Produtos de Grafos Z_m -bem-cobertos

R.M. BARBOSA¹, M.R.C. SANTANA², Instituto de Informática, INF, UFG - Universidade Federal de Goiás, 74001-970 Goiânia, GO, Brasil.

Resumo. Um grafo é Z_m -bem-coberto se $|I| \equiv |J| \pmod{m}$, $m \geq 2$, para todo I, J conjuntos independentes maximais em V(G). Um grafo G é fortemente Z_m -bem-coberto se G é um grafo Z_m -bem-coberto e $G \setminus \{e\}$ é Z_m -bem-coberto, $\forall e \in E(G)$. Um grafo G é 1- Z_m -bem-coberto se G é Z_m -bem-coberto e $G \setminus \{v\}$ é Z_m -bem-coberto, $\forall v \in V(G)$. Mostramos que os grafos 1- Z_m -bem-cobertos, bem como os fortemente Z_m -bem-cobertos, com exceção de K_1 e K_2 , têm cintura ≤ 5 . Mostramos uma condição necessária e suficiente para que produtos lexicográficos de grafos sejam Z_m -bem-cobertos e algumas propriedades para o produto cartesiano de ciclos

Palavras-chave. Teoria dos Grafos, Conjuntos Independentes em Grafos, Produtos de Grafos.

1. Introdução

Os grafos aqui considerados são grafos simples. As definições e notações utilizadas seguem [7].

Denotamos o conjunto de vértices de um grafo G por V(G) e o conjunto de arestas por E(G). N(v) é o conjunto de vértices adjacentes a v em G. Um conjunto $I \subseteq V(G)$ é independente se quaisquer dois vértices de I não são adjacentes. Denotamos por $\alpha(G)$ a cardinalidade do maior conjunto independente de vértices de G. A cintura de um grafo com um ciclo é o tamanho de seu menor ciclo. Um grafo sem ciclo tem cintura infinita. Um grafo é bem-coberto se todo conjunto independente maximal de vértices em G tiver mesma cardinalidade. Um grafo G é um grafo Z_m -bem-coberto, $m \geq 2$, se $|I| \equiv |J| \pmod{m}$, para todos I, J conjuntos independentes maximais em V(G). Estes grafos foram introduzidos em [9]. Caracterizações de grafos Z_m -bem-cobertos cúbicos foram dadas em [4], com cintura \geq 6 em [10], cordais, simpliciais e arco-circulares em [6] e livres de $K_{1,3}$ em [5]. O problema de determinação do número de independência de um grafo é um problema NP-Completo [14] para grafos em geral. Para grafos bem-cobertos este problema torna-se mais simples, pois é suficiente encontrar qualquer conjunto independente maximal, visto que todos tem a mesma cardinalidade. Caro [8] provou que o problema de reconhecimento de grafos bem-cobertos é Co-NP-completo mesmo para grafos Z_m -bem-cobertos que são livres de $K_{1,3m+1}$. Pinter [16] definiu um grafo fortemente bem-coberto G como um grafo que é bem-coberto e $G \setminus \{e\}$ é bem-coberto

¹rommel@inf.ufg.br

 $^{^2}$ marcia@inf.ufg.br

para qualquer $e \in E(G)$. De forma similar, foi definido em [2, 3] que um grafo G é fortemente Z_m -bem-coberto se G é um grafo Z_m -bem-coberto e $G \setminus \{e\}$ é Z_m -bem-coberto, $\forall e \in E(G)$. Um grafo G é 1- Z_m -bem-coberto se G é Z_m -bem-coberto e $G \setminus \{v\}$ é Z_m -bem-coberto, $\forall v \in V(G)$. Uma folha é um vértice de grau 1, um talo é um vértice adjacente a uma folha e um arbusto é um subgrafo induzido por um talo e suas folhas. Vértices x e y de um grafo G são ditos ser conectados por uma 2-ponte se existem vértices u e $v \in V(G)$ com grau de u e v igual a 2 e com $N(u) = \{x, v\}$ e $N(v) = \{u, y\}$.

O Teorema 1.1, provado em [10], fornece uma caracterização de grafos Z_m -bemcobertos de cintura > 5.

