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ABSTRACT. The interval-valued intuitionistic fuzzy logic, an extension of fuzzy logic, integrates the

concepts of interval-valued fuzzy logic and intuitionistic fuzzy logic. The former, reflects the measure of

vagueness and uncertainty in the diameter of an interval. The latter considers the hesitation related to the

dual construction. This paper considers an expression to interval-valued intuitionistic fuzzy implications,

which can be generated by idempotent interval-valued aggregation functions acting on a pair of mutual-dual

functions, an interval-valued implication and its corresponding coimplication. Then, we show under which

conditions interval-valued intuitionistic fuzzy implications are diagonal preserving operators. We study

not only properties of such operators which were extended to intuitionistic fuzzy logic, but also analyse

properties truly intuitionistic. The canonical representation in the class of such operators and an interval

version of an intuitionistic fuzzy index conclude this study.

Keywords: interval-valued intuitionistic fuzzy connectives, interval-valued intuitionistic fuzzy implication,

intuitionistic index.

1 INTRODUCTION

Among equivalent extensions of fuzzy sets (see, e.g., Vague Sets [16] and [6]), this paper con-
siders the interval-valued fuzzy sets (shortly IvFSs), as introduced in [29] and [25], together with

intuitionistic fuzzy sets (shortly IFSs), as presented in [2]. Both approaches are founded on the
interval-valued fuzzy logic (shortly IvFL) and intuitionistic fuzzy logic (shortly IFL), respec-
tively, which are important extensions of Fuzzy Logic (shortly FL). IFL and IvFL are closely

related and both concepts are concerned with imprecision-handling strategies, see [12].
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194 INDEX, EXPRESSIONS AND PROPERTIES OF INTERVAL-VALUED INTUITIONISTIC FUZZY IMPLICATIONS

More recently, other authors have sought to improve upon the deeper understanding of uncer-

tainty and imprecision information [4, 8] and [27]. This paper considers the interval-valued in-
tuitionistic fuzzy logic (shortly IvIFL) with contributions from Atanassov and Gargov [1] in the
eighties, integrating the concepts of IvFSs and IFSs. By the former, the measure of vagueness

and uncertainty in the diameter of an interval membership degree can be modelled, and by the
latter, it can be also considered the hesitation related to the dual construction modelled by an
inequality, i.e., the difference between an interval membership degree and its non-membership

degree is less or equal to unit interval U = [0, 1]. This approach allows to relax the complemen-
tary operation stated over fuzzy sets in FL.

One motivation for our study has been the significant performance achieved by the use of interval-
valued fuzzy implications (shortly IvFIs) in some applications, such as in the area of image pro-

cessing, see [9] and [17]. The fuzzy implications are essential to deductive methods in approxi-
mate reasoning, interpreting the conditional fuzzy rule in systems based on FL. In both classical
and fuzzy approaches, the occurrence of various expressions of implications is evident [20].

However, extensions of fuzzy implications are not the same as in the classical ones, resulting in
distinct (S-implications, QL-implications, R-implications) classes of fuzzy implications. Addi-
tionally, there are different (explicit, implicit and axiomatic) representations of these connectives.
Such diversity encourages the study of IvFIs and their dual constructions, the interval-valued

fuzzy coimplications (shortly IvFCs), see [23].

This paper aims to explore interval-valued intuitionistic fuzzy implications (shortly IvIFIs), in
the sense of [28], which are generated by interval-valued aggregation functions (shortly IvAs)
acting on mutual-dual pairs of IvFIs and IvFCs. Such construction is analogous to [8]. In pre-

vious work [28], we studied properties of IvIFI operators extending analogous properties from
IFL, which are also generalizations of properties from FL. Many properties truly intuitionistic
of IvIFIs (e.g. correlation coefficient, degree of compatibility and entropy of IFSs) have been

considered in the literature. Here, the Atanassov’s intuitionistic fuzzy sets are studied based on
the intuitionistic index of each element obtained by subtracting the sum of membership and
non-membership from one. Thus, an interval-valued intuitionistic fuzzy index is introduced as a

generalized Atanassov’s intuitionistic fuzzy index, called interval degree of indeterminacy in [2].

We also study the action of canonical representation of such fuzzy connectives (aggregations, im-
plications and coimplications) in order to characterize the class of IvIFIs. The authors follow the
approach considered in [28], showing such IvIFIs as diagonal preserving operators over which it

is possible to preserve main fuzzy implication properties. The results presented here extend the
work introduced in [24].

The paper is organized as follows: Section 2 presents the definition and some properties of
IvFIs and IvFCs. An expression for interval-valued intuitionistic version of the Atanassov’s intu-

itionistic fuzzy index is introduced in Section 3, in order to study properties of IvIFIs, which are
generated by idempotent interval-valued aggregation functions and a pair of mutual-dual interval-
valued functions: IvFIs and their corresponding coimplications. In Section 4, main results, the

ongoing work and final remarks are pointed out.

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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2 INTERVAL-VALUED FUZZY (CO)IMPLICATIONS

In IvFL, the membership degrees are subintervals of the unit interval U = [0, 1] approximating
the correct (but unknown) membership degree [14]. Thus, an interval-valued fuzzy negation N is

briefly described in this section founding the study of N-dual (co)implications. And, interval ag-
gregation functions and interval-valued fuzzy (co)implications are also presented. For additional
information, see [13].

