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ABSTRACT. A new formalism is proposed to study the dynamics of mechanical systems composed of N
connected rigid bodies, by introducing the concept of 6N-dimensional composed vectors. The approach is
based on previous works by the authors where a complete formalism was developed by means of differential
geometry, linear algebra, and dynamical systems usual concepts. This new formalism is a method for the
description of mechanical systems as a whole and not as each separate part. Euler-Lagrange’s Equations are
easily obtained by means of this formalism.

Keywords: composed vectors, connected rigid bodies, dynamics.

1 INTRODUCTION

Works by Cortizo and Giacaglia [2], Kottke [8], and Giacaglia and Kottke [5] have described in
details the formalism, which is the theoretical background of this work, by the introduction of
virtual linear velocities and angular velocities and force-torque composed vectors representing
kinematical and dynamical quantities of all links involved.

In the present work we show a compact and straightforward method to obtain Euler-Lagrange’s
Equations for such a mechanical system by simply writing down the Newton-Euler dynamical
equations condensed into composed vectors and then multiplying such equations by a properly
chosen composed kinematical vector.

The links are considered to be connected by rotational joints and acted on by arbitrary forces
and torques, including torques resulting from frictional forces arising in the joints. The final
differential equations are transformed by simple scalar products and it is shown that the resulting
differential equations are completely equivalent to the differential equations obtained from the
Lagrangian of the system. The method is applicable to connected rigid multi body systems in the
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360 EULER-LAGRANGE’S EQUATIONS

presence of holonomic and nonholonomic constraints, a possibility available by the methodology
used in the present work [6]. Figure 1 shows an example of a simple system composed by two
connected joints, and torque and forces applied.

Figure 1: System with two constrained plane links.

Figure 2 gives the geometry of this system, showing the position and orientation of each torque
and forces applied.

The first of Figure 2 is the link OA and the second is the link AB. We have set the lengths to be
2L2 and 2L1, for simplicity of the geometry and mechanics involved.

Classical work by Roberson [11], Wittenburg [15], and Shabana [14] on multi-bodies systems
use classical approaches to this matter, treating each body as a separate entity of these systems.
Schiehlen [12] presents a substantial collection of the most efficient algorithms for calculating
rigid-body dynamics, but as we understand no composed vectors, suggested here, are used. This
is also observed in revised work of this author Schiehlen [13].

A more elaborate algorithm is given by Featherstone [3] where the author informs that rigid body
dynamics algorithms presented are the subject of computational rigid-body dynamics through the
medium of spatial 6D vector notation.

In the present article we actually use an algorithm with 6N-dimensional vectors, where N is the
number of connected bodies involved.

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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GIACAGLIA and LAMAS 361

Figure 2: Links geometry and applied forces and torques.

2 DYNAMICS OF THE SYSTEM

We consider a mechanical system constituted by N rigid links connected by rotational joints. The
position and orientation of each link is represented by the coordinates of its centre of mass and
by a set of three Euler angles each. The number of degrees of freedom of the system, using a set
of generalised coordinates, for instance the Denawitt-Hartenberg parameters [7], is represented
by n < N generalised coordinates q = (q1,q2, . . . ,qn), associated to q̇ = (q̇1, . . . , q̇n) generalised
velocities and q̈ = (q̈1, . . . , q̈n) generalised accelerations associated to configuration q. The linear
velocities of the centre mass of each link and their angular velocities, represented by vectors

~υi(q, q̇) =
n

∑
α=1

q̇α~υαi(q)

~ωi(q, q̇) =
n

∑
α=1

q̇α~ωαi(q) (2.1)

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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362 EULER-LAGRANGE’S EQUATIONS

Vectors ~υαi and ~ωαi defined in Eq. (2.1) are the linear and angular velocities of link i(i= 1, . . . ,n)
in the state where all generalised velocities are zero except the one (α) which is unitary. The
absolute value of vector ~υαi is the distance `i between point Ci and a reference joint Ji. Vectors
~ωαi are dimensionless. The linear and angular accelerations are given by

d~υi

dt
(q, q̇, q̈) =

d
dt

[
n

∑
α=1

q̇α~υαi(q)