Teorema 1.1. [10] Um grafo é Z_m -bem-coberto conexo de cintura > 5 se e somente se G é K_1 , C_7 ou um grafo conexo de cintura pelo menos seis, que consiste de uma união finita de arbustos B_i , cada um com talo x_i , onde cada talo tem r_i congruente a 1 (mod m) folhas e onde, para cada i e j, uma e somente uma das seguintes condições é satisfeita:

- 1. x_i e x_j são unidos por uma aresta e qualquer outro caminho, caso exista, unindo x_i e x_j deve incluir pelo menos um talo diferente de x_i e x_j ;
- 2. x_i e x_j são conectados por km 2-pontes, $k \in N$, e qualquer outro caminho unindo x_i e x_j deve incluir outro talo além de x_i e x_j ;
- 3. Todo caminho unindo x_i e x_j contém pelo menos um talo diferente de x_i e x_j .

Na figura 1 temos um exemplo de um grafo Z_3 -bem-coberto conexo de cintura 6, com conjuntos independentes maximais de cardinalidades 4, 7 e 10.

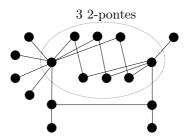


Figura 1: Grafo Z_3 -bem-coberto de cintura 6

A classe de grafos Z_m -bem-cobertos inclui todos os grafos bem-cobertos, já que em todo grafo bem-coberto os conjuntos independentes maximais têm a mesma cardinalidade e, portanto, são congruentes módulo qualquer natural m. Alguns resultados sobre grafos bem-cobertos podem ser estendidos para os grafos Z_m -bem-cobertos. Como principais contribuições, mostramos que se G é 1- Z_m -bem-coberto e não é K_1 nem K_2 , então G tem cintura ≤ 5 e apresentamos também uma condição necessária e suficiente para que produtos lexicográficos de grafos sejam Z_m -bem-cobertos. Ainda, mostramos que o produto cartesiano de dois ciclos C_n e C_m é Z_m -bem-coberto se e somente se ele é bem-coberto.

Outros resultados válidos para grafos bem-cobertos não podem ser estendidos aos grafos Z_m -bem-cobertos. Na Proposição 3.2, mostramos que podemos construir infinitos grafos fortemente Z_m -bem-cobertos que sejam planares. Há apenas 4 grafos planares fortemente bem-cobertos, o que foi provado por Pinter [16].

2. Produto Lexicográfico

Propriedades relacionadas a produtos lexicográficos de grafos foram provadas para problemas de coloração [1] e cobertura por ciclos [15]. Alguns resultados sobre produtos de grafos e algumas aplicações podem ser encontradas em [12].

Topp e Volkmann [17] mostram quando o produto lexicográfico de grafos é bemcoberto. Como uma generalização deste resultado, apresentamos uma condição necessária e suficiente para construção de grafos Z_m -bem-cobertos a partir do produto lexicográfico de grafos.

Dados um grafo H e uma família de grafos não vazios $\{G_1,G_2,\ldots,G_{|V(H)|}\}$ indexados pelos vértices de H, o produto lexicográfico $H \circ \{G_1,G_2,\ldots,G_{|V(H)|}\}$ de H e $\{G_1,G_2,\ldots,G_{|V(H)|}\}$ é o grafo tendo o conjunto de vértices $\bigcup_{v\in V(H)}\{v\}\times V(G_v)$, sendo que dois vértices (v_1,v_2) e (u_1,u_2) são adjacentes se $\{v_1,u_1\}\in E(H)$ ou $(v_1=u_1$ e $\{v_2,u_2\}\in E(G_{v_i})$). Se todos os grafos da família G são isomorfos entre si, escrevemos o produto lexicográfico entre H e a família G como $H \circ G$.

Um exemplo de produto lexicográfico $H \circ \{G_1, G_2, G_3\}$ pode ser visto na figura 2, onde $H = P_3$, $G_1 = K_2$, $G_2 = C_4$ e $G_3 = C_3$.

