
= 0.

One of the production function satisfying conditions i, ii and iii, used by Solow in his seminal
work was the Cobb-Douglas function giving the output Y as:

Y = AK ϕ L1−ϕ, with ϕ ∈ (0, 1) (2.2)

where ϕ closer to 0 means a labor intensive economy, and ϕ closer to 1 a capital intensive one.

Considering (2.2), the capital stock dynamics is ruled by the ordinary differential equation:

K̇ = sY − δK = s AK ϕ L1−ϕ − δK (2.3)

where s and δ are the constant saving and depreciation rates, then sY is the gross investment,

and δK is the capital depreciation in the whole economy. The labor force dynamics follows the
Malthusian Law:

L̇ = αL ⇒ L(t) = L0eαt (2.4)

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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with L0 > 0 being the initial population of workers. Defining the capital per capita:

k(t) = K (t)

L(t)
(2.5)

and the labor force growth rate:

n(t) =
˙L(t)

L(t)
(2.6)

and taking (2.4) into account, we rewrite (2.2) and (2.3) as:

Y = AL(t)kϕ (t) (2.7)

Y = AL0eαt kϕ, with ϕ ∈ (0, 1) (2.8)

k̇ + (n(t) + δ)k = s Akϕ (2.9)

Then, noting from (2.4) and (2.6) that n(t) = α, the solution of the Bernoulli equation (2.9),
given the initial capital per capita k(0) = k0 > 0 is:

k(t) =
[

As
(
1 − e−t (1−ϕ)(α+δ)

)+ k1−ϕ
0 (α + δ)e−t (1−ϕ)(α+δ)

α + δ

] 1
1−ϕ

(2.10)

and the total output is given plugging (2.10) in (2.8). Observe that the steady-state of the capital
per capita, k∞, is given by:

k∞ = lim
t→+∞ k(t) =

(
s A

α + δ

) 1
1−ϕ

. (2.11)

Defining the output per capita

y(t) = Y (t)

L(t)
= Akϕ (t) (2.12)

where we used (2.7), such output, in the long run, will tend to:

y∞ = lim
t→+∞ Akϕ (t) = A

(
s A

α + δ

) ϕ
1−ϕ

. (2.13)

3 THE SOLOW GROWTH MODEL WITH MIGRATION

In this work we will add a constant migration rate I in the r.h.s. of the differential equation (2.4)
that governs the growth of the labor force:

L̇ = αL + I (3.1)

whose solution is:

L(t) = − I

α
+
(

L0 + I

α

)
eαt (3.2)

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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150 CLOSED-FORM SOLUTION FOR THE SOLOW MODEL WITH CONSTANT MIGRATION

Observe that, making I = 0, we recover the exponential law (2.4), and besides of that

limt→+∞ n̄(t) = α (the over score will mark hereinafter all the ratios relevant to migration
model) where, in this case:

n̄(t) = L̇(t)

L(t)
= α(αL0 + I )

αL0 + I
(
1 − e−αt

) (3.3)

That is, in the long run, the variation rate of the labor force tends to the same value α of the ex-
ponential law. In principle, the migration rate I (number of individuals per time) is an exogenous

variable that could be positive (immigration, workers entering the labor force at a constant rate),
negative (emigration, workers leaving the labor force) or zero (no migration). Then, considering
(3.3) and the change of variable

z = k̄1−ϕ (3.4)

we can rewrite (2.9) as the following linear differential equation, now in z(t):

ż − (ϕ − 1)(δ + n̄(t))z = (1 − ϕ)s A (3.5)

subject to the initial condition z(0) = z0 = k1−ϕ
0 . Defining the integrating factor:

H (t) = (ϕ − 1)

∫ t

0
(δ + n̄(τ ))dτ = (ϕ − 1)δt + (ϕ − 1) ln

(
L(t)

L0

)
(3.6)

then the solution of (3.5) is given by:

z(t) = z0eH (t) + (1 − ϕ)s AteH (t)
∫ t

0
e−H (τ )dτ. (3.7)

3.1 Stability and Steady-State

Before starting to formulate an analytical expression for (3.7), and therefore for k̄(t), let us
discuss the stability and asymptotes of k̄(t), considering α, L0 > 0.