Let U = {[x1, x2]|x1, x2 ∈ U and 0 ≤ x1 ≤ x2 ≤ 1}. The projections lU, rU : U → U are

defined by lU([x1, x2]) = x1 and rU([x1, x2]) = x2, respectively. For X ∈ U, lU(X) and rU(X)

are also denoted by X and X , respectively. For each x ∈ U , a degenerate interval [x, x] will be
denoted by x and the set of all degenerate intervals will be denoted by D. And, let ≤U⊆ U2 be

the Kulisch-Miranker (or product) order, such that for all X, Y ∈ U, is given by 1:

X ≤U Y ⇔ X ≤ Y and X ≤ Y . (2.1)

Thus, for all X ∈ U, X ≥U [0, 0] = 0 and X ≤ [1, 1] = 1. In addition, we also consider
�U⊆ U2 as the binary relation2 given by:

∀X, Y ∈ U, X �U Y ⇔ X ≤ Y . (2.2)

Proposition 1. For all X, Y ∈ U, if X �U Y then X ≤U Y .

Proof. It follows from Eqs. (2.1) and (2.2). �

Remark 1. Proposition 1 states that the partial order ≤U extends the binary relation�U.

For each real function f : U n −→ U , for all 
X = (X1, X2, . . . , Xn) ∈ Un and

x = (x1, x2 . . . , xn) ∈ U n such that xi ∈ Xi for 1 ≤ i ≤ n, the canonical representation of
f [26] is the interval function f̂ : Un −→ U, defined by

f̂ ( 
X) =
[
inf{ f (
x) | 
x ∈ 
X }, sup{ f (
x) | 
x ∈ 
X }

]
. (2.3)

The interval function f̂ : Un −→ U is well defined and called the best interval representation
of a real function f : U n −→ U , meaning that for any other interval representation F of f , the
inclusion F( 
X) ⊆ f ( 
X) holds.

2.1 Interval-valued fuzzy negations and interval aggregations

An interval-valued fuzzy negation (shortly IvFN) is a function N : U −→ U which verifies, for
all X , Y ∈ U, the following two properties:

1See in [11], results extending the partial order ≤U to a total order.
2Relation � is not an order but its reflexive closure, it is a partial order.

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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N1 N(0) = 1 and N(1) = 0;

N2 If X ≤U Y then N(Y ) ≤U N(X).

If N also satisfies the involutive property (N(N(X)) = X ) then N is called a strong IvFN. See,

e.g., the Zadeh’s IvFN which is given by

NS(X) = [NS(X), NS(X)]. (2.4)

Notice that, Eq. (2.4) provides a characterization of NS by the canonical representation of NS ,

when NS(x) = 1 − x , which means NS = N̂S , by Eq.(2.3). In the following two propositions,
some properties related to NS are presented, where the sum between X, Y ∈ U is defined as
X + Y = [X + Y , X + Y ] ∈ U.

Proposition 2. For all X, Y ∈ U, X + Y ≤U 1 if and only if X �U NS(Y ).

Proof. (⇒) For all X, Y ∈ U, X + Y ≤U 1 implies that [X + Y , X + Y ] ≤U 1. It also

means that X + Y ≤ 1 and X + Y ≤ 1. So it is equivalent to X ≤ NS(Y ) = NS(Y ) and
X ≤ NS(Y ) = NS(Y ). Therefore we can conclude that X �U N(Y ). (⇐) Analogously done. �

Corollary 1. For all X, Y ∈ U, if X + Y ≤U 1 then X ≤U NS(Y ).

Proof. Straightforward from the Propositions 1 and 2. �

An interval-valued aggregationM : U2 → U verifies the following properties:

A1 M(0, 0) = 0 andM(1, 1) = 1 (boundary conditions);

A2 If X ≤U Z thenM(X, Y ) ≤U M(Z , Y ), ∀X, Y, Z ∈ U (monotonicity property);

A3 M(X, Y ) = M(Y, X), ∀X, Y ∈ U (commutativity property).

Additionally, an idempotent IvA function is an IvA also verifying

A4 M(X, X) = X , ∀X ∈ U (idempotency property).

Remark 2. Consider ∨, ∧ : U 2 → U, ∨(x, y) = max{x, y} and ∧(x, y) = min{x, y} and their
related interval extensions

∧
,
∨ : U2 → U, which are idempotent IvAs given by:∧

(X, Y ) = [∧(X , Y ), ∧(X , Y )];
∨

(X, Y ) = [∨(X , Y ), ∨(X , Y )]. (2.5)

By the product order, for each IvA M,
∧

(X, Y ) ≤U M(X, Y ) ≤U
∨

(X, Y ), ∀X, Y ∈ U. And,
the canonical representation of an aggregation M : U 2 → U is characterized as:

M̂(X, Y ) = [M(X , Y ), M(X , Y )], ∀X, Y ∈ U, (2.6)

according to [14, Definition 4.3.].

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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2.2 Interval-valued fuzzy (co)implications

In this paper, the definition of an IvF(C)I is the following one, which is equivalent to the definition
proposed by Kitainik [18] (see also Fodor and Roubens [15]). Such definition extends the one

presented in [7, Definition 3], reproducing fuzzy (co)implications when degenerate intervals are
considered.