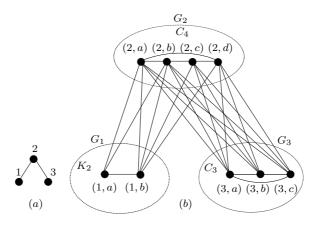


Figura 2: (a) Grafo P_3 e (b) Produto lexicográfico $P_3 \circ \{K_2, C_4, C_3\}$

Para um subconjunto S de $V(H \circ \{G_1, G_2, \dots, G_{|V(H)|}\})$, denotamos $X_H(S) = \{x \in V(H) : \exists y \in V(G_x)(x,y) \in S\}$ e $X_{G_x}(S) = \{y \in V(G_x) : (x,y) \in S\}$ para todo $x \in X_H(S)$. No grafo da figura 2 (b), se $S = \{(1,a),(3,c)\}, X_H(S) = \{1,3\}, X_{G_1}(S) = \{a\}$ e $X_{G_3}(S) = \{c\}.$

Os conjuntos independentes maximais nos produtos lexicográficos de grafos podem ser descritos como na Proposição 2.1.

Proposição 2.1. [17] Dados $S \subset V(H \circ (G_1, \ldots, G_{|V(H)|}))$, S é um conjunto independente maximal em $H \circ (G_1, \ldots, G_{|V(H)|})$, se e somente se, $X_H(S)$ é um conjunto independente maximal em H, e para todo $v \in X_H(S)$, o conjunto $X_{G_v}(S)$ é um conjunto independente maximal em G_v .

De forma similar a apresentada por Topp e Volkmann [17], o Teorema 2.2 nos fornece uma condição necessária e suficiente para o produto de grafos ser Z_m -bemcoberto.

Teorema 2.2. Seja H um grafo e $\{G_1, G_2, \ldots, G_{|V(H)|}\}$ uma família de grafos não vazios. O produto lexicográfico $H \circ \{G_1, G_2, \ldots, G_{|V(H)|}\}$ é um grafo Z_m -bemcoberto, para um dado $m \geq 2$, se e somente se H e $\{G_1, G_2, \ldots, G_{|V(H)|}\}$ satisfazem as sequintes condições:

- 1. $G_i \notin Z_m$ -bem-coberto para $i = 1, \ldots, |V(H)|$, para um m qualquer ≥ 2 .
- 2. $\sum_{v \in I} \alpha(G_v) \equiv \sum_{u \in J} \alpha(G_u) \pmod{m}$, $\forall I, J, conjuntos independentes maximais de <math>H$.

 $\begin{array}{l} Demonstraç\~ao. \ (\Longrightarrow) \text{Suponha que } H \circ \{G_1,G_2,\ldots,G_{|V(H)|}\} \ \text{\'e} \ Z_m\text{-bem-coberto e} \\ \text{que existe } G_{v_0} \ \text{que n\~ao} \ \text{\'e} \ Z_m\text{-bem-coberto. Ent\~ao} \ G_{v_0} \ \text{tem dois conjuntos independentes maximais de v\'ertices } I_{v_0} \ \text{e} \ J_{v_0} \ \text{tais que } |I_{v_0}| \ \not\equiv |J_{v_0}| \ \text{(mod m)}. \\ \text{Estenda} \ \{v_0\} \ \text{a um conjunto independente maximal } L \ \text{em } V(H). \\ \text{Para qualquer} \\ v \in L \backslash \{v_0\}, \ \text{seja} \ I_v \ \text{um conjunto independente maximal em } G_v. \\ \text{Ent\~ao, pela} \\ \text{Proposiç\~ao} \ 2.1, \ A = \cup_{v \in L \backslash \{v_0\}} \{(v,x): x \in I_v\} \cup \{(v_0,y): y \in I_{v_0}\} \ \text{e} \ B = \bigcup_{v \in L \backslash \{v_0\}} \{(v,x): x \in I_v\} \cup \{(v_0,t): t \in J_{v_0}\} \\ \text{s\~ao} \ \text{conjuntos independentes maximais em } \\ H \circ \{G_1,G_2,\ldots,G_{|V(H)|}\} \ \text{tal que } |A| \not\equiv |B| \ \text{(mod m)}. \\ \text{Isto \'e uma contradiç\~ao.} \\ \text{Logo, } G_i \ \text{deve ser } Z_m\text{-bem-coberto para todo } i = 1,2,\ldots,|V(H)|. \\ \end{array}$

Sejam I e J dois conjuntos independentes maximais de vértices em H. Provaremos que $\sum_{v \in I} \alpha(G_v) \equiv \sum_{v \in J} \alpha(G_v)$ (mod m). Seja R_v um conjunto independente maximal em G_v , $\forall v \in I \cup J$. Então, $S_1 = \bigcup_{v \in I} \{(v,x) : x \in R_v\}$ e $S_2 = \bigcup_{v \in J} \{(v,x) : x \in R_v\}$ são conjuntos independentes maximais em $H \circ \{G_1, G_2, \dots, G_{|V(H)|}\}$. Então $|S_1| \equiv |S_2|$ (mod m). Mas, $\{|(v,x) : x \in R_v\}| \equiv \alpha(G_v)$ (mod m), $\forall u,v \in I \cup J$, segue que $\sum_{v \in I} \alpha(G_v) \equiv |S_1| \equiv |S_2| \equiv \sum_{v \in J} \alpha(G_v)$ (mod m).