Proposition 1.

i) The capital per capita k̄(t) is globally asymptotically stable for I ∈ [−αL0, 0].
ii) The capital per capita goes to infinity within a finite time if I ∈ (−∞, −αL0), that is,

limt→t∗ k̄(t) = +∞ where t∗ = 1
α

ln
(

I
αL0+I

)
.

Proof.

i) If all the trajectories which start sufficiently close to a solution under test, not only stay

close, but also eventually approach it as t → +∞, then such a solution is named globally
asymptotically stable. We will show that z(t) is globally asymptotically stable in the inter-
val I ∈ [−αL0, 0]. Then, by the continuity of the change of variable (3.4), we conclude

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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that k̄(t) is also globally asymptotically stable. First, let us consider a solution v(t) of (3.5)

subjected to the arbitrary positive initial condition v(0) = v0 > 0. This solution is given
by:

v(t) = v0eH (t) + (1 − ϕ)s AteH (t)
∫ t

0
e−H (τ )dτ. (3.8)

Considering (3.7) and (3.8), we have that |z(t) − v(t)| = |z0 − v0|eH (t). By (3.2), and
for I ∈ [−αL0, 0], we have that L(t) → +∞ as t → +∞. Besides of that, because
ϕ ∈ (0, 1), limt→+∞ H (t) = −∞ by (3.6). Therefore: limt→+∞ |z(t) − v(t)| = 0 and

then, we infer the global asymptotic stability of z(t) and k̄(t).

ii) If I ∈ (−∞, −αL0), we have that L(t∗) = 0 for a finite time t∗ given by

t∗ = 1

α
ln

(
I

αL0 + I

)
.

This implies that limt→t∗ H (t) = +∞, and by (3.7), that limt→t∗ z(t) = +∞. Then,
t = t∗ is a vertical asymptote for both z(t) and k̄(t).

Proposition 2. The steady-state capital per capita k̄∞ is given by:

i) k̄∞ =
(

s A
δ+α

) 1
1−ϕ

, if I ∈ (−αL0, 0].

ii) k̄∞ = ( s A
δ

) 1
1−ϕ , if I = −αL0.

Proof. First, observe that we can find the horizontal asymptote z∞ for z(t) making ż =
0 in the differential equation (3.5), isolating z(t), and taking its limit as t → +∞, z∞ =
limt→+∞ s A

δ+n̄(t) , where n̄(t) is given by (3.3). Therefore, by (3.4), k̄∞ can be written as:

k̄∞ =
(

s A

δ + limt→+∞ n̄(t)

) 1
1−ϕ

. (3.9)

i) For I ∈ (−αL0, 0], we have that limt→+∞ n̄(t) = α by (3.3), and then k̄∞ =
(

s A
δ+α

) 1
1−ϕ

.

ii) If I = −αL0, the labor force remains constant over time, and again by (3.3), n̄(t) ≡ 0.

Therefore k̄∞ = ( s A
δ

) 1
1−ϕ .

Using (2.12), and the above results, we get the propositions below, involving the output per capita
ȳ(t).

Proposition 3.

i) The output per capita ȳ(t) is globally asymptotically stable for I ∈ [−αL0, 0].

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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ii) The output per capita goes to infinity at a finite time if I ∈ (−∞, −αL0), that is,

limt→t∗ ȳ(t) = +∞ where t∗ = 1
α ln

(
I

αL0+I

)
.

Proposition 4. The steady-state output per capita ȳ∞ is given by:

i) ȳ∞ = A
(

s A
δ+α

) ϕ
1−ϕ

, if I ∈ (−αL0, 0].

ii) ȳ∞ = A
( s A

δ

) ϕ
1−ϕ , if I = −αL0.