Definition 1. [13, Definition 6] An IvF(C)I operator (J)I : U2 → U fulfills, for all X, Y, Z ∈ U,

the boundary condition stated by

I0 : I(1, 0) = 0; J0 : J(0, 1) = 1;
together with the following additional properties:

I1 X ≤U Z ⇒ I(X, Y ) ≥U I(Z , Y ); J1 : X ≤U Z ⇒ J(X, Y ) ≤U J(Z , Y );

I2 Y ≤U Z ⇒ I(X, Y ) ≤U I(X, Z ); J2 : Y ≤U Z ⇒ J(X, Y ) ≥U J(X, Z );

I3 I(0, Y ) = 1; J3 : J(1, Y ) = 0;

I4 I(X, 1) = 1; J4 : J(X, 0) = 0.

Proposition 3. [23, Proposition 3.4] A function IN(JN) : U2 → U is an IvF(C)I operator if and

only if there exists an IvF(I)C operator I(J) : U2 → U and an IvFN N : U → U such that,
∀X, Y ∈ U, the next equality holds:

IN(X, Y ) = N(I(N(X),N(Y ))), (JN(X, Y ) = N(J(N(X),N(Y )))) .

When N is an involutive interval-valued negation, (I, IN) is said to be a pair of mutual N-dual
interval functions. In the following, IvF(C)Is are characterized as the canonical representabil-
ity [26] of fuzzy (co)implications.

Proposition 4. [21, Proposition 6][5, Proposition 10] A function Î ( Ĵ ), called canonical repre-
sentation of I (J ) : U 2 −→ U, is given as

Î (X, Y ) = [I (X , Y ), I (X , Y )], (
Ĵ (X, Y ) = [J (X, Y ), J (X , Y )]) . (2.7)

3 INTERVAL-VALUED INTUITIONISTIC FUZZY IMPLICATIONS

As a generalization of an IFS, an interval-valued intuitionistic fuzzy set (shortly IvIFS) is given
as

A = {(x, MA(x), NA(x))|x ∈ X, MA(x) + NA(x) ≤U 1},
where NA(x) is the interval degree of non-membership of x in set A, which is less, at most equal
to the complement of the related interval degree of membership MA(x), and therefore does not
necessarily equal to one.

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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The set Ũ = {X̃ = (X1, X2) ∈ U2|X1 + X2 ≤U 1} of interval-valued intuitionistic fuzzy

membership and non-membership degrees has two projections: l
Ũ
, r
Ũ

: Ũ → U, which are
defined by l

Ũ
(X̃) = l

Ũ
(X1, X2) = X1 and r

Ũ
(X̃ ) = r

Ũ
(X1, X2) = X2, respectively. According

to [10], we also consider the binary relations in Ũ:

O
Ũ

1 : X̃ ≤
Ũ

Ỹ ⇔ X1 ≤U Y1 and X2 ≥U Y2; or

O
Ũ

2 : X̃ �
Ũ

Ỹ ⇔ X1 ≤U Y1 and X2 ≤U Y2;
also 0̃ = (0, 1) ≤

Ũ
X̃ and 1̃ = (1, 0) ≥

Ũ
X̃ , for all X̃ , Ỹ ∈ Ũ.

Additionally, let D̃ = {X̃ = (X1, X2)|X1 + X2 = 1} ⊆ Ũ be the set of diagonal elements on Ũ

defined by pairs of complementary degenerate intervals.

3.1 Interval intuitionistic fuzzy index

Consider χ as an ordinary finite non-empty set. Let MA and NA be the interval-valued degrees

of membership and non-membership related to an element x ∈ χ in an IvIFS A. A function
�A : χ −→ U, called an interval intuitionistic fuzzy index (IvIFIx) of an element x in an IvIFS
A, is given as

�A(x) = NS
(
MA(x) + NA(x)

)
(3.1)

Thus, it follows that �A(x) ≤ NS(MA(x)) = ∨ (
NS(MA(x)), NA(x)

)
. And, when X̃ =(

MA(x), NA(x)
) = (X1, X2) ∈ Ũ, we denote �A(x) by �X̃ . Thus, Eq. (3.1) can be expressed

as �X̃ = NS(X1 + X2), with 0 ≤U �X̃ ≤U 1.

Proposition 5. The IvIFIx of X̃ = (X1, X2) ∈ Ũ can be expressed as:

�X̃ = [
NS(X1 + X2), NS(X1 + X2)

]
. (3.2)

Proof. When X̃ = (X1, X2), by Eqs. (2.4) and (3.1), �X̃ = NS(X1 + X2). Then �X̃ =
NS

[
(X1 + X2, X1 + X2)

] = [
NS(X1 + X2), NS(X1 + X2)

]
and Eq. (3.2) is verified. �

Proposition 6. Consider Ũ = {(x1, x2) ∈ U 2|x1 ≤ NS(x2)} and πx̃ as the intuitionistic fuzzy

index of x̃ = (x1, x2) ∈ Ũ , given by πx̃ = NS(x1 + x2) (see [7, Section 1.2]). Then, for all
X̃ = (X1, X2) ∈ Ũ, �X̃ is given as �X̃ = [π(X1,X2), π(X1,X2)].

