
i
i

“A8-1383-7063-1-LE” — 2019/11/29 — 18:56 — page 509 — #1 i
i

i
i

i
i

Tema
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ABSTRACT. We present two different proofs that positive polynomials on closed boxes of R2 can be
written as bivariate Bernstein polynomials with strictly positive coefficients. Both strategies can be extended
to prove the analogous result for polynomials that are positive on closed boxes of Rn, n > 2.
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1 INTRODUCTION

The goal of this paper is to show that real polynomials that are strictly positive on closed boxes
have a representation with positive coefficients when written using Bernstein’s polynomial basis.
More specifically, we will prove the result for the unit box I = [0,1]× [0,1], i. e. we present new
proofs for the following theorem:

Theorem 1.1. If p : R2→ R is such that

p(x1,x2) =
n1

∑
i=0

n2

∑
j=0

ai, j xi
1x j

2 (1.1)

and, for every (x1,x2) ∈ I, p(x1,x2) > 0, then there exist q1 ≥ n1,q2 ≥ n2 and Ci, j > 0, (i, j) ∈
Q1×Q2, such that

p(x1,x2) =
q1

∑
i=0

q2

∑
j=0

Ci, j xi
1(1− x1)

q1−ix j
2(1− x2)

q2− j,

where Q1 = {0,1, . . . ,q1} and Q2 = {0,1, . . . ,q2}. Furthermore, we constructively derive the
values of q1 and q2.

Theorem 1.1 is an extension of similar results obtained for positive polynomials on compact
intervals and multidimensional simplexes by, respectively, Bernstein [1], Hausdorff [4] and Pólya
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510 POSITIVE POLYNOMIALS ON CLOSED BOXES

[6]. We are aware that, using a different proof strategy, Cassier [2] has proven a general result
from which a similar version of Theorem 1.1 follows. We discuss this more extensively at the
final section.

We provide two proofs of Theorem 1.1. The first one is supported by results for the univari-
ate version of Theorem 1.1, proved by Powers and Reznick [7]. The second proof extends the
approach in Garloff [3] and Rivlin [8].

The paper is organized as follows. Section 2 establishes notation and brings the relevant defini-
tions used in the paper. In Section 3 we present the auxiliary results. These results are used in
one of the proofs of Theorem 1.1, given in Section 4. Section 5 brings an alternative proof, based
on [3] and [8].

2 DEFINITIONS AND NOTATION

Definition 1. Let Pn be the linear space of polynomials of degree n, i.e.

Pn = {p : R→ R, where ∃ai ∈ R,0≤ i≤ n : p(x) = ∑
n
i=0 aixi}.

Definition 2. For any p ∈Pn we define its Goursat transform p̃ by

p̃(x) = (2x)n p
(

1− x
x

)
.

Definition 3. Let B+
n be the set of polynomials of degree n that can be written with non-negative

coordinates in the Bernstein basis,

B+
n = {p ∈Pn, where ∃Ai ≥ 0 : p(x) = ∑

n
i=0 Ai xi(1− x)n−i}.

Similarly, let B+,∗
n be the set of polynomials of degree n that can be written with positive

coordinates in the Bernstein basis,

B+,∗
n = {p ∈Pn, where ∃Ai > 0 : p(x) = ∑

n
i=0 Ai xi(1− x)n−i}.

Definition 4. For every a = (a1, . . . ,an) ∈ Rn, m≥ n and 0≤ i≤ m, let

Ai,m(a) =
min(n,i)

∑
j=0

(
m− j
m− i

)
a j.

Definition 5. For every a = (a1, . . . ,an) ∈ Rn, let

Bk(a) = ∑
(i, j)∈N2:i− j=n−k

(
2n(−1) j

(
i
j

)
ai

)
.

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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Notice that Bk(a) is a linear combination of a.

Definition 6. For each 0 ≤ i ≤ n1 and 0 ≤ j ≤ n2, let ai, j ∈ R. For each 0 ≤ i ≤ n1, define
ai : R→ R as

ai(x2) =
n2

∑
j=0

ai, j x j
2 .

Also define a(x2) = (a0(x2), . . . ,an1(x2)).

Definition 7. For each 0≤ i≤ n1 and 0≤ j ≤ n2, let ai, j ∈ R. For each m≥ n1 and 0≤ k ≤ n2,
define

bk,i,m(a) =
min(n1,i)

∑
j=0

(
m− j
m− i

)
a j,k.

Also define bi,m(a) = (b0,i,m(a), . . . ,bn2,i,m(a)).

