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ABSTRACT. Aedes aegypti mosquitoes are the vector of diseases such as dengue, zika, chikungunya,
and yellow fever among others. All the stages of development, eggs, larvae, pupa, and the adult of the
species have its population modulated by meteorological variables, such as precipitation and temperature
through affecting the productivity of breeding sites, metabolic processes, and others. Since adult females
are responsible for transmitting the virus, the population of females becomes a direct indicator of the risk of
infection. For this reason, some ongoing vector surveillance programs are based on adult female capture. In
turn, all the stages of development have its population modulated by meteorological variables, such as pre-
cipitation and temperature, through productivity of breeding sites, metabolic processes and others. In this
work, field data of capture of females was used to evaluate if a population dynamics model of Aedes aegypti
under the effect of weather would be able to forecast field population. The nonlinear dynamic system model
comprises: (1) four equations for the populations of the stages of development of the mosquito, designed
for the ongoing surveillance program; (2) parametric dependencies of the rates of development on mean
temperature and weekly accumulated precipitation. The dependencies on temperature and precipitation are
modelled with aim of simplicity with the fewer number of parameters as possible. Temperature dependence
is modelled based on values of the related literature under the assumption of existence of a optimum tem-
perature for the rates, getting worse for extreme temperatures. The dependence on precipitation which is
barely treated in experiments is modelled under the assumption of a monotonic dependence described by
a power law with values estimated in orders of magnitude from data in the literature. By comparison with
field data of an entomological indicator based on the number of Ae. aegypti females captured by a public
health program in the city of Caratinga (Minas Gerais, Brazil), the model showed a significant correlation
(R = 0.75). The result shows that the approach, if refined, can provide forecasting for of the population size.
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1 INTRODUCTION

The Aedes (Stegomyia) aegypti (hereafter referred to as Ae. aegypti), a species of the Culicidae
family of mosquitoes, is the main vector of arboviruses like dengue fever, yellow fever, zika,
and chikungunya [27]. The species is found mainly in tropical and subtropical regions of the
world and its distribution is closely related to climate patterns determined by variables such as
temperature [1,11,21,30], precipitation [14], humidity [5], and winds [9,22]. Those factors act in
the productivity of breeding sites, metabolic processes, behaviour, and other characteristics [18].

The development of Ae. aegypti takes place by complete metamorphosis [8]. The stages of de-
velopment occur in two distinct environments: (a) aquatic, composed by the egg, larva and pupa
stages, and (b) aerial with the winged stage of the vector [15]. To obtain nutrients for matura-
tion and development of eggs, and energy reserves, adult gravid females perform blood feeding
almost exclusively on humans [19]. Transmission of arboviruses to humans takes place when a
female infected by the virus bites a susceptible human. Among the arboviruses, there are dengue
fever, zika, chikungunya and yellow fever and others. According to the World Health Organiza-
tion (WHO), just considering dengue fever, there occur 50 to 100 million new infections per year
in more than 100 countries [28].

To avoid social impacts with epidemics of diseases transmitted by Ae. aegypti, the approach rec-
ommended by the WHO are the actions of entomological surveillance and control [27]. The MI-
AEDES (Intelligent Aedes Monitoring), a system that make use of an adult mosquito trap called
MosquiTRAP®. The MosquiTRAP® captures gravid females for monitoring the population of
Ae. aegypti females.

In the surveilled municipalities, the traps are installed in the study area, spaced from each other
by 200-250 meters, and monitored weekly. The surveillance data is summarised in terms of an
entomological indicator MFAI (Mean Females Aedes Index), which is defined as the ratio of the
total number of females caught during an epidemiological week to the number of positive traps
inspected.

There is a long and well-known connection between meteorological and climatic factors and the
rates of development stages of Ae. aegypti [7,10]. Such a connection produces a seasonal popula-
tion pattern for Ae. aegypti, and consequently, for the number of cases of the infections. High pre-
cipitations and high temperatures increase the reproduction and survival of Ae. aegypti, markedly
increasing the mosquito population size, and, consequently, the risk of infections [3, 10]. The
knowledge of the influence of the meteorological factors is important for the effectiveness of the
environmental control. However, the adaptability of Ae. aegypti to urban environments and to
human way of life, together with social conditions, allow the mosquito to survive throughout the
year [3, 12].