Proof. Since X1 + X2 ≤U 1, we obtain both inequalities X1 + X2 ≤ 1 and X1 + X2 ≤ 1.

Then we have that (X 1, X 2), (X 1, X2) ∈ Ũ . Moreover, these imply that �(X1,X2) = NS(X1 +
X2) = [NS(X1 + X2); NS(X1 + X2)]. Therefore, the expression �(X1,X2) = [NS(X1 + X2),
NS(X1 + X2)] = [π(X1,X2), π(X1,X2)] is obtained. �

Definition 2. An IvIFI II : Ũ2 → Ũ is a function satisfying the boundary condition
II (1̃, 0̃) = 0̃ and, for all X̃ , Ỹ , Z̃ ∈ Ũ, the following properties hold:

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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II 1 X̃ ≤
Ũ

Z̃ ⇒ II (X̃ , Ỹ ) ≥
Ũ
II (Z̃ , Ỹ ) (right antitonicity property);

II 2 Ỹ ≤
Ũ

Z̃ ⇒ II (X̃ , Ỹ ) ≤
Ũ
II (X̃ , Z̃) (left isotonicity property);

II 3 II (0̃, Ỹ ) = 1̃ (falsity principle);

II 4 II (X̃ , 1̃) = 1̃ (neutrality principle).

Definition 3. An IvIFI II : Ũ2 → Ũ is called a diagonal preserving IvIFI if, for all X̃ , Ỹ ∈ D̃,

it verifies the additional property:

II 5 �
II (X̃ ,Ỹ ) = 0;

Lemma 1. �X̃ = 0 if and only if X̃ ∈ D̃.

Proof. �X̃ = 0 ⇔ NS(X1 + X2) = 0. So, we have �X̃ = 1 − (X1 + X2) = 0 ⇔ [1 −
X1 + X2; 1−X1 + X2] = 0. In addition, it also means that �X̃ = X1 + X2 = 1 and X1 + X2 =
1 ⇔ X1 = NS(X2) and X1 = NS(X2). Therefore, �X̃ = X̃ ∈ D̃. �

Proposition 7. An IvIFI operator II : Ũ2 → Ũ is a diagonal preserving operator if and only if
II (X̃ , Ỹ ) ∈ D̃ when X̃, Ỹ ∈ D̃ ⊆ Ũ.

Proof. (⇒) If II is diagonal preserving IvIFI then by Definition 3, �
II (X̃ ,Ỹ ) = 0 when X̃, Ỹ ∈

D̃. Therefore, by Lemma 1, II (X̃ , Ỹ ) ∈ D̃. (⇐) Let X̃ , Ỹ ∈ D̃. If II (X̃ , Ỹ ) ∈ D̃, then there

exists Z̃ = (Z1, Z2) ∈ D̃, which means that Z2 = 1 − Z1, such that II (X̃ , Ỹ ) = Z̃. Therefore,
�
II (X̃ ,Ỹ ) = �Z̃ = NS(Z1 + Z2) = NS(1) = 0. Hence, �

II (X̃ ,Ỹ ) = 0 and, we conclude, by
Lemma 1, II is a diagonal preserving IvIFI. �

3.2 IvIFIs generated from IvAs, IvFIs and IvFCs operators

Based on [7, Proposition 3], we present an expression for an interval intuitionistic fuzzy impli-
cation II generated by a finite set of interval aggregation functions Mi and a pair of interval
mutually dual functions (I, IN ). Such pair consists of an IvFI operator I and its corresponding

IvIFC operator IN , obtained by a strong IvFN N.

Definition 4. Let I be an IvFI, IN be its corresponding NS-dual construction, and M = {Mi :
U2 → U|i ∈ {1, 2, 3, 4}} be a family of idempotent IvA verifying the next conditions:

M1(X, Y ) +M3(NS(X),NS(Y )) ≥U 1; (3.3)

M2(X, Y ) +M4(NS(X),NS(Y )) ≤U 1. (3.4)

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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For all X̃ = (X1, X2), Ỹ = (Y1, Y2) ∈ Ũ, II : Ũ2 → Ũ is defined by the projection-functions as:

(l
Ũ

◦ II )(X̃ , Ỹ ) = I(M1(X1,NS(X2)),M2(Y1,NS(Y2))); (3.5)

(r
Ũ

◦ II )(X̃ , Ỹ ) = IN(M3(NS(X1), X2),M4(NS(Y1), Y2)). (3.6)

Theorem 1. The binary function II : Ũ2 → Ũ given in Definition 4 is an IvIFI operator.

Proof. It is immediate that II is well defined, satisfying the boundary conditions:

II (1̃, 0̃) = (I(1, 0), IN(0, 1)) = (0, 1) = 0̃.

