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ABSTRACT. Two important optimization problems occur in the planning and production scheduling in
paper industries: the lot sizing problem and the cutting stock problem. The lot sizing problem must de-
termine the quantity of jumbos of different types of paper to be produced in each machine over a finite
planning horizon. These jumbos are then cut in order to meet the demand of items for each period. In this
paper, we deal with the integration of these two problems, aiming to minimize costs of production and in-
ventory of jumbos, as well as the trim loss of paper generated during the cutting process. Two mathematical
models for the integrated problem are considered, and these models are solved both heuristically and using
an optimization package. Attempting to get lower bounds for the problem, relaxed versions of the models
also have been solved. Finally, computational experiments are presented and discussed.

Keywords: integrated problem, cutting stock problem, lot sizing problem, paper industry.

1 INTRODUCTION

The relevance of studying problems, that arises in the planning and production scheduling of
manufacturing industries, comes from the need of these industries to optimize their processes

and resources. In the paper industry, for example, the production planning involves decisions of
jumbos production (big reels of paper) to subsequently be cut, producing final items, which can
be smaller reels or rectangles (A4, letter, cutsize, etc).

The Cutting Stock Problem (CSP) consists in the optimization of the cutting process of major

units (objects), available for the production of a set of smaller units (items). The demand for the
items are known and must be fullfiled. The objective is to optimize some criteria, such as mini-
mize the material trim-loss. Such problems are being intensively investigated in the last decades,
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since Gilmore & Gomory’s [7, 8, 9] pioneer works which proposed the column generation pro-

cedure, allowing the solution of real problems.

The Lot Sizing Problem (LSP) consists in determining the amount of products to be produced in
each period along a finite time planning horizon, in order to attend a known demand and optimize
an objective function, such as minimizing the production and inventory costs [25]. Reviews on

the LSP can be found in Buschkühl et al. [2], Drexl & Kimms [4], Jans & Degraeve [13] and
Karimi et al. [15].

In general, the LSP and the CSP are treated separately and sequentially. Firstly, the LSP is solved
and subsequently, the CSP is solved. However, this approach may increase the total cost, espe-

cially if the cutting process is economically relevant. Therefore, researches started to consider
the integration of these two problems.

Farley [5] published a study on the CSP integrated to the planning and scheduling problem ap-
plied to the clothing industry. In the paper industry, we can cite the works of Respı́cio & Cap-

tivo [22] which present a mathematical model and a branch-and-price method. Also regarding
the paper industry, Correia et al. [3] presented a heuristic procedure to generate cutting patterns
which are added in a linear programming model. Still considering applications in the paper in-

dustry, Poltroniere et al. [19] proposed a mathematical model which considers the integration
of the LSP and the one-dimensional CSP in a planning horizon divided into periods. Planning
decisions of jumbos manufacturing and the cutting stage are interdependent problems. Both are

not trivial combinatorial optimization problems. The authors proposed two heuristic methods for
the solution based on the Lagrangian relaxation of the integration constraints, which proved to
be appropriated to address the integrated problem.

In 2006, Gramani & França [10] studied the integration of the LSP and the two-dimensional

CSP applied to the furniture industry. Extensions of the model proposed in 2006 and new so-
lution approaches were proposed in Gramani et al. [11, 12]. In 2008, Ghidini [6] proposed a
model for the integrated problem which enables the anticipation of some products and inven-

tory, and two heuristic methods to solve a simplificated version of the mathematical model.
Santos et al. [23] presented a mixed integer optimization model for the integrated problem in
the furniture industry, where two sets of previously generated cutting patterns were considered.

Alem & Morabito [1] proposed three robust modeling to deal with uncertainties on demand and
costs, also for a furniture industry.

Leão [16] studied mathematical formulations for the LSP coupled with the one-dimensional
CSP. Three variations were considered, regarding the number of available machines and the

number of types of objects in stock. They also presented a column generation procedure to solve
the mathematical model proposed by Poltroniere et al. [19]. In the present paper we have imple-
mented a similar column generation procedure.

Recently, Silva et al. [24] proposed two integer programming models for the integrated two-

dimensional cutting stock and lot sizing problem. In both of the models, the anticipation of the
production of items and the storage of unusued objects are allowed. Motivated by challenges that
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arise in the paper industry, Kallrath et al. [14] presented several approaches to model and solve

one-dimensional and two-dimensional CSP.