Mathematical and/or statistical models that consider the associations between meteorological
variables and Ae. aegypti life cycle are developed with the purpose of describing the population
dynamics of the vector, as well as the epidemics caused by that [1, 2, 7, 17, 24, 30].

Trends Comput. Appl. Math., 22, N. 1 (2021)
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In this work, a mathematical model based on differential equations is used to describe the Ae.
aegypti life cycle as a function of meteorological data (temperature and precipitation). The main
goal is evaluate if a simple model under the effect of weather would be able to forecast field
population. Hence it was presented a nonlinear dynamic system model that comprises: (1) four
equations for the populations of the stages of development of the mosquito, designed for the
ongoing surveillance program; (2) parametric dependencies of the rates of development on mean
temperature and weekly accumulated precipitation.

The dependencies of the entomological rates on temperature and precipitation are modelled with
aim of simplicity with the fewer number of parameters as possible. Temperature dependence is
modelled based on values of the related literature with polynomials of degree 2, under the as-
sumption of existence of a optimum temperature for the rates, and getting worse for extreme
temperatures [1,21,30]. The dependence on precipitation, which is barely found in experiments,
is modelled under the assumption of a monotonic dependence through a power law [25]. The
power law constants are estimated by orders of magnitude from the literature that refers to en-
tomological rates, regardless if it refers to precipitation itself [1, 7, 17, 24, 29, 30]. Although the
determination of those parameters from experiments is of limited realism, it is intend to verify the
forecasting power of the model as a evaluation of that approach for eventual future refinement.
For that purpose, the results of the computational model implementation will be compared to ex-
perimental data from Aedes females (MFAI) from the municipality of Caratinga, Minas Gerais,
Brazil.

In Section 2, the entomological data of captures and meteorological data are characterised. In
Section 3, the mathematical model for the life cycle of Aedes aegypti is detailed, considering the
dependence with the meteorological variables. A description of the simulation and validation of
the results is shown in Section 4. The final considerations are made in Section 5.

2 DATA BASE

The data used in this work refers to the epidemiological weeks 23-52 of 2009 and epidemiologi-
cal weeks 1-51 of 2010 in the city of Caratinga (Minas Gerais, Brazil). The climate of the city is
classified as tropical semi-humid. Average temperatures are around 22◦C, with a mean average
of 16.7◦C and average maximum of 27.7◦C (averages considering the period from 1961 to 2014).
The average annual rainfall is 1,122.6mm [13].

The weekly meteorological data, accumulated precipitation p (mm) and average temperature
T (◦C) for the study period were obtained through the MDBTR (Meteorological Data Bank
for Teaching and Research) on the website of the National Meteorological Institute - INMET
(www.inmet.gov.br).

Experimental data from the Ae. aegypti females population were obtained by using
MosquiTRAP® in a public heath surveillance from the study area. During the period of study of
96 epidemiological weeks, the MFAI was generated in the MI-Aedes program developed in the
municipality by the biotechnology company Ecovec S. A. (Belo Horizonte, MG, Brazil).

Trends Comput. Appl. Math., 22, N. 1 (2021)
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3 MATHEMATICAL MODEL

To evaluate the viability of a predictive population model with dependencies on mean temper-
ature and precipitation, it is presented a nonlinear dynamic system model that comprises: (1)
four equations for the populations of the stages of development of the mosquito, designed for the
ongoing surveillance program; (2) parametric dependencies of the rates of development on mean
temperature and weekly accumulated precipitation. The population model (3.1) written as a sys-
tem of differential equations is proposed to describe the dynamics of the population size of the
four stages of development Ae. aegypti, considering the weekly variation of precipitation and av-
erage temperature. The population of eggs, aquatic forms (larvae and pupae), pre-bloodmeal and
post-bloodmeal females are represented by E(t), A(t), F1(t) e F2(t), respectively (see Figure 1).