(\Leftarrow)Seja I um conjunto independente maximal em $H \circ \{G_1, G_2, \ldots, G_{|V(H)|}\}$. Pela Proposição 2.1, $X_H(I)$ é um conjunto independente maximal em $H \in X_{G_v}(I)$ é um conjunto independente maximal em G_v para todo $v \in X_H(I)$. Já que $I = \bigcup_{v \in X_H(I)} \{(v, x) : x \in X_{G_v}(I)\} \in |X_{G_v}(I)| \equiv \alpha(G_v) \pmod{m}$, temos $|I| = \sum_{v \in X_H(I)} |\{[v, x] : x \in X_{G_v}(I)\}| = \sum_{v \in X_H(I)} |X_{G_v}(I)| = \sum_{v \in X_H(I)} \alpha(G_v)$. Então, pela condição (2), quaisquer dois conjuntos independentes maximais em $H \circ \{G_1, G_2, \ldots, G_{|V(H)|}\}$ são congruentes (mod m) e portanto $H \circ \{G_1, G_2, \ldots, G_{|V(H)|}\}$ é um grafo Z_m -bem-coberto.

3. Grafos Z_m -bem-cobertos Conforme a Cintura

Pinter [16] provou que há somente 4 grafos fortemente bem-cobertos que são planares. Diferentemente, podemos construir infinitos grafos fortemente Z_m -bem-cobertos que sejam planares e de cintura 4, para l e m inteiros naturais, $m \geq 2$,

através do produto $(K_{1,ml+1}) \circ 2K_1$. Na figura 3. podemos observar a forma geral destes grafos (a) e em (b) temos um grafo $K_{1,3} \circ 2K_1$ que é fortemente Z_2 -bemcoberto planar.

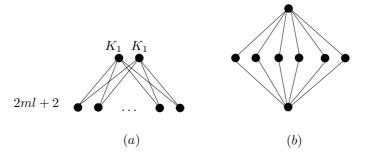


Figura 3: (a) Grafo $K_{1,ml+1} \circ 2K_1$ (b) Grafo $K_{1,3} \circ 2K_1$

Proposição 3.2. Há um número infinito de grafos planares fortemente Z_m -bemcobertos com cintura 4.

Demonstração. Sejam l e m inteiros naturais, $m \geq 2$. Pela forma de construção, os grafos $(K_{1,ml+1}) \circ 2K_1$ são fortemente Z_m -bem-cobertos, planares e com cintura A

Os grafos Z_m -bem-cobertos de cintura ≥ 6 caracterizados no Teorema 1.1, com exceção de K_1 e K_2 , não são 1- Z_m -bem-cobertos e nem fortemente Z_m -bem-cobertos, e, portanto, os outros grafos com estas propriedades devem ter cintura ≤ 5

Teorema 3.3. K_1 e K_2 são os únicos grafos conexos fortemente Z_m -bem-cobertos com cintura ≥ 6 .

Demonstração. Se G é um grafo Z_m -bem-coberto com cintura ≥ 6 , G atende ao Teorema 1.1. C_7 não é um grafo fortemente Z_m -bem-coberto e K_1 é. Suponha que G seja diferente de C_7 e K_1 . Logo, G é uma união finita de arbustos. Se G consiste de apenas um talo com uma folha, $G \cong K_2$ que é um grafo fortemente Z_m -bem-coberto. Considere que G é diferente de C_7 , K_1 e K_2 . Ao removermos uma aresta que une uma folha X a um talo V_i , teremos um componente Y_m em Y_m componente Y_m folhas, Y_m folhas,

Teorema 3.4. K_1 e K_2 são os únicos grafos conexos 1- Z_m -bem-cobertos com cintura ≥ 6 .