Considering the related literature, the main contributions of this paper are: the proposition of a
new mathematical model based on an arc flow model by Valério de Carvalho [26, 27] for which
we have tried to solve considering all the possible arcs (columns) and using an optimization

package; the extension of the Lagrangian heuristic proposed by Poltroniere et al. [19], allowing
anticipation on the cut of some items between periods; the computational experiments that show
the quality of the proposed approaches both for solving the problem and for obtaining lower

bounds. We remark that the present paper is an extension of two previous conference papers:
Poltroniere et al. [20] and Poltroniere et al. [21].

This paper is organized as follows: Section 2 presents the mathematical models considered for
the integrated problem. Section 3 provides a description of three methods to solve the proposed

models. Computational experiments are presented and discussed in Section 4 and in Section 5,
the main conclusions of this research are presented.

2 MATHEMATICAL MODELS FOR THE INTEGRATED PROBLEM

In Poltroniere et al. [19], the integrated problem has been modeled based on Gilmore & Go-

mory’s [8] approach, assuming a stock of different width jumbos in limited quantities. Their
model is presented in Section 2.1 In Section 2.2, a new integrated model is presented based on
Valério de Carvalho’s [26, 27] approach.

2.1 Integrated model using the approach of Gilmore & Gomory (LCGG)

In the industrial process of production and cutting of paper, the LSP is considered to decide the
weight of jumbos (big reels of paper) to be produced in each period of a horizon planning. The

jumbos are produced in parallel machines, which are capacited and have particular performances.
Later, the jumbos are cut into smaller reels of known widths to fulfill the demand. Paper of differ-
ent types (thickness) must be produced and changing from one type to another causes significant
loss of either paper (setup cost) or machine time (setup time), which are sequence dependents.

Consider the following notation and data.

• Indices:

t = 1, . . . , T number of periods in the planning horizon;

k = 1, . . . , K number of types (thickness) of paper;

m = 1, . . . , M number of paper machines (machine m produces jumbos of width Lm);

j = 1, . . . , Nm number of cutting pattern for jumbos of width Lm ;

i = 1, . . . , N f number of ordered items;

{1, . . . , N f } = S(1) ∪ S(2) ∪ . . . ∪ S(K ), where S(k) = {i, if the item i is type k paper}.

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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• Parameters:

ckmt production cost (ton) for a jumbo of type k paper being made in machine m in
period t;

hkt inventory cost (ton) for a jumbo of type k paper at the end of period t;

skmt setup cost for machine m producing a jumbo of type k paper in period t;

cpkt cost for each centimeter of type k paper lost during the cutting process in period t;

σit cost for stock (ton) of final items i in period t;

Cmt capacity (ton) of machine m in period t;

dkt vector of ordered quantities of final items of type k paper in period t. Its size
is |S(k)| and each component dikt means the number of final items i, i ∈ S(k),
ordered in period t.

ηk vector of weight of final items of type k paper (the weight of final item i of type k
paper and width li is given by ηik = ρkli );

ρk specific weight for jumbo of type k paper;

Dkt demand (ton) of type k paper in period t;

bkm weight of jumbo of type k paper produced in machine m (bkm = Lmρk);

fkm paper lost (ton) in setting up machine m to produce a jumbo of type k paper;

a jm vector associated to cutting pattern j for jumbo of width Lm . Its size is |S(k)| and
each component ai jm means the number of items i, i ∈ S(k), cut according to

cutting pattern j for the jumbo of width Lm;

p jm paper waste (cm) in cutting pattern j used to cut a jumbo of width Lm ;

Q big number.

• Decision variables:

xkmt number of jumbos of type k paper produced in machine m in period t;

wkmt number of jumbos of type k paper produced in machine m stored at the end of
period t;

zkmt binary variables that means if there was production or not of jumbos of type k paper
in machine m in period t;

y j
kmt number of jumbos of type k paper produced in machine m in period t which are cut

according to the cutting pattern j;

ekt vector of final items of type k paper stored at the end of period t. Its size is |S(k)|
and each component eikt means the number of final items i, i ∈ S(k), stored at the
end of period t.