φ(p,T )
(

1− E(t)
C(p,T )

)

µE(p,T )

E(t)
α1(p,T )

µA(p,T )

A(t)
α2(p,T )

µF1(p,T )

F1(t)
α3(p,T )

µF2(p,T )

F2(t)

Figure 1: Diagram of the model populations related to the life cycle of Aedes aegypti with rates
of development as parametric dependent on temperature T and precipitation p.



dE
dt

= φ(p,T )
(

1− E(t)
C(p,T )

)
F2(t)−α1(p,T )E(t)−µE(p,T )E(t) ,

dA
dt

= α1(p,T )E(t)−α2(p,T )A(t)−µA(p,T )A(t) ,

dF1

dt
= α2(p,T )A(t)−α3(p,T )F1(t)−µF1(p,T )F1(t) ,

dF2

dt
= α3(p,T )F1(t)−µF2(p,T )F2(t) ,

C, φ , α1, α2, α3, µE , µA, µF1 , µF2 ≥ 0, ∀ p,T, t ∈ R+.

(3.1)

The coefficients of the model are parametric functions of the weekly precipitation index p and the
mean temperature T . The oviposition rate carried out by post-bloodmeal females is symbolised
by φ . The rate α1 corresponds to the development of eggs in an aquatic population. In turn,
the rate of individuals of the aquatic population that develop to blood pre-bloodmeal females
is represented by α2. Rate α3 represents the maturation rate of pre-bloodmeal females to blood

Trends Comput. Appl. Math., 22, N. 1 (2021)
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post-bloodmeal females. The natural mortality rates of the populations involved are given by µE ,
µA, µF1 e µF2 , respectively, for eggs, aquatic phase, pre-bloodmeal females and post-bloodmeal.
The only non-linear term, φ

(
1− E

C

)
F2 includes itself the term − φEF2

C , which stands to mitigate
rate φ if the population of stage E becomes large enough compared to the value of C [6].

The relationship between the life cycle of Ae. aegypti and the temperature is strongly consol-
idated in the literature [1, 30]. In turn, the relationship between the population of Ae. aegypti
and precipitation has not been sufficiently studied in laboratories or field experiments [25].
The association between those dependencies is therefore ignored so far. Let ΠΠΠ = (φ ,α1,α2,α3,

µE ,µA,µF1 ,µF2) be a general representation of the model (3.1) rates, and let the parametric
dependencies of the rates on precipitation p and temperature T be, respectively, ΠΠΠ = ΨΨΨ(p)
and ΓΓΓ = ΓΓΓ(T ). Then, the design for the dependence of the rate ΠΠΠ on p and T could be
constructed by supposing it a well behaved enough function (analytic or class Cn), such that
ΠΠΠ(ΨΨΨ,ΓΓΓ) = a0 + a1ΨΨΨ+ b1ΓΓΓ+O(ΨΨΨ2,ΓΓΓ2). In this case, the association of the dependencies of
the model rates on p and T would be considered in a general form. By simplicity, as a working
hypothesis, and because the model (daily) rates ΠΠΠ are typically smaller than one, we retain the
linear part to the purpose of the association:

ΠΠΠ(p,T ) = ΨΨΨ(p)+ΓΓΓ(T ). (3.2)

Hence, by such simplifying consideration, the dependencies on p and T turn to be additive, as if
they were rates itself in parallel association. Furthermore, such approach helps in minimisation
of the number of free parameters.
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(b) Cross-correlation between p and MFAI.