Note that the labor force emigration critical value capable of offsetting the population growth is
I = −αL0, maintaining the labor force constant. In this case, by Propositions 2(ii) and 4(ii), we

have that the level of capital and output per capita in the long-run are greater than in the case
without emigration (2.11) and (2.13):

k̄∞ =
(

s A

δ

) 1
1−ϕ

>

(
s A

δ + α

) 1
1−ϕ = k∞

ȳ∞ = A

(
s A

δ

) ϕ
1−ϕ

> A

(
s A

δ + α

) ϕ
1−ϕ = y∞

(3.10)

because α > 0. Otherwise, if I ∈ (−αL0, 0], we can see, by Propositions 2(i) and 4(i), that the
equality holds, i.e.:

k̄∞ = k∞ and ȳ∞ = y∞ (3.11)

Then it is clear the criticality of the emigration threshold I = −αL0: below it both k̄∞ and ȳ∞
are greater than the correspondent classic values, while above it, they equate the classic ones.

3.2 Closed-form Solution for I < 0

Integrating (3.7) and coming back to k̄(t), we find that:

k̄(t) =
[

eH (t)
(

k̄1−ϕ
0 + (1 − ϕ)s A

∫ t

0
e−H (τ )dτ

)] 1
1−ϕ

(3.12)

where by (3.6):

H (t) = (ϕ − 1)

∫ t

0
(δ + n̄(τ ))dτ = (ϕ − 1)δt + ln

[
eαt

(
1 + I

αL0

)
− I

αL0

]ϕ−1

The integral in (3.12) is given by:

� =
∫ t

0
e−H (τ )dτ =

∫ t

0
e(1−ϕ)δτ

[
eατ

(
1 + I

αL0

)
− I

αL0

]1−ϕ

dτ

Following [9] we carry out the change of variable u = eατ :

� = 1

α

∫ eαt

1
u

(1−ϕ)δ
α

−1
[
− I

αL0
+
(

1 + I

αL0

)
u

]1−ϕ

du

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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= 1

α

(
− I

αL0

)1−ϕ ∫ eαt

1
u

(1−ϕ)δ
α

−1
[

1 −
(

1 + αL0

I

)
u

]1−ϕ

du

where in the last step we have to consider I < 0, in order to guarantee a real value to the

expression
(
− I

αL0

)1−ϕ
.

The last integral relates to the Euler’s integral representation of the Gauss’ Hypergeometric Func-

tion 2 F1 (see [2], [6], [8]):

2 F1

(
a, b

c

∣∣∣∣ x

)
=

∞∑
n=0

(a)n(b)n

(c)n

zn

n!

= �(c)

�(c − b)�(b)

∫ 1

0
t b−1(1 − t)c−b−1(1 − zt)−adt

where (.)n is a Pochhammer symbol. The series is convergent for any a, b, c if |z| < 1, and for
Re{a + b − c} < 0 if |z| = 1. For the integral representation is required Re(c) > Re(b) > 0.
Here �(z) denotes the Gamma Function. A quick overview of Gauss’ Hypergeometric Function

can be found in [3].

After some algebra, we can write the integral � in the closed-form

� = 1

α

(
− I

αL0

)1−ϕ

(�t − �0) (3.13)

where:

�0 = α

(1 − ϕ)δ
2 F1

(
a, b

c

∣∣∣∣ z1

)
(3.14)

�t = αe(1−ϕ)δt

(1 − ϕ)δ
2F1

(
a, b

c

∣∣∣∣ z2

)
(3.15)

and a, b, c, z1, z2 are defined as:

a = ϕ − 1, b = (1 − ϕ)δ

α
, c = (1 − ϕ)δ

α
+ 1

z1 = 1 + αL0

I
, z2 =

(
1 + αL0

I

)
eαt

(3.16)

Finally, the capital per capita (3.12) is given by:

k̄(t) =
{

e(ϕ−1)δt
[

eαt
(

1 + I

αL0

)
− I

αL0

]ϕ−1

×
[

k̄1−ϕ
0 + s(1 − ϕ)A

α

(
− I

αL0

)1−ϕ

(�t − �0)

]} 1
1−ϕ

(3.17)

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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where I < 0, ϕ ∈ (0, 1), L0, α, s, δ > 0 and �0, �t are given by (3.14)-(3.16). Plugging (3.2)

and (3.17) in (2.7) we get the gross output of the economy:

Ȳ (t) = A

α

[
(αL0 + I ) eαt − I

]
k̄(t)ϕ (3.18)

which describes the total production of the economy when the natural Malthusian labor force

growth is modified by a constant emigration rate of workers. This framework could be used in
the analysis of brain drain phenomena, for instance. Observe that if the emigration rate is too
strong (I < −αL0), the economy collapses at a finite time; if the emigration is equal to minus

the initial labor force rate, the total output converges to − I A
α

( s A
δ

) ϕ
1−ϕ ; and if −αL0 < I < 0

we have an output always minor than in the absence of emigration. As we will see in the next
section, (3.18) is also valid in a scenario where there is immigration, but in a declining labor

force environmental, that nowadays is a realistic one in some developed countries.

4 WHAT ABOUT IMMIGRATION?

Due to the structure of our described growth model, a transient including immigration cannot

be treated: in fact with I > 0 and α > 0, (3.1) gives an exponential manpower, L(t) =
1
α

[
(αL0 + I ) eαt − I

]
, growing during time well faster than the Malthusian L0eαt . In such a

way there would exist a finite instant defined by t∗ = 1
α

ln
(

I
αL0+I

)
at which by (3.3) the coeffi-

cient n̄(t) in (3.5) becomes infinite, so that all the microeconomic model would burst out. Thus
for a positive trend α > 0 no situation I > 0 is possible, unless t < t∗.

This can be seen also through (3.17) in which the reality of
( −I

αL0

)1−ϕ
requires α and I to be

opposite in sign. Then an immigration (I > 0) could be in principle “balanced” by a negative
trend (α < 0) of the Malthus manpower law. In this case the pole t∗ will be negative for an initial
population such that the addition of the immigration rate to the initial labor force rate is positive.

Otherwise the pole of n̄(t) would be innoxius and not real.

The sense of all this is that an exogenous contribution of manpower can be absorbed by the
system whenever its labor force is declining. Otherwise in presence of a (also slightly) own
growing labor force, whichever immigration will push the system sooner or later beyond its

capabilities and then will cause its explosion.

It is straightforward to show that if α < 0 and I > 0, then the capital and output per capita
steady-states are given by

k̄∞ =
(

s A

δ

) 1
1−ϕ

<

(
s A

δ + α

) 1
1−ϕ = k∞ (4.1)

ȳ∞ = A

(
s A

δ

) ϕ
1−ϕ

< A

(
s A

δ + α

) 1
1−ϕ = k∞ (4.2)

where we compared with the steady-states of the Malthusian Law (2.11) and (2.13).

Tend. Mat. Apl. Comput., 16, N. 2 (2015)
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As a last remark, observe that in the case of a decaying manpower Malthusian Law, the total

output steaty-state Y∞ is zero. But when we balance it with a positive migration rate (I > 0), we
have that:

Ȳ∞ = − I A

α

(
s A

δ

) ϕ
1−ϕ

> 0 = Y∞ (4.3)

5 SAMPLE PROBLEMS

Considering the set of parameters α = 0.02, ϕ = 0.5, δ = 0.05, s = 0.06, A = 1, k̄0 =
200, L0 = 100, we plotted the gross output of the economy given by (3.18) in Figure 1. Note

that: when I = −αL0 = −2, the labor force emigration compensates the population growth,
implying a constant labor force, and the convergence of the total output Ȳ (t) of the economy to
a constant value in the long run, as t → +∞; when I ∈ (−αL0, 0) = (−2, 0), as a result of
emigration, the labor force grows more slowly than in the classic Solow model, which causes

a slow increase in the total output Ȳ (t); if I = 0, we have no emigration, and Ȳ (t) grows in
an exponential way, given by classic Solow model; if I ∈ (−∞, −αL0) = (−∞, −2), the
emigration rate is greater than the natural growth rate of the labor force, causing its extinction.

In this case, Ȳ (t) becomes zero at a finite time t∗, leading the economy to a collapse.