For all X̃, Ỹ and Z̃ ∈ Ũ, we have that

[II 1 ]

Assuming that X̃ ≤
Ũ

Z̃ , which means X1 ≤ Z1 and X2 ≥ Z2 and equivalently, N(X2) ≤
N(Z2). Thus, by the isotonic functions M1 and M3, both inequations are verified:
M1(X1,NS(X2)) ≤U M1(Z1,NS(Z2)) and M3(NS(X1), X2) ≥U M3(NS(Z1), Z2). So,

for Definition 1, the inequations related to II -projections are given as:

(l
Ũ

◦ II )(X̃ , Ỹ ) = I(M1(X1,NS(X2)),M2(Y1,NS(Y2))) by Property I1

≥U I(M1(Z1,NS(Z2)),M2(Y1,NS(Y2))) = (l
Ũ

◦ II )(Z̃ , Ỹ );
(r
Ũ

◦ II )(X̃ , Ỹ ) = IN(M3(NS(X1), X2),M4(NS(Y1), Y2)) by Property J1

≤U IN(M3(NS(Z1), Z2),M4(NS(Y1), Y2)) = (r
Ũ

◦ II )(Z̃ , Ỹ ).

Therefore, II verifies the first place antitonicity.

[II 2 ]

Assuming that Ỹ ≤
Ũ

Z̃ . By the isotonicity ofM2 andM4, we have the following:

M2(Y1,NS(Y2)) ≤U M2(Z1,NS(Z2)) and M4(NS(Y1), Y2) ≥U M4(NS(Z1), Z2).

For Definition 1, we have that:

(l
Ũ

◦ II )(X̃ , Ỹ ) = I(M1(X1,NS(X2)),M2(Y1,NS(Y2))) by Property I2

≤U I(M1(X1,NS(X2)),M2(Z1,NS(Z2))) = (l
Ũ

◦ II )(X̃ , Z̃);
(r
Ũ

◦ II )(X̃ , Ỹ ) = IN(M3(NS(X1), X2),M4(NS(Y1), Y2)) by Property J2

≥U IN(M3(NS(Y1), Y2),M4(NS(Z1), Z2)) = (r
Ũ

◦ II )(X̃ , Z̃).

Therefore, II verifies the second place isotonicity.

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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[II 3 ]

By Definition 1, I and IN fulfills I3 and J3, respectively. Then the projections hold:

(l
Ũ

◦ II )(0̃, Ỹ ) = I(M1(0, 0),M2(Y1,NS(Y2))) = I(0,M2(Y1,NS(Y2))) = 1;
(r
Ũ

◦ II )(0̃, Ỹ ) = IN(M3(1, 1),M4(NS(Y1), Y2))) = IN(1,M4(NS(Y1), Y2)) = 0.

Therefore II (0̃, Y ) = 1̃.

[II 4 ]

By Definition 1, I and IN fulfills I4 and J4, respectively. Thus, the equations hold:

(l
Ũ

◦ II )(X, 1̃) = I(M1(X1,NS(X2)),M2(1, 1)) = I(M1(X1,NS(X2)), 1) = 1

(r
Ũ

◦ II )(X, 1̃) = IN(M3(NS(X1), X2),M4(0, 0))) = IN(M3(NS(X1), X2)), 0) = 0.

Therefore II (X, 1̃) = 1̃.

[II 5 ]

If X1 = NS(X2) and Y1 = NS(Y2) then we have the following:

�II (X̃ , Ỹ ) = NS(I(M1(X1,NS(X2)),M2(Y1,NS(Y2))

+ IN(M3(X2,NS(X1)),M4(Y2,NS(Y1))))

= NS(I(M1(X1, X1),M2(Y1, Y1)) + IN(M3(X2, X2),M4(Y2, Y2)))

= NS(I(X1, Y1) + IN(X2, Y2)) = NS(I(X1, Y1) + IN(NS(X1),NS(Y1)))

= NS(I(X1, Y1)) + NS(I(X1, Y1))) = NS(1).

Therefore, �II ((X1,X2),(Y1,Y2)) = 0. �

3.3 Extending fuzzy implications from IvFL to IvIFL

See, in Table 1, some examples of intuitionistic fuzzy implication (shortly IFI) II which are
generated by action of aggregators in Mi , with i ∈ {1, 2, 3, 4}, such that M1 = M3 = ∨ and

M2 = M4 = ∧, as presented in [19]. For details see [19] and [3]. In Table 2 we present the
corresponding generalized IvIFIs (II ), based on Definition 4.

In the following example, an interval-valued extension the of Łukasiewicz’s implication is con-
sidered according to Definition 4. It is obtained based on the Łukasiewicz’s implication and its

NS-dual coimplication.

Example 1. For i ∈ {1, 2, 3, 4}, let Mi : U2 → U be idempotent IvA operator given by:

(i) M1(X, Y ) = M3(X, Y ) = ∨
(X, Y ) = [∨(X , Y ), ∨(X , Y )];

(ii) M2(X, Y ) = M4(X, Y ) = ∧
(X, Y ) = [∧(X , Y ), ∧(X , Y )].

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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Table 1: IFIs generated by aggregations and pairs of mutual dual functions.

IFI (Name) IFI (Expressions)

Łukasiewicz (LK) IIL Z (x̃, ỹ) = ∧(1, (x2 + y1)), ∨(0, (x1 + y2 − 1))

Kleene-Dienes (KD) IIK D (x̃, ỹ) = (∨(x2, y1),∧(x1, y2))

Reichenbach (RC) IIRC (x̃, ỹ) = (x2 + y1 − x2 y1, x1y2)

Zadeh (ZH) IIZ H (x̃, ỹ) = (∨(x2,∧(NS (x2), y1)), ∧(x1, ∨(NS(x1), y2)))

Probabilistic Conjunction (PC) IIP C (x̃, ỹ) = (y1 − y1x2, NS(x1) + x1y2)

Bounded Conjunction (BC) IIBC (x̃, ỹ) = (∨(0, y1 − x2), ∧(1, NS(x1) + y2))

Probabilistic Disjunction (PD) IIP D (x̃, ỹ) = (NS(x2) + x2y1, y2 − y2x1)

Bounded Disjunction (BD) IIB D (x̃, ỹ) = (∧(1, NS(x2) + y1), ∨(0, y2 − x1))

Table 2: IvIFIs generated by IvAs and pairs of mutual dual interval functions.