Figure 2: (a) Time series of precipitation, temperature and MFAI data from Caratinga-MG,
Brazil, and (b) cross correlation between precipitation and MFAI time-series. The crossing curve
stands for the significance level. Lags between 1 to 12 are associated to significant correlations
(p < 0.05)

To provide a insight on the parametric dependency of rates on precipitation ΨΨΨ(p), let us focus in
the Figure 2a and notice that the peaks pattern resembles the precipitation peaks pattern. This fact

Trends Comput. Appl. Math., 22, N. 1 (2021)



i
i

“A5-1277-8093” — 2021/3/29 — 11:56 — page 66 — #6 i
i

i
i

i
i

66 A MODEL FOR AEDES AEGYPTI INFESTATION ACCORDING TO METEOROLOGICAL VARIABLES

is also manifested in Figure 2b, where there are significant correlations (p < 0.05) between pre-
cipitation and MFAI for lags ranging from 0 to 12. Because of that similarity, the dependency of
the rates on precipitation is supposed to be a monotonously increasing function. Other premises
adopted here are simplicity and the fewest possible parameters. For those reasons, the parametric
function ΨΨΨ = ΨΨΨ(p) was written in terms of a power law, as

ΨΨΨ(p) = ΨΨΨ0 +

(
p− p0

p1− p0

)r

(ΨΨΨ1−ΨΨΨ0); with p≥ p0. (3.3)

The values ΨΨΨ0 and ΨΨΨ0 are associated to p0 = 0 mm and p1 = 34.62 mm, that correspond
in weekly base to the threshold of rainfall volume between subtropical and tropical rainforest
(1800mm/year) [16]. This power law parametric equation can provide increasing, decreasing,
constant functions which can be also concave up and down. In the present work, we consider
r > 0, focusing on increasing dependencies.

More exact relations for the dependencies between rates and precipitation should be obtained by
optimisation or more complex experiments. The values adopted in this work (Table 1) belong
to the spectrum of values from other studies, regardless if they are related to precipitation. Due
to this lack of exact values the constants of Equation (3.3) are set here in terms of orders of
magnitude.

Although there are many studies for the dependence of the rates on temperature [1, 21, 30], in a
first approach and as a working hypothesis, we adopt simple functions according to the follow-
ing assumptions: (1) simple relation with a small number of free parameters; (2) the existence of
an optimal temperature for the metabolic processes. As a consequence, there arises a maximum
value for the rates of development (Figures 3a, 3b and 3f), or a minimum, for the mortality rates
(Figures 3c, 3d and 3e). Once the temperature gets far from the optimum value, it is then expected
that there decreases the fitness in the life cycle. Hence, for the case of rates of development (α1,
α2 and φ ), as far as the temperature is from the optimum value, their values decrease until van-
ishing for very high or very low temperatures. In the case of mortalities (µE , µA and µF ), their
values increase as the temperature becomes far from the optimum value. To fulfill these condi-
tions, the rates were modelled by simple polynomials of degree 2, concave up for mortalities, and
down for development rates with vanishing values in the outer intervals from the roots to avoid
negative values.

ΓΓΓ(T ) = aaa(T −Top)
2 +bbb. (3.4)

The values of a, b, and Top were obtained by fitting the degree 2 polynomials to experimental
data present in some works [1, 21, 30]. The idea is more to find the best polynomials of degree
2 according to data, than to provide a high goodness of fit. Figure 3 depicts the modelled pa-
rameters Γ(T ) together with the set of experimental data in related literature. The parameters of
rate α3 were determined by imposing three conditions: the inverse of the mean lifetime of F1

of 5 days was set as the mean value of the function (3.4), and the two roots were chosen to be
the temperatures 15 ◦C and 40 ◦C. Because outside of such interval the females do not bite, the

Trends Comput. Appl. Math., 22, N. 1 (2021)
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Figure 3: Parameter setting α1, α2, µE , µA and µF , considering experimental data available in
[1, 21, 30].
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values of T < 15 ◦C and T > 40 ◦C are set to be zero [4,21]. In the cases of rates of development,
outside the roots of the polynomials, the values in the model are fixed to zero, although it never
happens in the present range of data.

Table 1: Free parameters of the dependencies of the model rates on temperature (3.4) and precip-
itation (3.3) with references which based their choice.