Demonstração. Seja G um grafo Z_m -bem-coberto com cintura \geq 6. Pelo Teorema 1.1, G é K_1 , C_7 ou uma união finita de arbustos sendo que cada talo tem 1 (mod m) folhas. Por inspeção, C_7 não é 1- Z_m -bem-coberto e K_1 é 1- Z_m -bem-coberto. Se G consiste de apenas um talo com uma folha, $G \cong K_2$ que é um grafo 1- Z_m -bem-coberto. Suponha, então, que G é uma união finita de arbustos. Ao removermos

uma folha x de um arbusto B qualquer com talo v_i , este terá apenas ml folhas $l \ge 0$ e não mais satisfaz ao Teorema 1.1. Portanto, G não é 1- Z_m -bem-coberto.

4. Produto Cartesiano

O produto cartesiano $G_1 \times G_2$ de dois grafos G_1 e G_2 é o grafo contendo conjunto de vértices $V(G_1 \times G_2) = V(G_1) \times V(G_2)$, e dois vértices (v_1, v_2) e (u_1, u_2) de $G_1 \times G_2$ são adjacentes se ou $[(v_1, u_1) \in E(G_1)$ e $v_2 = u_2]$ ou $[(v_2, u_2) \in E(G_2)$ e $v_1 = u_1]$. Na figura 4. temos um grafo $G_3 \times G_4$.

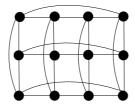


Figura 4: Grafo $C_3 \times C_4$

Uma questão sobre o produto cartesiano de dois grafos G e H é saber se é possível que $G \times H$ seja bem-coberto quando G e H não são bem-cobertos. Fradkin [11] respondeu parcialmente esta questão para uma grande classe de grafos que inclui todos os grafos não-bem-cobertos livres de triângulo. Topp e Volkman [17] apresentaram alguns resultados sobre o produto cartesiano de alguns grafos, incluindo os grafos bipartidos e ciclos.

Teorema 4.5. [17] O produto cartesiano $G_1 \times G_2$ de grafos G_1 e G_2 bipartidos diferentes de K_1 é bem-coberto se e somente se $G_1 = G_2 = K_2$.

Proposição 4.3. [17] O produto cartesiano $C_n \times C_k$ de ciclos C_n e C_k é bem-coberto se e somente se n = 3 ou k = 3.

O produto cartesiano de um ciclo $C_n \times K_2$ é um grafo cúbico que é Z_2 -bem-coberto e todos os seus conjuntos independentes maximais têm cardinalidade par. Os grafos cúbicos Z_m -bem-cobertos foram caracterizados por Barbosa e Ellingham [6].

Na Observação 1, temos uma forma de obter um conjunto independente maximal em um grafo $C_n \times C_k$.

Observação 1. [17] Sejam C_n e C_k dois ciclos com vértices x_1, x_2, \ldots, x_n e y_1, y_2, \ldots, y_k , respectivamente, e arestas $x_1x_2, x_2x_3\ldots, x_nx_1$ e $y_1y_2, y_2y_3\ldots, y_ky_1$. Seja $I_{n,k}$ o conjunto dos vértices (x_i, y_j) de $C_n \times C_k$ tal que $i = 1, \ldots, 2 \lfloor n/2 \rfloor$, $j = 1, \ldots, 2 \lfloor k/2 \rfloor$, e i + j é um inteiro par. Se n e k são ambos impares, acrescente a $I_{n,k}$ o vértice (x_n, y_k) . O conjunto $I_{n,k}$ é independente maximal em $C_n \times C_k$.

O produto cartesiano de dois ciclos C_n e C_k é bem-coberto se e somente se n=3 ou k=3. Estes grafos possuem tanto C_3 quanto C_4 induzidos e estão numa

classe de grafos que ainda não foi caracterizada para grafos bem-cobertos e Z_m -bem-cobertos. Este resultado pode ser estendido para os grafos Z_m -bem-cobertos, como mostramos na Proposição 4.4.

Proposição 4.4. O produto cartesiano $C_n \times C_k$ de ciclos C_n e C_k é Z_m -bem-coberto se e somente se ele é bem-coberto.

Demonstração. O produto $C_n \times C_k$, quando n=3 ou k=3 é bem-coberto pela Proposição 4.3 e portanto, Z_m -bem-coberto.