IvIFI (Expressions)

IIL Z (X̃ , Ỹ ) = ∧
(1, X2 + Y1),

∨
(0, Y2 − NS(X1))

IIK D (X̃ , Ỹ ) = (
∨

(X2, Y1),
∧

(X1, Y2))

IIRC (X̃, Ỹ ) = (X2 + Y1 − X2 · Y1, X1 · Y2)

IIZ H (X̃, Ỹ ) = (
∨

(X2,
∧

(NS(X2), Y1)),
∧

(X1,
∨

(NS(X1), Y2))

IIP C (X̃, Ỹ ) = (Y1 − Y1 · X2,NS(X1) − X1 · Y2)

IIBC (X̃ , Ỹ ) = (
∨

(0, Y1 − X2),
∧

(1,NS(X1) + Y2)

IIP D(X̃, Ỹ ) = (NS(X2) − X2 · Y1, Y2 − Y2 · X1)

IIB D(X̃ , Ỹ ) = (
∧

(1,NS(X2) + Y1),
∨

(0, Y2 − X1))

It is clear, by Definition 4, for each i ∈ {1, 2, 3, 4},Mi satisfies the conditions stated by Eqs. (3.3)
and (3.4), assuring that, by Theorem 1, IvIFIs can be generated by IvAs and pairs of implications
and coimplications.

Let (IL K , JL K ) be the pair of NS-dual functions given as:

(i) IL K (X, Y ) = [∧(1, NS(X) + Y ), ∧(1, NS(X) + Y )]; and

(ii) JL K (X, Y ) = [∨(0, Y − X), ∨(0, Y − X)].

By Theorem 1, the IIL K -projections are given as: (l
Ũ

◦ IIL K )(X̃ , Ỹ ) = ∧
(1, X2 + Y1); and

(r
Ũ

◦ IIL K )(X̃ , Ỹ ) = ∨
(0, Y2 −NS(X1)). So, IIL K is a natural interval extension of IIL K (x̃ , ỹ) =

∧(1, (x2+y1)), ∨(0, (x1+y2−1)) as seen in the first lines of Tables 1 and 2. Its dual construction
can be analogously obtained. The other IvIFIs of Table 1 can be analogously constructed, see
these in Table 2.

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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Table 3 reports the index expression related to IvIFIs presented in Table 2. See, for instance, the

respective expressions of the fuzzy index of IIL Z and IIRC as follows:

πIIL Z
= 1 − ∧(1, (x2 + y1)) − ∨(0, (x1 + y2 − 1))

=
{

(NS(x2 + y1) + NS(x1 + y2)), x1 + x2 ≥ 1;
∨(0, NS(x2 + y1)), otherwise.

πIIRC
= 1 − ∨(x2, y1) ∧ (x1, y2)) = NS(x2) · NS(y1) − x1 · y2.

And, the interval expressions of these fuzzy indexes, which were obtained by considering the
corresponding IvIFIs, as presented in the two first lines in Table 3:

�IIL Z
=

∨
(0,NS(X2 + Y1)) −

∨
(0, X1 + Y2 − 1);

�IIK D
=

∧
(NS(X2),NS(Y1)) −

∧
(X1, Y2).

The other indexes can be analogously obtained.

Table 3: IvIF index

IvIFI index

�IIL Z
= ∨

(0,NS(X2 + Y1)) − ∨
(0, X1 + Y2 − 1)

�IIK D
= ∧

(NS(X2),NS(Y1)) − ∧
(X1, Y2)

�IIRC
= NS(X2 + Y1 + X1 · Y2) + X2 · Y1

�IIZ H
= ∧

(NS(X2),
∨

(X2,NS(Y1)) − ∧
(X1,

∨
(NS(X1), Y2))

�IIP C
= NS(Y1 + X1 · Y2) + X1 + X2 · Y!

�IIBC
= ∧

(1,NS(Y1 − X2)) − ∧
(1,NS(X1 − Y2))

�IIP D
= X2 − Y2 + X1 · Y2 − X2 · Y1

�IIB D
= ∨

(0, X2 − Y1) − ∨
(0, Y2 − X1)

Now, based on the canonical representability, we present the condition under which an IvIFI
is representable. For that, let II be an IFI generated by a set of idempotent aggregations Mi ,

for i ∈ {1, 2, 3, 4}, together with an implication I and its corresponding intuitionistic fuzzy
coimplication (IFC) IN , based on [7, Proposition 3].