Π(p,T ) Ψ0 [Reference] Ψ1 [Reference] a b Top

φ 1.060327 [29] 8.294997 [29] −1.64×10−2 7.12 33.42
α1 0.073206 [1] 0.55 [7] −1.17×10−3 0.26 31.15
α2 0.036597 [29] 0.116117 [29] −5.51×10−4 0.14 28.23
α3 0.2 [24] 0.2 [24] −1.92×10−3 0.30 27.50
µE 0.01 [17] 0.01 [17] 2.64×10−4 0.00664 27.34
µA 0.11 [24] 0.11 [24] 9.03×10−4 0,0157 23.74

µF1 = µF2 = µF 0.02709 [30] 0.09169 [30] 2.95×10−4 0,0305 23.58

The system (3.1) is non-autonomous because it has coefficients dependent on rainfall and tem-
perature which, in turn, depend o time [20]. However the temperature and precipitation data is
updated only weekly and the time evolution is hourly. So the evolution of the system along the
yer can be viewed as a succession of autonomous systems. Hence, in each week, the system
parameters become constant in time. Under such assumption, by applying the condition of equi-

librium
dXXX
dt

= 000 with XXX = (E,A,F1,F2) in model (3.1), we identify a trivial equilibrium point P0

and a non-trivial equilibrium point P1, described by

P0 = (E∗,A∗,F∗1 ,F
∗
2 ) = (0,0,0,0) (3.5)

P1 = (E∗∗,A∗∗,F∗∗1 ,F∗∗2 )=
((

1− 1
Q0

)
C, α1

α2+µA
E∗∗, α2

α3+µF1
A∗∗, α3

µF2
F∗∗1

)
(3.6)

in which Q0 is the vector reproduction number, given by

Q0 =

(
α1

α1 +µE

)(
α2

α2 +µA

)(
α3

α3 +µF1

)(
φ

µF2

)
. (3.7)

The equilibrium points (see Appendix A) are degenerated and trivial, are P1 = P0, if Q0 = 1.
The point P0 is asymptotically stable and P1, unstable, if 0 < Q0 < 1, while P1 turns to be
asymptotically stable and P0 unstable, if Q0 > 1. The system shows transcritical bifurcation at
Q0 = 1 [23].

As the meteorological parameters vary weekly along the ranges {Tmin ≤ T ≤ Tmax}×{0 ≤ p ≤
pmax}, the model parameters (3.2) vary. Therefore, Q0 has different values each week but, ac-
cording the the parameters defined, it remains positive Q0 ≥ 3.9187 along the range of (p,T )
data. Consequently, the non trivial equilibrium point P1 varies, but remains asymptotically sta-
ble. In particular, the equilibrium point coordinate F∗∗2 values may be represented by a surface
according to p and T (see Fig. 4).

Trends Comput. Appl. Math., 22, N. 1 (2021)



i
i

“A5-1277-8093” — 2021/3/29 — 11:56 — page 69 — #9 i
i

i
i

i
i

CORDEIRO, EIRAS, SILVA and ACEBAL 69

150
-1

100

0

10

1

Precipitation

F
2**

2

20

3

Temperature

50

4

30
40

050

Figure 4: Surface of the females coordinate F∗∗2 = F∗∗2 (p,T ) of the non trivial asymptotically
stable equilibrium point, according to meteorological variables. The dependence on temperature
reaches a maximum at a optimum temperature and increases monotonically with increasing pre-
cipitation.

4 NUMERICAL SOLUTION AND MODEL VERIFICATION

Model (3.1) was solved numerically with a 4th order Runge-Kutta Method using Matlab® soft-
ware with time step 0.001, corresponding to 7000 points per week of data. In the evaluation of
the results, we are interested only in the evolution of the population F2(t), since the data refer to
the capture of pregnant females who seek the trap to make oviposition. The model is evaluated,
minimising the mean square error given by:

S2 =
1

2N

N

∑
k=1

(I(k)−λF2(k− l))2 , (4.1)

where N is the number of epidemiological weeks of the data and I(k) is the value of MFAI data
in the week k. Since the weekly monitoring of traps takes time, the lag between model and data
is given by l. The scale of the model is arbitrarily related to the environmental capacity, so the

Trends Comput. Appl. Math., 22, N. 1 (2021)
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λ is a scale factor to adjust the scale to the sample capture data (MFAI). Subject to condition
∂S2