]
=

n

∑
α=1

q̈α~υαi(q)+
n

∑
β=1

n

∑
γ=1

q̇β q̇γ
∂~υβ i

∂qγ(q)
(2.2)

d~ωi

dt
(q, q̇, q̈) =

d
dt

[
n

∑
α=1

q̇α~ωαi(q)

]
=

n

∑
α=1

q̈α~ωαi(q)+
n

∑
β=1

n

∑
γ=1

q̇β q̇γ
∂~ωβ i

∂qγ(q)
(2.3)

The distributions of actions on each link is the pair
(
~Fi,~Ni

)
and corresponds to all actions (forces

and torques) acting on link i, using as pole their centres of mass Ci(i = 1, . . . ,n). Euler equations
for any particular link i are given by

~Ni(q, q̇, q̈) = Ii

(
d~ωi

dt

)
+~ωi× Ii (~ωi) =

= Ii

[
n

∑
α=1

q̈α~ωαi(q)+
n

∑
β=1

n

∑
γ=1

q̇β q̇γ
∂~ωβ i

∂qγ
(q)

]
+

+

[
n

∑
β=1

q̇β~ωβ i(q)

]
× Ii

[
n

∑
γ=1

q̇λ~ωγi(q)

]
=

n

∑
α=1

q̈α {Ii [~ωαi(q)]}+

+
n

∑
β=1

n

∑
γ=1

q̇β q̇γ

{[
∂ (Ii~ωβ i)

∂qγ
(q)
]
+
[
~ωβ i(q)

]
× Ii

[
~ωγi(q)

]}
(2.4)

Newton’s Equation for the force acting on the centre of mass Ci of link i is given by

~Fi(q, q̇, q̈) = mi

(
d~υi

dt

)
= mi

[
n

∑
α=1

q̈α~υαi(q)+
n

∑
β=1

n

∑
γ=1

q̇β q̇γ
∂~υβ i

∂qγ
(q)

]

=
n

∑
α=1

q̈α [mi~υαi(q)]+
n

∑
β=1

n

∑
γ=1

q̇β q̇γ

[
mi

∂~υβ i

∂qγ
(q)
]

(2.5)

The results of the above evaluations corresponding to the 3n set (q, q̇, q̈) is represented by
~Fi (q, q̇, q̈) and ~Ni (q, q̇, q̈) for i = 1, . . . ,n.

The composed vector represented by~v~ω is given by the

~v~ω = (~v1, ~ω1,~v2, ~ω2, . . . ,~vn, ~ωn) (2.6)

and from the above expressions for the linear and angular velocities it is found that

~v~ω =
n

∑
α=1

q̇α~v~ωα (2.7)

Tend. Mat. Apl. Comput., 21, N. 2 (2020)



i
i

“A10-1407-7488-1-CE” — 2020/6/15 — 12:28 — page 363 — #5 i
i

i
i

i
i

GIACAGLIA and LAMAS 363

where
~v~ωα = (~vα1, ~ωα1,~vα2, ~ωα2, . . . ,~vαn, ~ωαn) (2.8)

with components defined as above. The 6n-dimensional vector ~v~ω is the vector of virtual
velocities associated to the state (q, q̇) of the system.

The pair force-torque is represented by
(
~Fi,~Ni

)
,(q, q̇, q̈) where the components vectors are given

by ~Fi (q, q̇, q̈) and ~Ni (q, q̇, q̈) with (i = 1, . . . ,n) and corresponding to the 3n-dimensional set
(q, q̇, q̈).

Newton-Euler equations give the resulting forces ~Fi(q, q̇, q̈) and torques ~Ni(q, q̇, q̈) acting on link
i(i = 1, . . . ,N) corresponding to the 3n-dimensional set (q, q̇, q̈).

These 2n three dimensional vectors can be composed in only one 6n-dimensional vector
~F~N(q, q̇, q̈), given by

~F~N(q, q̇, q̈) =
(
~F1(q, q̇, q̈),~N1(q, q̇, q̈), . . . ,~Fn(q, q̇, q̈),~Nn(q, q̇, q̈)

)
(2.9)

The dynamical equations for the mechanical system considered are obtained as follows. The
expressions derived above (Eqs. (2.4) and Eqs. (2.5) ) for ~Fi(q, q̇, q̈) and ~Ni(q, q̇, q̈) can be
condensed in a unique composed 6n-dimensional vector