0 50 100 150 200 250 300
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

t

Y
(t

)

I= 0.00
I=−1.00
I=−1.90
I=−2.00
I=−2.01
I=−2.10

Figure 1: Gross Output versus Time (I < 0, α > 0).
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Observe that in this last case, from the proof of Proposition 1(i), the time t∗ at which the economy

collapses is given by:

t∗ = 1

α
ln

(
I

αL0 + I

)
(5.1)

when L(t∗) = 0, and then Y (t∗) = 0, from (3.18).

In Figure 2 we show the capital per capita evolution, for some values of I : when I = −αL0 =
−2, the capital per capita get steady at an upper level than the Solow model, when I = 0 (see
result (3.10)); when I = −1 ∈ (−αL0, 0) = (−2, 0), k̄(t) in the short term are greater when
there is emigration, than when there is not, but when t → +∞, it tends to the same level given

by the Solow model (see result (3.11)); if I → 0−, we recover the behaviour of the classic Solow
model; if I = −2.1 ∈ (−∞, −αL0) = (−∞, −2), L(t) = 0 in a finite time t∗, which implies
that k̄(t) → +∞ as t → t∗, but remember that in this case we have the collapse of the economy,

with Ȳ (t∗) = 0, as noted in Figure 1 (see Proposition 1(ii)).

0 50 100 150 200 250 300
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

t

k(
t)

I= 0.00
I=−1.00
I=−2.00
I=−2.10

Figure 2: Capital per Capita versus Time (I < 0, α > 0).

In Figure 3 we can verify that the solution of our model convergences to the classic Solow model
as I → 0−. In a scenario with decreasing labor force and immigration, we verify relations (4.3)

and (4.1) in Figures 4 and 5, respectively, for α = −0.02 and the other parameters equal to those
of the above simulations.
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Figure 3: Gross output versus time and its convergence to the classic model as I → 0−
(I < 0, α > 0).

6 CONCLUSIONS

In this paper we derived a closed-form solution for the Solow growth model involving the Gauss’
Hypergeometric Function 2 F1, assuming the dynamics of the labor force to follow a Malthusian
Law with a constant emigration rate I < 0, such that when I → 0− the classic Solow model

is recovered. We also proved the global asymptotic stability of the capital and output per capita
for I ∈ [−αL0, 0], although the closed-form solution presented is only valid in the interval
I ∈ [−αL0, 0). Besides of that, our analytical simulations for a specified set of parameters prove

that the range of emigration I ∈ (−∞, −αL0) is such that the labor force becomes zero at a
finite time, leading the economy to a collapse. For I = −αL0 the labor force keeps constant,
which implies that the total output tends to a constant limit greater than zero, i.e., the economy

stagnates in the long run, and both capital and production per capita are over the time always
greater than the classic case, and in the long run tend to a stationary level also greater than the
classic one. For I ∈ (−αL0, 0), we have a level of emigration capable of inducing labor force

increases more slowly than the classic case, implying: greater levels in capital and production
per capita in the short run, but tending to the same level of the classic Solow model as t → ∞.
Finally, immigration (I > 0) can be included in our transient model if and only if the Malthusian

manpower goes down on its own (α < 0).
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Figure 4: Gross Output versus Time (I > 0, α < 0).
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Figure 5: Capital per Capita versus Time (I > 0, α < 0).
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RESUMO. Neste trabalho consideramos o modelo de crescimento econômico de Solow,

quando a força de trabalho é governada pela lei de Malthus adicionada por uma taxa de

migração constante. Considerando a função de produção de Cobb-Douglas, provamos alguns

resultados de estabilidade e encontramos uma solução em forma fechada, envolvendo funções

hipergeométricas de Gauss, para o caso em que há emigração. Além disso, provamos que,

dependendo do valor da taxa de emigração, a economia pode entrar em colapso, estabilizar

em um nı́vel constante, ou crescer mais vagarosamente do que o modelo de Solow padrão.

O caso em que há imigração também pode ser analisado pelo modelo, desde que a taxa de

crescimento orgânico de trabalhadores na Lei de Malthus seja negativa.

Palavras-chave: Modelo de crescimento de Solow, migração, função hipergeométrica.
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