É necessário considerar apenas n ou k ímpares, já que, pelo Teorema 4.5, quando os grafos são ambos bipartidos, seu produto cartesiano não é bem-coberto e portanto, não é Z_m -bem-coberto. Restam, então, dois casos a considerar: se n e k são ímpares e se apenas um deles é ímpar.

Caso n e k sejam ímpares, podemos encontrar um conjunto independente maximal $J_1 = I_{n,k} \setminus \{(x_1,y_1),(x_1,y_3),(x_2,y_2)\} \cup \{(x_1,y_2),(x_n,y_3)\}$ em que $|J_1| = |I_{n,k}| - 1$ e portanto, $|J_1|$ e $|I_{n,k}|$ não são congruentes módulo m, pois são consecutivos.

Para o segundo caso, exatamente um de n e k é ímpar. Neste caso, como $C_n \times C_k$ é isomorfo a $C_k \times C_n$, vamos assumir que k é ímpar. Sejam $J_2 = I_{n,k} \setminus \{(x_1,y_1),(x_1,y_3),(x_2,y_2),(x_n,y_2)\} \cup \{(x_1,y_2),(x_1,y_k)\}$ e $J_3 = J_2 \setminus \{(x_{n-1},y_3),(x_n,y_4)\} \cup \{(x_n,y_3)\}$. Logo, J_3 e J_2 são independentes maximais em $C_n \times C_k$ com cardinalidades consecutivas e, portanto, G não é Z_m -bem-coberto.

Embora os grafos $C_n \times C_k$ Z_m -bem-cobertos sejam também bem-cobertos, mostramos na Proposição 4.5 que eles não são 1- Z_m -bem-cobertos.

Proposição 4.5. Se G é o produto cartesiano $C_n \times C_k$ de ciclos C_n e C_k , então G não é 1- Z_m -bem-coberto.

Demonstração. Pela Proposição 4.4, $C_n \times C_k$ é Z_m -bem-coberto se e somente se n=3 ou k=3. Vamos mostrar que ao removermos um vértice deste grafo, o grafo resultante não é Z_m -bem-coberto.

Considere o grafo $G=C_3\times C_k$, já que ele é isomorfo a $C_k\times C_3$. Remova de G o vértice (x_1,y_1) . Novamente, vamos considerar dois casos. Primeiro, considere que k é impar. Podemos verificar que $C_3\times C_3$ não é 1- Z_m -bem-coberto. Para $k\geq 5$, seja $J_1=I_{3,k}\setminus\{(x_1,y_1)\}$ que é maximal em $G\setminus\{(x_1,y_1)\}$. Agora, seja o conjunto $J_2=I_{3,k}\setminus\{(x_1,y_1),(x_2,y_2),(x_1,y_3)\}\cup\{(x_1,y_2),(x_2,y_1),(x_3,y_3)\}$. J_2 também é maximal em $G\setminus\{(x_1,y_1)\}$. J_1 e J_2 tem cardinalidades consecutivas.

Considere, agora, que k é par. Sejam $J_1 = I_{3,k} \setminus \{(x_1,y_1),\} \cup \{(x_3,y_1)\}$ e $J_2 = J_1 \setminus \{(x_2,y_4),(x_3,y_1)\} \cup \{(x_3,y_4)\}$. Logo, J_2 e J_1 são independentes maximais em $G \setminus \{(x_1,y_1)\}$, com cardinalidades consecutivas e, portanto, G não é Z_m -bemcoberto.

5. Considerações Finais

Apresentamos uma forma de construção de grafos Z_m -bem-cobertos a partir do produto lexicográfico de um grafo H e uma família de grafos Z_m -bem-cobertos. Para os grafos bem-cobertos, o problema foi resolvido por Topp e Volkmann [17].

Há um número finito de grafos planares fortemente bem-cobertos, como provado por Pinter [16]. Porém, mostramos que existe um número infinito de grafos planares que são fortemente Z_m -bem-cobertos que tem, ainda, cintura 4 (Proposição 3.2).

Mostramos que um grafo 1- Z_m -bem-coberto, diferente de K_1 e K_2 tem cintura \leq 5, porém ainda não é conhecida uma caracterização destes grafos. Especificamente para os grafos com cintura 5, o problema é saber se existe um grafo 1- Z_m -bem-coberto que não seja 1-bem-coberto. Caso este grafo não exista, vale a conjectura 5.1. Outro problema é saber se há um grafo fortemente Z_m -bem-coberto com cintura 5 que não seja fortemente bem-coberto (conjectura 5.1).