~F~N(q, q̇, q̈) =
n

∑
α=1

q̈α~P~Lα(q)+
n

∑
β=1

n

∑
γ=1

q̇β q̇γ~X~Yβγ(q) (2.10)

where
~P~Lα =

(
~Pα1,~Lα1,~Pα2,~Lα2, . . . ,~Pαn,~Lαn

)
(2.11)

and
~X~Yβγ =

(
~Xβγ1,~Yβγ1,~Xβγ2,~Yβγ2, . . . ,~Xβγn,~Yβγn

)
(α,β ,γ = 1, . . . ,n) (2.12)

are given by

~Pαi(q) = mi~υαi(q)
~Lαi(q) = Ii [~ωαi(q)] (2.13)

Vectors ~Pαi and~Lαi above defined represent the linear and angular momenta of link i in the state
of the system where only the α velocity is different from zero and unitary, all other being zero.

We also have that

~Xβγi(q) = mi
∂~υβ i

∂qγ
(q) ~Yβγi(q) = Ii

[
∂~ωβ i

∂qγ
(q)
]
+
[
~ωβ i(q)

]
× Ii

[
~ωγi(q)

]
(2.14)

for i = 1, . . . ,n.

It should be noted that the scalar product of two composed vectors must satisfy the physical
meaning of such product. As an example, consider the power associated to the composed vector

~F~N (q, q̇, q̈) =
(
~F1 (q, q̇, q̈) ,~N1 (q, q̇, q̈) , . . . ,~Fn (q, q̇, q̈) ,~Nn (q, q̇, q̈)

)
(2.15)

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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364 EULER-LAGRANGE’S EQUATIONS

The scalar product of this force-torque action by the linear-angular velocity composed vector
~v~ω = (~v1, ~ω1,~v2, ~ω2, . . . ,~vn, ~ωn) is given by

~F~N (q, q̇, q̈)◦ ~υω (q, q̇) =
n

∑
i=1

[
~Fi ◦~vi +~Ni ◦~ωi

]
(2.16)

The differential equations of motion of the composed system derived by simple vector algebra
give an equivalent result as that given by the explicit form of Euler-Lagrange’s Equations [4,10].
In fact, consider the composed vectors, for α = 1,2, . . . ,n,

~v~ωα = (~vα1, ~ωα1, . . . ,~vαn, ~ωαn) (2.17)

where vectors~vαi, ~ωαi have been defined by Eq. (2.1),{
~υi (q, q̇) = ∑

n
α=1 q̇α~υαi(q)

~ωi (q, q̇) = ∑
n
α=1 q̇α~ωαi(q)

(2.18)

Consider Eq. (2.11) and the scalar product

~P~Lα(q)◦~v~ωγ(q) =
n

∑
i=1

(
~Pαi ◦~vγi +~Lαi ◦~ωγi

)
=

=
n

∑
i=1

[
mi
(
~vαi ◦~vγi

)
+ Ii (~ωαi)◦~ωγi

]
= aγα(q) (2.19)

The coefficients aγα(q) are the coefficients of the quadratic terms q̇γ q̇α in the total kinetic energy
of the system, that is

T =
1
2 ∑

α

∑
β

aαβ q̇α q̇β (2.20)

The first part of Eq. (2.19) on the right hand side is the linear kinetic energy (except for a fac-
tor q̇α q̇γ

2 ) of link i because the velocity of the centre of mass Ci of this link associated to the
generalised coordinate (angle) qα is precisely ~vαi except for a factor q̇α . The second part is the
rotational kinetic energy of this same link except for the same factor q̇α q̇γ

2 .

The same scalar product is now applied to the second term on the right-hand side of Eq. (2.11),
giving

~X~Yαβ ◦~v~ωγ(q) =
n

∑
i=1

mi
∂~vαi

∂qβ
◦~vγi +

n

∑
i=1

[
∂ Ii (~ωαi)

∂qβ
+~ωαi× Ii

(
~ωβ i
)]
◦~ωγi = aγ

βα
(q) (2.21)

The coefficients aγ

βα
(q) correspond to the Christoffel Brackets

[
γ

βα

]
resulting from the

quadratic part of Euler-Lagrange’s Equations when the constraints are time independent and

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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considering unitary linear and angular velocities. Taking into account the definition of the co-
efficients aγα(q) given by Eq. (2.21) and comparing Eq. (2.22) with the classical definition
[1, 4] [

i
βα

]
=

∂aiα

∂qβ
+

∂aiβ

∂qα
−

∂aαβ

∂qi (2.22)

it is seen that there is an exact correspondence between the two definitions.