∂λ
= 0, one finds

λl =

N

∑
k=1

I(k)F2(k− l)

N

∑
k=1

(F2(k− l))2
. (4.2)

By setting lmax as the value for which the cross-correlation between MFAI series I(k) and F2

reaches its maximum, the scale factor between data and model can be fixed so that λ = λlmax . The
value of parameter r in equation (3.3) was determined empirically by a simple one-dimensional
optimisation as the process is repeated for values or r such that 0 < r ≤ 2, with step of 0.1
searching for the lowest value of S2. In the present case, it was obtained for r = 1.2, value used
in the simulation. For simplicity, the carrying capacity C(p,T ) of the medium was set to be
constant, C = 1, defined as relative to the best environmental conditions, when all existing water
containers are available, filled of water and larval nutrients.

To evaluate the result, it was used cross-correlation between the MFAI series I(k) and model
female population corrected by the scale factor f2 = λF2(k) (see Figure 5a). The maximum of
the correlation is 0.75 at lag lmax = 6. The cross correlation between data and model remains
significant (p < 0.05) for lags ranging from 0 to 14. Figure 5b depicts a comparison between
MFAI and f2(k−6). The simple model reproduces with certain quality the field data of captures.
More complex details like peaks are not fitted in general.
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Figure 5: (a) Cross-correlation between model population f2 and infestation index MFAI. The
crossing line stands for significant level. Maximum correlation occurs for lag of l = 6 weeks
(p¡0.05) (b) Plots of the infestation index MFAI together with the lagged, l = 6, and scaled f2

model population.

Trends Comput. Appl. Math., 22, N. 1 (2021)



i
i

“A5-1277-8093” — 2021/3/29 — 11:56 — page 71 — #11 i
i

i
i

i
i

CORDEIRO, EIRAS, SILVA and ACEBAL 71

5 CONCLUSIONS

After the comparison between model and data of female captures, one can conclude the curves are
similar, indicating that the proposed model is able to reproduce the data in an acceptable manner.
y the population of F2(t). In some intervals, the model population becomes larger than the MFAI
indicator, and, in others, the opposite occurs. Although the modelled peaks are not as pronounced
as the infestation data, it is possible to notice their existence. The provided infestation data is ob-
tained from a a public health program and by this reason, it is subjected to entomological control
with insecticides. However, with few simple hypotheses on the dependence of the entomological
parameters with temperature and precipitation, the model was able to reproduce the baseline of
the infestation. Although the determination of dependencies of model rates on temperature and
precipitation were subjected to simplifying assumptions and, therefore, of limited realism, the
capability of the model to reproduce and forecast the data according to meteorological parame-
ters is good. The task to evaluate the approach of those dependencies on meteorological data was
successful. Eventual future refinement on those parametric dependencies with more realistic tem-
perature parameters could provide more accuracy. Since the modelled precipitation parameters
are set only as order of magnitude, an approach via optimisation could search for candidates for
the values of the dependence of the entomological rates of development with precipitation. The
present parameters can be used as initial set of parameters for optimisation. The result of the op-
timised parameters could guide biological experiments. The model is able to predict infestation
according to meteorological parameters in public heath control programs.
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RESUMO. Os mosquitos Aedes aegypti são vetores de doenças como dengue, zika,
chikungunya, febre amarela, entre outras. Como as fêmeas adultas são responsáveis pela
transmissão do vı́rus, sua população torna-se um indicador direto do risco de infecção. Por
esse motivo, alguns programas de vigilância de vetores baseiam-se na captura de fêmeas
adultas. Por sua vez, todas as fases de desenvolvimento (ovos, larvas, pupas e o vetor adulto)
têm sua população modulada por variáveis meteorológicas, como precipitação e temper-
atura, através da produtividade dos criadouros, processos metabólicos e outros. Neste tra-
balho, dados de captura de fêmeas em campo foram utilizados para avaliar se um modelo de
dinâmica populacional de Aedes aegypti, sob o efeito de variáveis meteorológicas, seria ca-
paz de prever a população de campo. O modelo de sistema dinâmico não linear compreende:
(1) quatro equações para as populações dos estágios de desenvolvimento do mosquito, pro-
jetadas para um programa de vigilância em andamento; (2) dependências paramétricas das
taxas de desenvolvimento em relação à temperatura média e precipitação acumulada se-
manalmente. As dependências de temperatura e precipitação são modeladas, por simplici-
dade, com o menor número de parâmetros possı́vel. A dependência da temperatura é mod-
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elada com base em valores da literatura relacionada sob o pressuposto da existência de uma
temperatura ótima para as taxas, piorando para temperaturas extremas. A dependência da
precipitação, que mal é tratada em experimentos, é modelada sob o pressuposto de uma
dependência monotônica descrita por uma lei de potência com valores estimados em ordens
de magnitude a partir de dados da literatura. Por comparação com dados de campo de um
indicador entomológico baseado no número de fêmeas Ae. aegypti capturadas por um pro-
grama de saúde pública na cidade de Caratinga (Minas Gerais, Brasil), o modelo apresentou
correlação significativa (R = 0,75). O resultado mostra que a abordagem, se refinada, pode
fornecer previsões para o tamanho da população.