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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So, the mathematical model for the integrated (CSP and LSP) problem is given by (Poltroniere

et al. [19]):

Minimize
T∑

t=1

M∑
m=1

K∑
k=1

(ckmt xkmt + hkt bkmwkmt + skmt zkmt )

+
T∑

t=1

K∑
k=1

∑
i∈S(k)

σitηikeikt +
T∑

t=1

K∑
k=1

cpkt F(k, t) (2.1)

subject to

M∑
m=1

(bkm xkmt + bkmwk,m,t−1 − bkmwkmt ) = Dkt , ∀k, ∀t, (2.2)

K∑
k=1

(bkm xkmt + fkm zkmt ) ≤ Cmt , ∀m, ∀t, (2.3)

xkmt ≤ Qzkmt , ∀k, ∀m, ∀t, (2.4)

M∑
m=1

Nm∑
j=1

a jm y j
kmt + ek,t−1 − ekt = dkt , ∀k, ∀t, (2.5)

Nm∑
j=1

y j
kmt = xkmt + wk,m,t−1 − wkmt , ∀k, ∀m, ∀t, (2.6)

wkm0 = 0, ek0 = 0, ∀k, ∀m, (2.7)

xkmt ≥ 0, wkmt ≥ 0 and integers, ∀k, ∀m, ∀t, (2.8)

zkmt ∈ {0, 1}, ∀k, ∀m, ∀t, (2.9)

y j
kmt ≥ 0, ekt ≥ 0, and integers, ∀ j, ∀k, ∀m, ∀t . (2.10)

The objective function (2.1) is a composition of various costs: jumbo production and inventory

costs, setup costs, final item inventory costs and waste cost in a cutting process, where the waste
is given by F(k, t) = ∑M

m=1
∑Nm

j=1 p jm y j
kmt . The inventory balancing constraints are given in

(2.2), i.e., the total quantity produced (ton) plus the stock from the previous period which have to

meet the demand plus the stock for the next time period. Parameter Dkt depends on the unknown
waste in the cutting process. As defined, it should be Dkt = ∑

i∈S(K ) ηikdikt + waste. On the

other hand, parameter Dkt can be determined by Dkt = ∑M
m=1

∑Nm
j=1 bkm y j

kmt .

Constraints (2.3) assure that the capacity of paper machines must be respected in each period,

considering the total quantity of produced paper and the waste of paper due to changing types.
Constraints (2.4) are set zkmt = 1 in case of xkmt > 0. If xkmt = 0, then optimality criterium
forces zkmt = 0. Constraints in (2.5) are the item inventory balancing equations. Constraints

(2.6) limit the number of jumbos cut, which were previously produced. These are the coupling
constraints that involve decisions concerning the production of jumbos and the cutting of them.
Constraints (2.7)-(2.10) define the domain of the decision variables.

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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2.2 Integrated model using the approach of Valério de Carvalho (LCVC)

Valério de Carvalho [26] proposes an alternative formulation for the CSP, considering stock of
identical objects. It is a problem of minimal flow with additional constraints imposing the fulfill

of demand. The extention of this model, in order to consider several types of stock objects is
presented in Valério de Carvalho [27], and this is the approach used in the integrated model
proposed in this paper.

In addition to the parameters and decision variables defined in Section 2.1, consider Lmax the

width of the larger jumbo in stock; the set of vertices V = {0, 1, ..., Lmax}; the set of arcs
A = {(d, e) : 0 ≤ d < e ≤ Lmax and e − d = li for every 1 ≤ i ≤ N f }, which means that
there is an oriented arc between two vertices if there is an item of the corresponding size. Also

consider extra arcs between (d, d + 1, d = 0, 1, ..., Lmax − 1) related to wastes in the cutting
process. The number of variables is polynomial, as a function of the width of the jumbos and the
number of items, and is on the order O(N f · Lmax). Some reduction criteria proposed in Valério

de Carvalho [26, 27] were implemented.

Then, determining a valid cutting pattern for jumbo of width Lm is modeled as the problem of
determining a path between the vertices 0 and Lm in the graph G = (V , A). The arcs which
form a path define a cutting pattern and the length of these arcs define the size of the items to

be cut. The decision variable yki j t represents the number of items of type k paper and width
j − i cut in the cutting pattern in period t . Furthermore, Flkmt is the number of jumbos of
type k paper produced in machine m cut in period t (can be seen as a feedback arc, from vertex

Lm to vertex 0).