The same scalar product applied to the force-torque composed vector given by Eq. (2.16), gives

~F~N (q, q̇, q̈)◦~v~ωγ(q) =
n

∑
i=1

~Fi ◦~vγi +
n

∑
i=1

~Ni ◦~ωγi = Qγ (2.23)

Quantities Qγ are the generalised forces and give a direct physical interpretation of these quanti-
ties. From Eq. (2.23) the dimension of the generalised forces associated to an angular generalised
coordinate qα shows that it corresponds to the torque of the applied force with respect to joint Ji.

With the above definitions, the equations of motion for the generalised coordinates assume the
known form

∑
α

aγα q̈α +∑
α

∑
β

[
γ

βα

]
q̇α q̇β = Qγ (2.24)

From Eq. (2.24) we obtain the explicit form of Euler-Lagrange’s Equations for a system with
time independent constraints given by

q̈s +∑
α

∑
β

(
s

βα

)
q̇α q̇β = Qs (2.25)

where we have used the usual Christoffel Parentheses [9] and the generalised forces Qs

corresponding to the action on the generalised coordinate qs.

The above development shows how the use of composed vectors leads to Euler-Lagrange’s Equa-
tions of motion of a system composed of connected rigid bodies. The computation of all quanti-
ties involved in Eq. (2.19) is straightforward from the computation of forces and torques acting
on the system.

3 APPLICATION: TWO-LINK ARTICULATED ARM

A simple example will be used in order to follow the mathematical formalism without com-
plicating the physical system. We consider the simple two-link system shown in Figure 1 and
representing two articulated links on a fixed base.

The rotational joint J1 is articulated to a fixed support. The rotational joint J2 is connecting links
OA and AB whose lengths are L1 and 2L2. The system moves on a fixed vertical plane. The
generalised coordinates are the angles θ1 = q1 e θ2 = q2, that links OA and AB make with a fixed
horizontal line, so that its time derivatives are the absolute angular velocities of each link. This

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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366 EULER-LAGRANGE’S EQUATIONS

is done instead of defining the angle θ = θ2−θ1 between links OB and AO, as it is done in usual
robots’ kinematics. For the purpose of this example there is no point in adopting this notation.
The positions of points C1 and C2 are given by

C1−O = L1 (c1~e1 + s1~e2) (3.1)

C2−O = 2L1
(
c1~e1 + s1 ĵ

)
+L2

(
c2~e1 + s2 ĵ

)
(3.2)

where (~e1,~e2) is an inertial base and c1 = cosq1, s1 = sinq1, c2 = cosq2 and s2 = sinq2.

The linear velocities of these points are

~v1 = q̇1~v11 + q̇2~v21

~v11 = L1 (−s1~e1 + c1~e2)

~v21 =~0

~v2 = q̇1~v21 + q̇2~v22

~v12 = 2L1 (−s1~e1 + c1~e2)

~v22 = L2 (−s2~e1 + c2~e2) (3.3)

The angular velocities of each link are

~ω1 = q̇1~ω11

~ω2 = q̇2~ω22 (3.4)

where
~ω11 = ~ω22 =~e3 (3.5)

since angles have been chosen to be with respect to an inertial line.

The accelerations of these points are also easily found

d~v1

dt
= q̈1v̄11 + q̇1q̇1~a11

~a11 =−L1 (c1~e1 + s1~e2)

d~v2

dt
= q̈1v̄12 + q̈2~v22 + q̇1q̇1~a12 + q̇2q̇2~a22

~a12 =−2L1 (c1~e1 + s1~e2)

~a22 =−L2 (c2~e1 + s2~e2)

~̇ω1 = q̈1~e3

~̇ω2 = q̈2~e3 (3.6)

For the example of Figure 1 it is found that

~F1 (q, q̇, q̈) =−m1gê2

~F2 (q, q̇, q̈) =−m2gê2

~N1 (q, q̇, q̈) = N1~e3

~N2 (q, q̇, q̈) = N2~e3 (3.7)