Proposition 8. Consider II : Ũ2 → Ũ an IvIFI given as in Definition 4 by the following repre-
sentable fuzzy connectives: Mi = M̂i for i ∈ {1, 2, 3, 4} and where each Mi is an aggregation
function; I = Î and IN = ÎN whenever (I, IN ) is a pair of NS-dual functions given as a fuzzy

implication and its corresponding fuzzy coimplication. For all X̃ = (X1, X2), Ỹ = (Y1, Y2) ∈ Ũ,
II can be characterized as:

(l
Ũ
◦II )(X̃ , Ỹ )=[(lŨ ◦II )((X 1, X 2), (Y 1, Y 2)), (lŨ ◦II )(X 1, X2), (Y 1, Y 2))]; (3.7)

(r
Ũ

◦II )(X̃ , Ỹ )=[(rŨ ◦II )((X 1, X2), (Y 1, Y 2)), (rŨ ◦II )(X 1, X2), (Y 1, Y 2))]; (3.8)

Tend. Mat. Apl. Comput., 14, N. 2 (2013)
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when II : Ũ 2 → Ũ is the IFI obtained from Mi and the pair (I, IN ), see [7, Section 3.2].

Proof. Firstly, let X̃ = (X1, X2), Ỹ = (Y1, Y2) ∈ Ũ. Then, X1 + X2 ≤ 1 and therefore

X1 + X2 ≤ 1 which means (X1, X2) ∈ Ũ . Analogously, (Y1, Y2), (X1, X2), (Y1, Y2) ∈ Ũ . Now,
by Definition 4, it follows that:

(l
Ũ

◦ II )(X̃ , Ỹ ) = I(M1(X1,NS(X2)), (M2(Y1,NS(Y2)))) by Eq. (3.5)

= I([M1(X1, NS(X2)), M1(X1, NS(X2)],
[M2(Y1, NS(Y2)), M2(Y1, NS(Y2)]) by Eqs. (2.4) and (2.6)

= [I (M1(X1, NS(X2)), M2(Y1, NS(Y2))),

I (M1(X1, NS(X2)), M2(Y1, NS(Y2)))] by Eq. (2.7)

= [(lŨ ◦ II )((X1, X2), (Y1, Y2)), (lŨ ◦ II )((X1, X2), (Y1, Y2))].

Therefore, we conclude that Eq. (3.7) is held. Analogously, Eq. (3.8) is proved. �

In the following, Corollary 2 presents the conditions under which projection functions over pairs

of degenerate intervals are preserved by an IvIFI II , as given in Definition 4.

Corollary 2. Under the conditions of Proposition 8, the IvIFI operator II : Ũ2 → Ũ is a
diagonal preserving operator.

Proof. By Proposition 7, it is sufficient to show that, for all X̃, Ỹ ∈ D̃ it holds that II (X̃ , Ỹ )

∈ D̃. By Proposition 8, it follows that II (X̃ , Ỹ ) = II ((X1, X2), (Y1, Y2)) = (I(X1, Y1),

IN(X2, Y2)). So, in accordance with the characterization stated by Eqs. (3.7) and (3.8), we have
the equations:

I(X1, Y1) = l
Ũ

◦ II (X̃ , Ỹ ) = [
(lŨ ◦ II )((X1, X2), (Y1, Y2)), (lŨ ◦ II )((X1, X2), (Y1, Y2))

];
IN(X2, Y2) = r

Ũ
◦ II (X̃ , Ỹ ) = [

(rŨ ◦II )((X1, X2), (Y1, Y2)), (rŨ ◦II )((X1, X2), (Y1, Y2))
]
.

Since, X̃ , Ỹ ∈ D̃, then X1 = X1, X2 = X2, Y1 = Y1 and Y2 = Y2. Therefore both are degenerate
intervals. In addition, since (I, IN) is a pair of NS-dual functions, we have that IN(X2, Y2) =
NS(I(NS(X2),NS(Y2))) = NS(I(X1, Y1)). Therefore, I(X1, Y1) + IN(X2, Y2) = 1, concluding

that II (X̃ , Ỹ ) ∈ D̃. �

3.4 Properties of IvIFIs

An IvIFI operator can be demanded to verify other properties which are inherited when the fuzzy
implication is generalized to the intuitionistic fuzzy case, see [7, 12] and [13]. In such context,
we consider the next truly intuitionistic fuzzy properties:

II 6 �
II (X̃,Ỹ ) ≤ �(I(NS(X2),Y1), IN(NS (X1),Y2));

Tend. Mat. Apl. Comput., 14, N. 2 (2013)



�

�

“main” — 2013/11/8 — 18:09 — page 205 — #13
�

�

�

�

�

�

REISER, BEDREGAL and VISINTIN 205

II 7 II (X̃ , Ỹ ) �
Ũ

(I(NS(X2), Y1), IN(NS(X1), Y2));

II 8 �
II (X̃ ,Ỹ ) ≤ ∨

(NS(X1),NS(Y1));

II 9 If X̃ = Ỹ then �
II (X̃ ,Ỹ ) = �X̃ ;

II 10 If �X̃ = �Ỹ then �
II (X̃,Ỹ ) = �X̃ .

Proposition 9. Let II : Ũ2 → Ũ be an IvIFI operator whose projections are given by Eqs. (3.5)
and (3.6). Therefore II verifies II 6 and II 7.