Conjectura 5.1. Se G é um grafo 1- Z_m -bem-coberto com cintura 5, então G é 1-bem-coberto.

Conjectura 5.1. Se G é um grafo fortemente Z_m -bem-coberto com cintura 5, então G é fortemente bem-coberto.

Se G é o produto cartesiano de dois ciclos C_n e C_k , mostramos que G é Z_m -bem-coberto se e somente se G é bem-coberto. Estes grafos não são 1- Z_m -bem-cobertos.

Abstract. A graph is Z_m -well-covered if $|I| \equiv |J| \pmod{m}$, for all I, J maximal independent sets in V(G). A graph G is strongly Z_m -well-covered if G is a Z_m -well-covered graph and $G \setminus \{e\}$ is Z_m -well-covered, $\forall e \in E(G)$. A graph G is 1- Z_m -well-covered if G is Z_m -well-covered and $G \setminus \{v\}$ is Z_m -well-covered, $\forall v \in V(G)$. We prove that K_1 and K_2 are the only 1- Z_m -well-covered graphs with girth ≥ 6 . They are also the only ones with girth ≥ 6 and strongly Z_m -well-covered. We show a necessary and sufficient condition for the lexicographic product of graphs to be a Z_m -well-covered one and some properties for the cartesian product of cycles.

Keywords. Graph theory, independent sets in graphs, graph products.

Referências

- [1] M. Asté, F. Havet, C.L. Sales, Grundy number and products of graphs, *Discrete Mathematics*, **310** (2010), 1482–1490.
- [2] R.M. Barbosa, On 1- Z_m -well-covered graphs and strongly Z_m -well-covered graphs, $Ars\ Combinatoria$, 57 (2000), 225–232.
- [3] R.M. Barbosa, "Sobre Conjuntos Independentes Maximais em Grafos", Tese de Doutorado, COPPE-UFRJ, 1999.
- [4] R.M. Barbosa, M.N. Ellingham, A characterisation of cubic parity graphs, *Australasian Journal of Combinatorics*, **28** (2003), 273–293.
- [5] R.M. Barbosa, B. Hartnell, Almost parity graphs and claw-free parity graphs, J. Combin. Math. Combin. Comput., 27 (1998), 117–122.
- [6] R.M. Barbosa, B. Hartnell, Characterization of Z_m -well-covered graphs for some classes of graphs, *Discrete Mathematics*, **233** (2001), 293–297.

- [7] J.A. Bondy, U.S.R. Murty, "Graph Theory", Graduate Texts in Mathematics, Springer, 2008.
- [8] Y. Caro, Subdivisions, parity and well-covered graphs, *J. Graph Theory*, **25** (1997), 85–94.
- [9] Y. Caro, M. Ellingham, J. Ramey, Local structure when all maximal independent sets have equal weight, SIAM J. Discrete Mathematics, 11 (1998), 644–654.
- [10] Y. Caro, B. Hartnell, A Characterization of Z_m -well-covered graphs of girth 6 or more, J. Graph Theory, **33** (2000), 246–255.
- [11] A.O. Fradkin, On the well-coveredness of Cartesian products of graphs, *Discrete Mathematics*, **309** (2009), 238–246.
- [12] R. Hammack, W. Imrich, S. Klavzar "Handbook of Product Graphs", Second Edition, CRC Press, 2011.
- [13] B. Hartnell, Well-covered graphs, J. Combin. Math. Combin. Comput., 29 (1999), 107–115.
- [14] R.M. Karp, Reducibility among combinatorial problems, em "Complexity of Computer Computations" (Yorktown Heights), pp. 85-104, Nova York, 1972.
- [15] R.J. Nowakowski, K. Seyffarth, Small cycle double covers of products I: Lexicographic product with paths and cycles, *J. Graph Theory*, **57** (2008), 99–123.
- [16] M.R. Pinter, Strongly well-covered graphs, Discrete Mathematics, 132 (1994), 231–246.
- [17] J. Topp, L. Volkmann, On the well coveredness of Products of Graphs, *Ars Combinatoria*, **33** (1992), 199–215.