3 AUXILIARY RESULTS

Lemma 3.1. If p ∈Pn, p(x) = ∑
n
i=0 aixi, then, for every m≥ n,

p(x) =
m

∑
i=0

Ai xi(1− x)m−i

if and only if

Ai = Ai,m(a), a = (a1, . . . ,an). (3.1)

Proof. Applying the Binomial Theorem to the identity xi = xi(1− x+ x)m−i, it follows that

xi =
m

∑
j=i

(
m− i
j− i

)
x j(1− x)m− j.

From this expression, we obtain that

p(x) =
m

∑
i=0

Ai,m(a) xi(1− x)m−i.

The proof that the Ai’s are unique follows from observing that, {xi(1− x)m−i : 0 ≤ i ≤ m} is a
basis for Pm. �

The following theorem is a consequence of Theorem 6 in [7].

Theorem 3.2. Let p ∈Pn be such that p(x)> 0 for all x ∈ [0,1]. Let λ = minx∈[0,1] p(x) and e j

be such that p̃(x) = ∑
n
i=0 e jx j. If q≥ 3n+ 2n2 max j |e j |

λ
+1, then p ∈B+

q .

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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Lemma 3.3. Let p ∈Pn be such that p(x) > 0 for all x ∈ [0,1]. Let λ = minx∈[0,1] p(x) and e j

be such that p̃(x) = ∑
n
i=0 e jx j. Let q = 3n+ d 2n2 max j |e j |

λ
e+ 1, where dye = min{n ∈ N : n ≥ y}.

Then, for every q∗ ≥ 2q, p ∈B+,∗
q∗ .

Proof. It follows from Theorem 3.2 that there exist Ai ≥ 0 such that

p(x) =
q

∑
i=0

Aixi(1− x)q−i.

Note that

p(x) =
q

∑
i=0

Aixi(1− x)q−i

=
q

∑
i=0

Aixi(1− x)q−i(x+1− x)q∗−q

=
q

∑
i=0

Aixi(1− x)q−i
q∗−q

∑
j=0

(
q∗−q

j

)
x j(1− x)q∗−q− j

=
q∗

∑
k=0

(
min(q,k)

∑
l=max(0,k+q−q∗)

(
q∗−q
k− l

)
Al

)
xk(1− x)q∗−k.

Observe that, for every k, ∑
min(q,k)
l=max(0,k+q−q∗)

(q∗−q
k−l

)
Al ≥min(A0,Aq)> 0, since A0 = p(0)> 0 and

Aq = p(1)> 0. Therefore, p ∈B+,∗
q∗ . �

Lemma 3.4. If p(x) = ∑
n
i=0 aixi and a = (a1, . . . ,an), then

p̃(x) =
n

∑
k=0

Bk(a)xk.

Proof.

p̃(x) = (2x)n p
(

1− x
x

)
= (2x)n

n

∑
i=0

ai

(
1− x

x

)i

=
n

∑
i=0

2nai(1− x)ixn−i

=
n

∑
i=0

2nai

i

∑
j=0

(
i
j

)
(−1) jxn−i+ j

=
n

∑
k=0

∑
(i, j):i− j=n−k

(
2n(−1) j

(
i
j

)
ai

)
xk =

n

∑
k=0

Bk(a)xk.

�
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4 PROOF OF THEOREM 1.1

The main idea behind this proof is to use twice the positive representation result for univariate
polynomials (Lemma 3.3). For every fixed value in one of the coordinates of a bivariate poly-
nomial, the function of the free coordinate is a univariate polynomial. This polynomial admits
a positive Bernstein representation. Furthermore, the coefficients of this representation are uni-
variate polynomials on the coordinate that was fixed, allowing another application of the positive
Bernstein representation theorem for univariate polynomials. As a result of both applications, a
positive Bernstein representation for the bivariate polynomial is obtained. This strategy can be
extended by induction to arbitrary n-variate polynomials.

Proof. For a given x2 ∈ [0,1], obtain from definition 6 that

px2(x1) = p(x1,x2) =
n1

∑
i=0

ai(x2)xi
1,

Thus, px2 ∈Pn1 and px2(x1) > 0 for all x1 ∈ [0,1]. From this observation, one can obtain two
facts. First, since I is compact, then λ = inf(x1,x2)∈I2 p(x1,x2)> 0 and

λx2 = inf
x1∈[0,1]

px2(x1)≥ λ > 0. (4.1)

Second, it follows from Lemma 3.4 that

p̃x2(x1) :=
n1

∑
i=0

Bi(a(x2))xi
1.