Palavras-chave: Aedes aegypti, variáveis meteorológicas, sistemas dinâmicos.
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[23] S.H. Strogatz. “Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and
engineering”. CRC Press (2018).

[24] A. Tran, G. L’Ambert, G. Lacour, R. Benoı̂t, M. Demarchi, M. Cros, P. Cailly, M. Aubry-Kientz,
T. Balenghien & P. Ezanno. A rainfall-and temperature-driven abundance model for Aedes albopictus
populations. International journal of environmental research and public health, 10(5) (2013), 1698–
1719.

[25] J. Waldock, N.L. Chandra, J. Lelieveld, Y. Proestos, E. Michael, G. Christophides & P.E. Parham.
The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology.
Pathogens and global health, 107(5) (2013), 224–241.

[26] S. Wiggins. “Introduction to applied nonlinear dynamical systems and chaos”, volume 2. Springer
Science & Business Media (2003).

Trends Comput. Appl. Math., 22, N. 1 (2021)



i
i

“A5-1277-8093” — 2021/3/29 — 11:56 — page 74 — #14 i
i

i
i

i
i

74 A MODEL FOR AEDES AEGYPTI INFESTATION ACCORDING TO METEOROLOGICAL VARIABLES

[27] World Health Organization. Dengue and severe dengue. http://www.who.int/mediacentre/

factsheets/fs117/en/ (2017). Acessado em 20/03/2018.

[28] World Health Organization. Neglected tropical diseases. http://www.searo.who.int/entity/
vector_borne_tropical_diseases/data/data_factsheet/en/ (2018). Acessado em
10/09/2018.

[29] H.M. Yang. The transovarial transmission in the dynamics of dengue infection: Epidemiological
implications and thresholds. Mathematical biosciences, 286 (2017), 1–15.

[30] H.M. Yang, M.L.G. Macoris, K.C. Galvani, M.T.M. Andrighetti & D.M.V. Wanderley. Assessing the
effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiology and
infection, 137(08) (2009), 1188–1202.

Trends Comput. Appl. Math., 22, N. 1 (2021)



i
i

“A5-1277-8093” — 2021/3/29 — 11:56 — page 75 — #15 i
i

i
i

i
i

CORDEIRO, EIRAS, SILVA and ACEBAL 75

Appendix A STABILITY OF THE EQUILIBRIUM POINTS

Let the system of equations (3.1) rewritten as

dXXX
dt

= fff (XXX), where XXX = (E,A,F1,F2) . (A.1)

The condition fff (XXX) = 0 revealed two critical points, one trivial, P0 (Equation 3.5), and one nontrivial, P1

(Equation 3.6). In the following it is performed the analysis of stability of the system.