Proof. Let Mi∈{1,2,3,4} be an idempotent IvA operators. Then, if follows that:

X1 ≤ M1(X1,NS(X2)) ≤ NS(X2); and Y1 ≤ M2(Y1,NS(Y2)) ≤ NS(Y2);
X2 ≤ M3(X2,NS(X1)) ≤ NS(X1); and Y2 ≤ M4(Y2,NS(Y1)) ≤ NS(Y1).

By II 1 and II 2, we have that: (i) I(M1(X1,NS(X2)),M2(Y1,NS(Y2)) ≥ I(NS(X2), Y1); and
(ii) IN(M3(X2,NS(X1)),M4(Y2,NS(Y1)) ≥ IN(NS(X1), Y2). So, II is well defined.

[II 6 ]

By (i) and (ii), II (X̃ , Ỹ ) + II (X̃ , Ỹ ) ≥ I(NS(X2), Y1) + IN(NS(X1), Y2) and we have:
�II ((X1,X2),(Y1,Y2)) ≤ �(I(NS(X2),Y1),IN(NS(X1),Y2)). Then, II 6 is verified.

[II 7 ]

Based on (i) and (ii), II ((X1, X2), (Y1, Y2)) � (I(NS(X2), Y1), IN(NS(X1), Y2)). So, it
means that II satisfies II 7.

Therefore, Proposition 9 holds. �

Proposition 10. Let II be an IvIFI operator whose projections are given by Eqs. (3.5), (3.6).
When I(X, Y ) ≥ ∧

(X, Y ) II verifies II 8.

Proof. For all X̃ , Ỹ ∈ Ũ, the following holds.

lŨ (II (X̃ , Ỹ )) + rŨ (II )(X̃ , Ỹ )) ≥ lŨ (II (X̃ , Ỹ )) = I(M1(X1,NS(X2)),M2(Y1,NS(Y2))

≥ I(
∧

(X1, NS(X2)),
∨

(Y1, NS(Y2))) by Eq. (2.5)

≥ I(X1, Y1) ≥
∧

(X1, Y1)

By hypothesis I(X, Y ) ≥ ∧
(X, Y ) and then lŨ (II (X̃ , Ỹ ))+rŨ (II )(X̃ , Ỹ )) ≥ ∧

(X1, Y1). More-
over, it holds that

�
II (X̃,Ỹ )) = NS(lŨ (II (X̃ , Ỹ )) + rŨ (II )(X̃ , Ỹ ))) ≤ NS(

∧
(X1, Y1)).

Therefore, �
II (X̃,Ỹ ))

≤ ∨
(NS(X1),NS(Y2)), meaning that II satisfies II 8. �

Proposition 11. Let II be an IvIFI operator whose projections are given by Eqs. (3.5), (3.6). If
II verifies II 9 then also verifies II 10.

Tend. Mat. Apl. Comput., 14, N. 2 (2013)



�

�

“main” — 2013/11/8 — 18:09 — page 206 — #14
�

�

�

�

�

�

206 INDEX, EXPRESSIONS AND PROPERTIES OF INTERVAL-VALUED INTUITIONISTIC FUZZY IMPLICATIONS

Proof. Straightforward. �

4 CONCLUSION

IvIFL and IFL have been studied as a natural generalization of FL taking into account: (i) in
the interval approach, the uncertainty due to the lack of information in the definition of a mem-
bership function; and (ii) in the intuitionistic approach, the non-complementary idea of the dual
construction of membership functions.

Thus, it seems interesting to move on to another challenging approach such as IvIFL integrating
both approaches. So, this work studies IvIFIs in the sense of [28] and provides interpretation
for interval-valued intuitionistic fuzzy index. It has shown that the IvFIs obtained by action of
canonical representation of aggregation functions and mutual dual functions also extends the
work introduced by [7].

Further work considers applying the generalization introduced in Theorem 1 in order to analyse
the main classes of IvIFIs and other constructions based on interval automorphisms, based on
our previous works [5, 21, 22] and [23].
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RESUMO. A Lógica Fuzzy Intuicionista Valorada Intervalarmente consiste em uma ex-

tensão da lógica fuzzy, integrando conceitos da lógica fuzzy valorada intervalarmente e da

lógica fuzzy intuicionista. A primeira considera a hesitação relacionada com a construção

dual de conjuntos fuzzy intuicionistas, enquanto a segunda reflete a medida da imprecisão

e incerteza no diâmetro dos intervalos associados aos elementos de um conjunto fuzzy. Este

artigo mostra que uma implicação fuzzy valorada intervalarmente (IvIFI) pode ser obtida pela

ação de funções de agregação valoradas intervalarmente sobre pares de funções mutuamente

duais, ou seja uma implicação e sua correspondente coimplicação valorada intervalarmente.

Na construção de IvIFIs, são discutidas as condições que preservam operadores diagonais e

funções duais. As principais propriedades destes operadores são estudadas, incluindo tanto

as propriedades preservadas da lógica fuzzy quanto propriedades inerentes da abordagem

fuzzy intuicionista. A representação canônica para a classe de IvIFIs e a versão intervalar

para o operador denominado ı́ndice fuzzy intuicionista são apresentados e exemplos destes

operadores concluem o estudo descrito neste trabalho.

Palavras-chave: lógica fuzzy intuicionista valorada intervalarmente, implicação fuzzy valo-

rada intuicionista, ı́ndice intuicionista.
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