Since each Bi is a linear combination of the elements of a(x2) and each element of a(x2) is a
polynomial on x2, Bi(a(x2)) is a polynomial on x2. Since [0,1] is compact, there exists L < ∞

such that

sup
x2∈[0,1]

max
i
|Bi(a(x2))|= L. (4.2)

Therefore, it follows from Lemma 3.3 and Equations (4.1) and (4.2) that, taking q1 =

2
(

3n1 +

⌈
2n2

1 supx2∈[0,1] maxi |Bi(a(x2))|
inf

(x1 ,x2)∈I2 p(x1,x2)

⌉
+1
)

, one obtains that, for all x2 ∈ [0,1], px2 ∈ B+,∗
q1 .

Therefore, it follows from Lemma 3.1 that, for all x2 ∈ [0,1],

p(x1,x2) = px2(x1) =
q1

∑
i=0

Ai,q1(a(x2))xi
1(1− x1)

q1−i (4.3)

where Ai,q1(a(x2))> 0. Notice that

Ai,q1(a(x2)) =
min(n1,i)

∑
j=0

(
q1− j
q1− i

)
a j(x2)

=
min(n1,i)

∑
j=0

(
q1− j
q1− i

) n2

∑
k=0

a j,kxk
2

=
n2

∑
k=0

(
min(n1,i)

∑
j=0

(
q1− j
q1− i

)
a j,k

)
xk

2 =
n2

∑
k=0

bk,i,q1(a)x
k
2 ∈Pn2

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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It follows from Lemma 3.3 that, taking q2 = 2
(

3n2 +maxi

⌈
2n2

2 max j |B j(bi,q1 (a))|
infx2∈I Ai,q1 (a(x2))

⌉
+1
)

, one

obtains that

Ai,q1(a(x2)) =
q2

∑
j=0

Ci, j x j
2(1− x2)

q2− j, 0≤ i≤ q1 (4.4)

where Ci, j > 0. By applying Equation (4.4) to Equation (4.3), one obtains

p(x1,x2) =
q1

∑
i=0

q2

∑
j=0

Ci, j xi
1(1− x1)

q1−ix j
2(1− x2)

q2− j.

�

5 ALTERNATIVE PROOF

We consider, as before, the bivariate polynomial p given in (1.1) and λ = inf(x1,x2)∈I p(x1,x2).
For q1,q2 ≥ 1, let us define the bivariate polynomial

b(q1,q2)
k,l (x1,x2) =

(
q1

k

)
xk

1(1− x1)
q1−k

(
q2

l

)
xl

2(1− x2)
q2−l , (5.1)

where k ∈ Q1 and l ∈ Q2. The set of polynomials {b(q1,q2)
k,l (x1,x2),k ∈ Q1, l ∈ Q2} are the Bern-

stein polynomials of degree q1 and q2 and form a basis for the linear space of all bivariate
polynomials of the form (1.1) with n1 = q1 and n2 = q2.

Lemma 5.1. If i ∈ Q1 and j ∈ Q2, then

xi
1x j

2 =
q1

∑
k=0

q2

∑
l=0

(k
i

)(l
j

)(q1
i

)(q2
j

)b(q1,q2)
k,l (x1,x2), (5.2)

where it is assumed that
(m

v

)
= 0 for integers m and v such that m < v.

Proof. The result follows by applying the Binomial Theorem to the identity xi
1x j

2 = xi
1(1− x1 +

x1)
q1−ix j

2(1− x2 + x2)
q2− j. �

Henceforth, we shall consider q1 ≥ n1,q2 ≥ n2. Then, it follows from Lemma 5.1 that p(x1,x2)

given in (1.1) can be rewritten as

p(x1,x2) =
q1

∑
k=0

q2

∑
l=0

cq1,q2
k,l b(q1,q2)

k,l (x1,x2), (5.3)

where

cq1,q2
k,l =

n1

∑
i=0

n2

∑
j=0

ai, j

(k
i

)(l
j

)(q1
i

)(q2
j

) . (5.4)

Tend. Mat. Apl. Comput., 20, N. 3 (2019)



i
i

“A8-1383-7063-1-LE” — 2019/11/29 — 18:56 — page 515 — #7 i
i

i
i

i
i

DINIZ, STERN and SALASAR 515

The c(q1,q2)
k,l are the Bernstein coefficients and (5.3) is the Bernstein form of p(x1,x2). In the

sequel, we denote by
c(q1,q2) = min

(k,l)∈Q1×Q2
c(q1,q2)

k,l

the smallest Bernstein coefficient of p(x1,x2).