The proposed model, called LCVC (Lot Cutting Valério de Carvalho), is given by:

Minimize
T∑

t=1

M∑
m=1

K∑
k=1

(ckmt xkmt + hkt bkmwkmt + skmt zkmt )

+
T∑

t=1

K∑
k=1

∑
i∈S(k)

σit ηikeikt +
T∑

t=1

K∑
k=1

cpkt

×
⎛
⎝

M∑
m=1

Lmax∑
j=1

⎛
⎝Lm Flkmt −

N f∑
i=1

Lmax∑
j=1

∑
( j, j+li )∈A

li yk, j, j+li ,t

⎞
⎠

⎞
⎠ (2.11)

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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subject to

M∑
m=1

(bkm xkmt + bkmwk,m,t−1 − bkmwkmt) = Dkt , ∀k, ∀t, (2.12)

K∑
k=1

(bkm xkmt + fkm zkmt ) ≤ Cmt , ∀m, ∀t, (2.13)

xkmt ≤ Qzkmt , ∀k, ∀m, ∀t, (2.14)

Lm∑
j=1

∑
( j, j+li )∈A

yk, j, j+li ,t + ei,k,t−1 − eikt = dikt , ∀i, ∀k, ∀t, (2.15)

−
∑

(i, j)∈A

yk,i, j,t +
∑

( j,o)∈A

yk, j,o,t =

=

⎧⎪⎪⎨
⎪⎪⎩

∑M
m=1 Flkmt , if j = 0,

−Flkmt , if j = Lm , ∀m, (∀k, ∀t),

0, otherwise.

(2.16)

Flkmt = xkmt + wk,m,t−1 − wkmt , ∀k, ∀m, ∀t, (2.17)

wkm0 = 0, ek0 = 0, ∀k, ∀m, (2.18)

xkmt ≥ 0, wkmt ≥ 0 and integers, ∀k, ∀m, ∀t, (2.19)

zkmt ∈ {0, 1}, ∀k, ∀m, ∀t, (2.20)

yki j t ≥ 0 , eikt ≥ 0 and integers, (i, j ) ∈ A; ∀k, ∀m, ∀t . (2.21)

The objective function (2.11) is equivalent to (2.1). Observe that in the last parcel, the evaluation
of the waste of material is done in a smoothing different, but equivalent, way. Constraints (2.12),
(2.13), (2.14), (2.15) and (2.17) are, respectively, equivalent to (2.2), (2.3), (2.4), (2.5) and (2.6).

Constraints (2.18)-(2.21) define the domain of the decision variables. The main difference of this
model is in constraints (2.16) which are the flow conservation constraints. They ensure that a
flow corresponds to a valid cutting pattern, because an item is either placed at the border of the

object or immediately after another item.

3 SOLUTION METHODS FOR THE INTEGRATED PROBLEM

3.1 Solving the LCGG model with Column Generation and Rounding Heuristic

Solving the (2.1)-(2.10) model is, in general, a difficult task for several reasons, including the

great number of variables (one variable for each cutting pattern) and the integrality constraints
on these variables. In order to overcome these difficulties, a column generation procedure based
on Gilmore & Gomory [7, 8] is applied to the linear relaxation of the problem. The Restricted

Master Problem (RMP) is defined regarding a subset of feasible cutting patterns. In this paper,
we considered the homogeneous cutting patterns (cutting patterns with only one type of items
and this type of item is placed as many times as it fits) to build the initial constraints matrix

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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for the RMP. Other cutting patterns are not, initially, considered, and they are generated during

the method’s iterations. After solving the RMP, which is a linear programming problem, its
associated dual variables are considered and a subproblem, which is a knapsack problem, is
solved in order to determine whether there are cutting patterns which improve the current solution

or not, i.e., a cutting pattern with negative reduced cost. Attractive columns are added and a new
RMP is solved. This procedure is repeated until there are no more columns that improve the
RMP solution. By the end of this process, regarding only the columns (cutting patterns) in the

optimal solution for the linear relaxed problem, the decision variables are turned to integers and
the integer problem is solved by Cplex.