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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In the equation
−→
FN (q, q̇, q̈) =

2

∑
α=1

q̈α−→PLα(q)+
2

∑
β=1

2

∑
γ=1

q̇β q̇γ−→XY βγ(q) (3.8)

we find that

−→
PL1 =

[
m1v̄11

(
q1) , I1~e3,m2v̄12

(
q1) ,~0]

−→
PL2 =

[
m2v̄21

(
q1) ,~0,m2v̄22

(
q1) , I2~e3

]
−→
XY 11(q) =

[
m1~a11

(
q1) ,~0,m2~a12

(
q1) ,~0]

−→
XY 22(q) =

[
~0,~0,m2~a22

(
q2) ,~0] (3.9)

and all other composed vectors being zero.

The differential equation of motion is

−→
FN
(
~F1,~N1,~F2,~N2

)
= q̈1−→PL1 + q̈2−→PL2 + q̇1q̇1−→XY 11 + q̇2q̇2−→XY 22 (3.10)

with the above definitions for the coefficients of this equation.

We now consider the composed vectors

−→vω1 =
[
v̄11
(
q1) ,~e3, v̄12

(
q1) ,~0]

−→vω2 =
[
v̄21
(
q1) ,~0, v̄22

(
q1) ,~e3

]
(3.11)

It is easily found that

−→
FN ◦−→vω1 =−(m1 +2m2)gl1c1 +N1 = Q1

−→
FN ◦−→vω2 =−m2gl2c2 +N2 = Q2 (3.12)

It is also easily found that

−→
PL1 ◦−→vω1 = (m1 +4m2) l2

1 + I1 = a11(q)
−→
PL1 ◦−→vω2 = 2l1l2m2c12

c12 = cos
(
q1−q2)= a21

−→
PL2 ◦−→vω1 = 2m2l1l2c12 = a12
−→
PL2 ◦−→vω2 = m2l2

2 + I2 = a22 (3.13)

From the definition of the Christoffel Brackets, in this particular example it is found that the only
non-zero bracket is

a1
22 = 2m2l1l2s12

s12 = sin
(
q1−q2) (3.14)

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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The differential equations are given by[
(m1 +4m2) l2

1 + I1
]

q̈1 +[2m2l1l2c12] q̈2 +[2m2l1l2s12] q̇2q̇2 = (m1 +2m2)gl1c1 +N1 (3.15)

[2l1l2m2c12] q̈1 +
[
m2l2

2 + I2
]

q̈2 =−m2gl2c2 +N2 (3.16)

Collecting constant coefficients

A1q̈1 +B1 cos
(
q1−q2) q̈2 +C1 sin

(
q1−q2) q̇2q̇2 = D1 cosq1N1 (3.17)

A2 cos
(
q1−q2) q̈1 +B2q̈2 =C2 +D2 cosq2 +N2 (3.18)

In order to have explicit equations for q̈1 and for q̈2 it is a simple matter of solving the above
system for these two quantities. In this simple example, expressing q̈1 in terms of all other terms
in Eq. (3.18) and substituting into Eq. (3.17) we obtain a differential equation containing only
the first and second derivatives of q2 and the first derivative of q1 with coefficients functions of
both variables q1 and q2. Obviously, this is the well-known problem of a double pendulum with
the additional complication of the presence of torques applied to the two arms of the pendulum.

4 CONCLUSION

It has been shown that the use of composed linear-angular velocities and force-torque vectors, a
new method of representing kinematical and dynamical quantities, is a very efficient and compact
form to derive the dynamical equations of multi-body, as compared with classical approaches.
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RESUMO. Um novo formalismo é proposto para estudar a dinâmica de sistemas
mecânicos compostos por N corpos rı́gidos conectados, introduzindo o conceito de ve-
tores compostos 6N-dimensionais. A abordagem é baseada em trabalhos anteriores dos au-
tores, nos quais um formalismo completo foi desenvolvido por meio dos conceitos usuais
de geometria diferencial, álgebra linear e sistemas dinâmicos. Esse novo formalismo é um
método para a descrição de sistemas mecânicos como um todo e não como cada parte sep-
arada. As equações de Euler-Lagrange são facilmente obtidas por meio desse formalismo.

Palavras-chave: vetores compostos, corpos rı́gidos conectados, dinâmica.
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