Theorem 5.2. If p is given by (1.1), then

λ − c(q1,q2) ≥ 0. (5.5)

Proof. Since b(q1,q2)
k,l (x1,x2)≥ 0 for all (x1,x2) ∈ I, then

c(q1,q2) =
q1

∑
k=0

q2

∑
l=0

c(q1,q2)b(q1,q2)
k,l (x1,x2)

≤
q1

∑
k=0

q2

∑
l=0

c(q1,q2)
k,l b(q1,q2)

k,l (x1,x2)

= p(x1,x2),

for all (x1,x2) ∈ I, which implies the assertion. �

Theorem 5.3. If p is given by (1.1), q1 ≥ n1 and q2 ≥ n2, then

λ − c(q1,q2) ≤ γ1
(q1−1)

q2
1

+ γ2
(q2−1)

q2
2

,

where

γ1 =
1
2

n1

∑
i=0

n2

∑
j=0
|ai, j|i(i−1), γ2 =

1
2

n1

∑
i=0

n2

∑
j=0
|ai, j| j( j−1).

Proof. For any real function f (x1,x2), define its Bernstein approximation on I by

Bq1,q2( f ;x1,x2) =
q1

∑
k=0

q2

∑
l=0

f
(

k
q1

,
l

q2

)
b(q1,q2)

k,l (x1,x2). (5.6)

For 0 ≤ i ≤ n1 and 0 ≤ j ≤ n2, let δ
q1,q2
k,l (i, j), (k, l) ∈ Q1×Q2, be the Bernstein coefficients of

the polynomial Bq1,q2(x
i
1x j

2;x1,x2)− xi
1x j

2, i.e.,

Bq1,q2(x
i
1x j

2;x1,x2)− xi
1x j

2 =
q1

∑
k=0

q2

∑
l=0

δ
q1,q2
k,l (i, j)b(q1,q2)

k,l (x1,x2). (5.7)

Then, from Lemma 5.1 and (5.6) , it follows that

δ
q1,q2
k,l (i, j) =

(
k
q1

)i( l
q2

) j

−
(k

i

)(l
j

)(q1
i

)(q2
j

) , (5.8)
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k ∈ Q1, l ∈ Q2.

For any fixed 0≤ i≤ n1 and 0≤ j ≤ n2, we can prove that

0≤ δ
q1,q2
k,l (i, j)≤

(
q1−1

q2
1

)
i(i−1)

2
+

(
q2−1

q2

)
j( j−1)

2
, (5.9)

for all k ∈ Q1 and l ∈ Q2. In order to prove (5.9), it suffices to show that

0≤ ϕ
q1
k (i) =

(
k
q1

)i

−
(k

i

)(q1
i

) ≤ (q1−1
q2

1

)
i(i−1)

2
, for all k ∈ Q1, (5.10)

0≤ ϕ
q2
l ( j) =

(
l

q2

) j

−
(l

j

)(q2
j

) ≤ (q2−1
q2

2

)
j( j−1)

2
, for all l ∈ Q2. (5.11)

Since (5.11) is essentially the same as (5.10), we only present the proof of (5.10). Notice that
(5.10) clearly holds for i = 0, i = 1, k = 0 and k = q1. Thus, let us consider 1 ≤ k ≤ q1−1 and
i≥ 2.

If k < i, then

0≤ ϕ
q1
k (i) =

(
k
q1

)i

≤
(

k
q1

)2

≤
(

q1−1
q1

)(
i−1
q1

)
≤
(

q1−1
q2

1

)
i(i−1)

2
.

If k ≥ i, then

ϕ
q1
k (i) =

(
k
q1

)i

−
(k

i

)(q1
i

) = ( k
q1

)i[
1−

i−1

∏
r=0

(
1− r/k

)(
1− r/q1

)].
Since 0≤ (1− r/k)≤ (1− r/q1)≤ 1 for all r = 0, . . . , i−1, it follows that

0≤ ϕ
q1
k (i)≤

(
k
q1

)i[
1−

i−1

∏
r=0

(
1− r

k

)]
. (5.12)

Using the fact that, for any z1, . . . ,zm ∈ [0,1], we have

m

∏
i=1

(1− zi)≥ 1−
m

∑
i=1

zi,

it follows from (5.12) that

0≤ ϕ
q1
k (i)≤

(
k
q1

)i i(i−1)
2k

=

(
k
q1

)i−1 i(i−1)
2q1

≤
(

q1−1
q2

1

)
i(i−1)

2
, (5.13)

which finishes the proof of (5.10) and consequently proves (5.9).