3.2 Solving the LCGG model with LotCutting Heuristic and Items Anticipation

Two heuristic methods have been proposed by Poltroniere et al. [19] to solve the (2.1)-(2.10)
model. These are named as LotCutting and CuttingLot heuristics and are based on the Lagrangian
relaxation of the integration constraints (2.6). Such constraints are added to the objective function
(2.1), weighted by Lagrangian multipliers. Thus, the problem is decomposed into two subprob-
lems: lot sizing (LSP) and cutting stock (CSP), which are treated separately and iteratively.

In the model proposed by Poltroniere et al. [19], a CSP for each type of paper k must be solved
over a planning horizon divided into periods. The items inventory at the end of each period t ,
given by the variables vector ekt, should be considered. There is an interdependence between
the cut decisions in different periods due to these variables. This problem is called a multiperiod
CSP. However, the methods proposed by the authors solve the multiperiod CSP ignoring the
items stock variables. Then, K T cutting stock problems (one for each type of paper k and each
period t) were solved considering these variables to be zero.

In this paper, we propose an extension of the LotCutting Heuristic that allows the anticipation on
the cut of some items between periods. Firstly, the heuristic solves the LSP in which the objective
function is to minimize inventory, setup and production costs, subject to constraints (2.2)-(2.4),
(2.8) and (2.9), in the same way as in Poltroniere et al. [19]. The solution obtained from the LSP
provides the jumbos inventory for the multiperiod CSP. Then, the multiperiod CSP is solved by
minimizing the waste and item inventory costs, subject to (2.5), (2.6) and (2.10). Initially, the
inventory variables are ignored. Then, the problems (one for each tickness) are decomposed by
periods. Thus, a CSP for each period is solved, considering as jumbos inventory the sum of the
availability of this period with the stock of the previous period, after the cutting of the demanded
items. From the solution obtained for each period and based on the dual variables associated
with constraints (2.5), anticipations on the cut of some items from a period t to period t − 1
are performed, regarding the inventory constraints. In this way, we seek to improve the use of
the jumbos inventory in order to generate better combinations of items which would decrease the
paper waste during the cutting process. Each CSP was solved by the simplex method with column
generation procedure proposed by Gilmore & Gomory [7, 8] and considering the integrality
relaxation.

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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3.3 Solving the LCVC model with an optimization package

The (2.11)-(2.21) arc flow model presents many symmetric solutions, i.e., several alternative
solutions that correspond to the same set of cutting patterns. So, Valério de Carvalho [26, 27]

presented some reduction criteria that allow the elimination of some arcs and therefore reducing
the number of symmetric solutions, without eliminating any valid cutting patterns. This proce-
dure reduces the number of variables (columns) in the problem. We adapted two of these criteria

to our model. The first one consists in ordering the items according to their size and including
them in a cutting pattern in decreasing order. The second reduction criterion applied to our model
is that the first loss arc is inserted in our graph at a distance from the beginning of the object that

is equal to the size of the smallest item. The idea is to put the losses arcs at the end of the object.
After applying the reduction criteria, the arc flow model is solved by the branch-and-cut method
of the Cplex package with a limited amount of time.

4 COMPUTATIONAL EXPERIMENTS

In this section, lower bounds and upper bounds are presented based on the mathematical models

and solution methods presented in Section 2 and 3. We used the set of instances generated by
Poltroniere et al. [19]: 27 classes, containing 10 instances each, ranked according to the number
of demanded items (N f = 5, 10, 20), the number of types (thickness) of paper (K = 2, 4, 6)

and the number of periods (T = 8, 10, 12). M = 2 machines, and machine one produces jumbos
of width L1 = 540 cm and the machine two produces jumbo of width L2 = 460 cm; specific
weight ρk = 2kg/cm. The model parameters were generated by simulating situations found in

the paper industry, as follows:

– ckmt ∈ [0.015 0.025] · bkm , with bkm = Lmρ;

– skmt ∈ [0.03 0.05] · ckmt ; hkt ∈ [0.0000075 0.0000125]; fkm ∈ [0.01 0.05] · bkm ;

– cpkt =
∑M

m=1 ckmt
M · 10; σikt = 0.5 · hkt , i ∈ S(k);

– li ∈ [0.1 0.3] ·
∑M

m=1 Lm
M ;

– dikt ∈ [0 300]. If dikt ≤ 50, then dikt = 0 (in order to avoid low demand);

– Cmt = bkm∑M
m=1 bkm

· Cap, with Cap =
∑T

t=1
∑M

m=1
∑K

k=1

(
Dkt
M + fkm

)
MT .

The LotCutting Heuristic with Items Anticipation, described in Section 3.2, allows the anticipa-

tion on the cut of some items based on dual variables associated to constraints of stock balancing.
We considered Dkt = (1 + θ)

∑
i∈S(K ) ηikdikt . Then, a tolerance on the total produced paper is

added in order to cover the waste during the cutting process, preventing the problem to be in-

feasible. We started with θ = 0 and increased the demand by 1% in each step of the algorithm,
until the problem is feasible or to upper bound of θ = 10%. These values obtained for θ are used
in the other methods in order to obtain the values of Dkt .

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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The methods described in Section 3.1. and 3.3. were solved by optimization package AMPL/

Cplex 12.6 and the LotCutting heuristic (Section 3.2.) was coded in Delphi. Computational tests
were run in a Intel (R) Core (TM) Corel i7-4770K, with 3.5 GHz and 32 GB of RAM.

4.1 Lower bounds for the integrated problem

Relaxed versions of the models presented in Section 2 were solved with the attempt to pro-

vide lower bounds for the instances and consequently to have a test parameter for the quality of
the heuristic solutions. Table 1 presents the lower bounds obtained by two types of relaxations,
Relaxation A and Relaxation B, described as follows.

Relaxation A: The problem variables were relaxed, i.e., the production and inventory variables,
the setup binary variables, which are considered continuous between 0 and 1, and those related to
the cutting patterns frequencies. However, the variables related to the knapsack problem are kept
integer. For the LCGG model this is exactly the procedure described in Section 3.1 without the

rounding procedure. For the LCVC model we consider the procedure described in Section 3.3
relaxing all the variables except the yki j t variables.

Relaxation B: In order to try to improve the quality of the lower bounds, the LCVC model was
solved with the setup variables as binary variables and all the other variables relaxed, i.e., all

the decision variables were considered to be continuous (including the variables related to the
knapsack problem). It is worth noticing that it is only possible to ensure that we have lower
bounds when the model is optimally solved, and the LCVC model was solved to optimality,

for all instances. This relaxation cannot be applied to the LCGG model considering the column
generation approach, because first we would solve the linear relaxation of the problem and, after
that, we would consider the setup variables as integer and try to solved the integer problem

considering the set of column from the optimal solution of the linear relaxation. However, this
procedure would be an heuristic procedure and there is no guarantee that it provides a lower
bound.

The column “O.F.”, in Table 1, shows the average value of the total costs obtained by the instances

of each class. This average was evaluated considering only the instances for which all heuristic
methods found a feasible solution. The column “Time” shows the average computational time,
in seconds, necessary to solve the 10 instances of each class. Considering the Relaxation A, the

quality of the lower bounds obtained by LCGG model is better than LCVC model, but LCVC is
faster than LCGG. Relaxation B provided better lower bounds than Relaxation A only in classes
12 and 18.

4.2 Heuristic solutions

Table 2 provides the heuristic results obtained by: the solution of the LCGG model, using col-
umn generation and a rounding heuristic (described in Section 3.1). Firstly, the optimal solution
of the linear relaxation is obtained. Subsequently, considering only the columns of this opti-

mal solution, a limit of 600 seconds is given for the package to find an integer solution; the

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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Table 1: Relaxations: lower bounds for the integrated problem.

Relaxation A Relaxation B

Classes LCGG LCVC LCVC

O.F. Time(s) O.F. Time(s) O.F. Time(s)