Considering the form (1.1) of p(x1,x2) and the Bernstein approximation (5.6), we obtain

Bq1,q2(p;x1,x2)− p(x1,x2) =
n1

∑
i=0

n2

∑
j=0

ai, j

[
Bq1,q2(x

i
1x j

2;x1,x2)− xi
1x j

2

]
,

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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which implies, using (5.7),

Bq1,q2(p;x1,x2)− p(x1,x2) =
q1

∑
k=0

q2

∑
l=0

(
n1

∑
i=0

n2

∑
i=0

ai, jδ
q1,q2
k,l (i, j)

)
bq1,q2

k,l (x1,x2). (5.14)

Now, considering the form (5.3), we have

Bq1,q2(p;x1,x2)− p(x1,x2) =
q1

∑
k=0

q2

∑
l=0

(
p
(

k
q1

,
l

q2

)
− cq1,q2

k,l

)
bq1,q2

k,l (x1,x2). (5.15)

Equating the Bernstein coefficients of expressions (5.14) and (5.15), and using (5.9), we conclude
that

p
(

k
q1

,
l

q2

)
= cq1,q2

k,l +
n1

∑
i=0

n2

∑
j=0

ai, jδ
q1,q2
k,l (i, j)

≤ cq1,q2
k,l +

n1

∑
i=0

n2

∑
j=0
|ai, j|δ q1,q2

k,l (i, j)

≤ cq1,q2
k,l + γ1

(q1−1)
q2

1
+ γ2

(q2−1)
q2

2
,

from which follows the result. �

From Theorems 5.2 and 5.3, it follows that c(q1,q2)→ λ as q1→ ∞ and q2→ ∞ and, therefore,
Theorem 1.1 follows as a corollary.

6 CONCLUDING REMARKS

The representation of polynomials that are positive on the unit interval or any compact subset of
Rn is an important subject with direct applications related to moment problems. See [5] for more
on this relation. The authors searched for the proof of Theorem 1.1 precisely to prove that the
moment problem on the unit square has a solution—i.e. there is a finite representing measure for
a sequence of moments—if and only if there is a positive linear functional for all polynomials
that are nonnegative on the unit square. Not being aware of the work of Lasserre [5], where
the result similar to the one we wanted to prove is demonstrated, we used the univariate results
from Bernstein [1] and Hausdorff [4] as a stepping stone to build the proof for the unit square as
described in Section 4.

Once our proof was concluded, we have found references [3] and [8], which provided a demon-
stration for a similar result. Eventually we came across the book by Lasserre [5], where we found
a theorem that is similar to Theorem 1.1, proved by Cassier [2]. We briefly present such result,
giving the formulation of [5]. Let R[x] =R[x1, . . . ,xn] be the ring of real multivariate polynomials
and K be a basic semi-algebraic set, subset of Rn

K := {x ∈ Rn : g j(x)≥ 0, j = 1, . . . ,m}, (6.1)

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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where g j(x) ∈ R[x], j = 1, . . . ,m. Cassier [2] has proven the following theorem.

Theorem 6.1. Let g j(x) ∈ R[x] be affine for every j = 1, . . . ,m and assume that K, as defined by
(6.1), is compact with nonempty interior. If f ∈ R[x] is strictly positive on K then

f = ∑
α∈Nm

cα gα1
1 . . .gαm

m ,

for finitely many nonnegative scalars (cα).

If x = (x1,x2) ∈R2, g1(x) = x1, g2(x) = 1−x1, g3(x) = x2 and g4(x) = 1−x2, then K= [0,1]×
[0,1] = I. When f is a positive polynomial on K the theorem applies and there are nonnegative
cα such that

f (x1,x2) = ∑
α∈N2

cα xα1
1 (1− x1)

α2xα3
2 (1− x2)

α4 .

The main difference between the above Theorem and Theorem 1.1 is that the latter constructively
derives the positive integers q1 and q2, the degrees of the Bernstein representation.

Both strategies developed in Sections 4 and 5 can be generalized to prove similar theorems for
polynomials that are positive over arbitrary hypercubes.

RESUMO. Apresentamos duas demonstrações, por métodos diferentes, de que polinômios
positivos em caixas fechadas no R2 podem ser escritos como polinômios de Bernstein bi-
variados com coeficientes estritamente positivos. Ambas as estratégias de demonstração
podem ser estendidas para provar o resultados análogo para polinômios que são positivos
em caixas fechadas no Rn, n > 2.

Palavras-chave: polinômios positivos, hipercubo unitário, polinômios de Bernstein.
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141–145.

[7] V. Powers & B. Reznick. Polynomials that are positive on an interval. Transactions of the American
Mathematical Society, 352(10) (2000), 4677–4692.

[8] T. Rivlin. Bounds on a polynomial. Journal of Research of the National Bureau of Standards, 74 (1970),
47–57.

Tend. Mat. Apl. Comput., 20, N. 3 (2019)