1 54875 5.9 51131 0.1 51147 0.4

2 85573 40.7 85128 0.5 85149 2.1

3 175061 103.8 174979 1.1 174994 4.1

4 60435 8.9 58120 0.2 58146 0.5

5 110588 46.3 109226 0.6 109245 2.2

6 222614 121.4 222390 1.5 222424 7.1

7 73870 7.6 70768 0.1 70791 0.5

8 129059 56.1 128363 0.8 128384 3.6

9 267440 169.6 267313 1.8 267356 8.2

10 94389 15.2 90460 0.2 90487 0.8

11 187420 92.2 186510 1.0 186537 3.7

12 328000 307.7 327981 2.8 328006 12.1

13 118179 17.8 112891 0.3 112928 1.5

14 236319 113.7 234343 1.3 234376 5.4

15 417899 395.3 417382 3.6 417417 14.4

16 153934 23.4 147933 0.4 147995 1.4

17 276800 161.9 274466 1.9 274502 6.1

18 500587 550.8 500572 4.9 500616 22.9

19 155485 32.0 146860 0.4 146900 1.4

20 270756 195.4 268870 2.0 268905 6.9

21 512200 480.9 512120 5.3 512161 20.9

22 177852 32.1 167972 0.5 168019 1.6

23 324200 304.6 322189 3.4 322260 11.2

24 636734 781.5 636642 6.4 636687 23.2

25 230097 41.6 219484 4.1 219540 1.7

26 382456 377.0 380364 9.4 380429 12.8

27 761812 965.6 761741 0.5 761796 52.6

Average value 257209 201.8 254674 2.0 254711 8.5
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solution obtained by LotCutting Heuristic with Items Anticipation, described in Section 3.2.

For the solution of LCVC model (described in Section 3.3), the variables of the original model
were considered integers, and the computational time was limited to 600 seconds attempting to
obtain an exact solution. However, the LCVC model was unable to find feasible solutions in

600 seconds.

In the solution of the two models, presented in Tables 1 and 2, the parameter θ was taken as the
tolerance used in the LotCutting Heuristic. The average of these tolerances for the 10 examples
of each class is given in the third column of the Table 2. In column “O.F.” the average value of the

total costs obtained by the instances of each class is shown. This average was calculated between
the instances for which all methods found a feasible solution. The column “Sol” provides the
number of solved instances in each class and the column “Time” shows the computational time,

in seconds, necessary to solve the 10 instances of each class. Finally, the column “GAP” indicates
the average gap between the solution obtained by the heuristic (HS) and the lower bound obtained
by relaxation A of the LCGG model (AGG). The GAP is given by 100 ∗ ( H S−AGG

AGG ).

Comparing the number of feasible solutions obtained by each method, we have 233 solutions for

the LotCutting/ItemsAnticipation and 242 for the Column Generation Rounding Heuristic. When
the number of items increases to 20, both heuristics have difficulties in solving the problem.
We observe that the computational time of the LotCutting heuristic with Items Anticipation is

relatively low since the biggest of them was of 175.8 seconds when the heuristic was applied
in the instances of class 18. The quality of the results obtained by the solution of the LCGG
model, using column generation and a rounding heuristic, is better than the LotCutting heuristic.
Furthermore, the average gap obtained for each class shows the quality of the solution when

compared to the lower bound.

The results obtained during the experiments confirm the good performance of the Items Antici-
pation Heuristic used to solve the multiperiod CSP. The total cost (i.e., the sum of the waste costs

with the stock costs of jumbos and items) was lower when compared to the total cost obtained
by solving the CSP without allowing the anticipation of items. According to Poltroniere [18], the
average decrease in the material waste is 9.1% for the instances with 5 types of items and 16.7%
for the instances with 10 types of items.

5 CONCLUSIONS AND FUTURE PERSPECTIVES

This research considers the mathematical formulation for an integraded (cutting stock and lot
sizing) problem in a paper industry. A model from the literature (Poltroniere et al. [19]) is revis-

ited and, in addition, a new mathematical model (LCVC) based on an arc flow model [26, 27]
is proposed. These two mathematical models were implemented and solved using Ampl/Cplex
12.6. Relaxed versions of the models were, also, solved aimming to obtain lower bounds for the

solution of the integrated problem.

Furthermore, we proposed an extension of the LotCutting Heuristic to solve the Poltroniere et
al.’s [19] model, that allows the anticipation on the cut of some items between periods. The
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Table 2: Heuristic results for the integrated model.

LotCutting/ Col. Gen.

ItemsAnticipation Rounding Heuristic

Class Nf, T, K θ(%) O.F. Sol Time GAP O.F. Sol Time GAP

1 5, 8,2 5.8 62368 8 0.4 13.655 54896 10 9.9 0.037

2 10, 8,2 1.5 87045 10 6.6 1.720 85591 10 50.8 0.020

3 20, 8,2 0.6 176581 10 83.5 0.868 175076 10 126.7 0.008

4 5,10,2 3.9 66455 9 1.4 9.962 60460 6 8.2 0.043

5 10,10,2 1.7 112781 10 7.7 1.983 110612 9 53.9 0.022

6 20,10,2 0.9 224081 10 61.6 0.659 222637 10 151.2 0.011

7 5,12,2 5.2 80860 6 1.0 9.463 73899 6 7.7 0.040

8 10,12,2 2.4 131828 9 12.0 2.145 129081 9 69.9 0.017

9 20,12,2 0.4 270435 10 100.5 1.120 267473 8 206.3 0.012

10 5, 8,4 4.8 102146 9 0.4 8.218 94423 9 21.5 0.036

11 10, 8,4 2.4 191513 9 3.2 2.184 187451 9 115.2 0.016

12 20, 8,4 0.5 328771 10 59.8 0.235 328026 10 391.4 0.008

13 5,10,4 5.8 129286 5 1.3 9.398 118223 9 27.3 0.037

14 10,10,4 2.2 241834 9 4.6 2.334 236363 8 139.1 0.018

15 20,10,4 0.4 419113 10 127.9 0.290 417940 9 522.6 0.010

16 5,12,4 6.7 171858 6 1.7 11.644 153992 9 31.0 0.037

17 10,12,4 1.6 282606 8 9.2 2.098 276846 10 198.3 0.017

18 20,12,4 0.3 506796 10 175.8 1.240 500632 7 610.5 0.009

19 5, 8,6 6.7 174756 6 0.4 12.394 155542 9 28.0 0.037

20 10, 8,6 2.1 274153 9 3.3 1.255 270799 10 204.2 0.016

21 20, 8,6 0.8 514704 10 52.3 0.489 512240 9 500.5 0.008

22 5,10,6 6.5 199707 4 2.6 12.288 177909 10 36.7 0.032

23 10,10,6 1.7 327495 10 5.0 1.016 324253 10 304.7 0.016

24 20,10,6 0.4 638223 10 64.5 0.234 636780 10 828.9 0.007

25 5,12,6 5.7 264027 6 2.2 14.746 230177 7 32.7 0.035

26 10,12,6 1.4 385933 10 15.8 0.909 382512 9 398.7 0.015

27 10,12,6 0.4 763223 10 72.4 0.185 761876 10 997.1 0.008

Average value 2.7 264021 8.6 32.5 4.546 257248 9.0 224.9 0.021
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solutions obtained by the LotCutting Heuristic with Items Anticipation and the heuristic solutions

obtained by Cplex, presented in Table 2, were satisfactory. For some examples, the upper bounds
were better than those from the literature, for example, in Poltroniere et al. [19].

The presented results show that the considered relaxations provided good lower bounds for the
integrated problem, especially those obtained by the LCGG model, in the relaxations whose

results are presented in Table 1. Furthermore, it is important to emphasize that these bounds are
not too far from the heuristic solutions presented in Table 2, what allows observing the quality
of the heuristics.

The proposition of the LCVC model was motivated by the good results obtained by Poldi &

Araujo [17] in a multiperiod cutting stock problem. However, this good performance does not
happen for the model proposed in this paper, which is much harder than the one proposed by Poldi
& Araujo [17]. So, new researches are needed to try to overcome this difficulty, for instance, the

implementation of a columns generation procedure for solving the LCVC model.
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RESUMO. Dois importantes problemas de otimização combinatória ocorrem no planeja-

mento da produção em indústrias papeleiras: o problema de dimensionamento de lotes e o

problema de corte de estoque multiperı́odo. O problema de dimensionamento de lotes deve

determinar a quantidade de bobinas jumbos de diferentes tipos de papel (gramaturas) a serem

produzidos em cada máquina, ao longo de um horizonte de planejamento finito. Estes jum-

bos são então cortados para atender a demanda de itens para cada perı́odo. Neste trabalho,

tratamos da integração desses dois problemas, procurando minimizar custos com produção

e estoque dos jumbos, como também a perda de papel durante o processo de corte. Duas

modelagens matemáticas para o problema integrado foram consideradas, e os modelos foram

resolvidos heuristicamente usando um pacote de otimização. Procurando obter limitantes

inferiores para o problema, foram resolvidas versões relaxadas dos modelos. Finalmente,

experimentos computacionais são apresentados e discutidos.

Palavras-chave: Problema integrado, problema de corte de estoque, problema de dimensio-

namento de lotes, indústria de papel.
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