After the expansion near the equilibrium points Pk, k = 0,1 and computation of the Jacobian matrices
BPk =

[
∂ f
∂XXX

]
Pk
, k = 0,1, their characteristic polynomials are given, respectively, by

ΦPk (λ ) = ak4λ
4 +ak3λ

3 +ak2λ
2 +ak1λ +ak0 , (A.2)

with coefficients for P0,

a04 = 1,

a03 = α1 +µE +α2 +µA +α3 +µF1 +µF2 ,

a02 = (α1 +µE)µF2 +(α2 +α3 +µA +µF1)(α1 +µE +µF2)+(α2 +µA)(α3 +µF1) ,

a01 = (α1 +µE)(α2 +µA)(α3 +µF1 +µF2)+(α1 +α2 +µE +µA)(α3 +µF1)µF2 ,

a00 = (α1 +µE)(α2 +µA)(α3 +µF1)µF2(1−Q0);

and for P1,

a14 = 1,

a13 = (α1 +µE)Q0 +α2 +α3 +µA +µF1 +µF2 ,

a12 = (α1 +µE)(α2 +α3 +µA +µF1 +µF2)Q0 +(α2 +µA)(α3 +µF1 +µF2)+(α3 +µF1)µF2 ,

a11 = (α1 +µE)(α2 +µA)(α3 +µF1 +µF2)Q0 +((α1 +µE)Q0 +α2 +µA)(α3 +µF1)µF2 ,

a10 = φα1α2α3

(
1− 1

Q0

)
.

The stability of each equilibrium points Pk can be assessed from the sign of the real part of their respective
eigenvalues. The polynomial ΦPk (A.2) with have roots with real part strictly less than zero if and only if all
elements in the first column of the Routh Table (A.3) are nonzero and have the same sign [26].

R(k) =



1 ak2 ak0

ak3 ak1 0

ak2ak3−ak1
ak3

ak0 0

ak1−
a2

k3ak0

ak2ak3−ak1
0 0

ak0 0 0


. (A.3)
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The elements R(k)
11 = 1> 0, k = 0,1 are positive. Since all model rates remain positive by definition, R(k)

21 > 0,

k = 0,1 is positive. As consequence, R(k)
31 , k = 0,1, are positive if ak2ak3−ak1 > 0. For k = 0, it reads

a02a03−a01 = 2(α1 +µE)(α2 +α3 +µA +µF1)µF2 +2(α2 +µA)(α3 +µF1)(α1 +µE +µF2)

+ (α1 +µE)
2(α2 +α3 +µA +µF1 +µF2)+(α2 +µA)

2(α1 +α3 +µE +µF1 +µF2)

+ (α3 +µF1)
2(α1 +α2 +µE +µA +µF2)+(µF2)

2(α1 +α2 +α3 +µE +µA +µF1)> 0 .

In the case k = 1, it is expressed as

a12a13−a11 = (α1 +µE)
2(α2 +α3 +µA +µF1 +µF2)Q

2
0 +2(α2 +µA)(α3 +µF1)µF2

+ (α1 +µE)(α2 +α3 +µA +µF1 +µF2)(α2 +α3 +µA +µF1)Q0

+ (α2 +µA)
2(α3 +µF1 +µF2)+µ

2
F2
((α1 +µE)Q0 +α2 +α3 +µA +µF1)

+ (α3 +µF1)
2(α2 +µA +µF2)+(α1 +µE)(α2 +α3 +µA +µF1)µF2 Q0 > 0 .

Hence, R(k)
13 > 0, k = 0,1. Since ak2ak3− ak1 > 0, k = 1,2, the analysis of R(k)

14 restricts in the analysis of
whether ak1ak2ak3−a2

k01−a2
k3ak0 > 0, k = 0,1. For k = 0 the expression reads

a01a02a03−a2
01−a2

03a00 = (α1 +µE)
3(α2 +µA)

2(α3 +µF1 +µF2)

+ (α1 +µE)
3(α3 +µF1)

2(α2 +µA +µF2)

+ (α1 +µE)
3(µF2)

2(α2 +α3 +µA +µF1)

+ 2(α1 +µE)
3(α2 +µA)(α3 +µF1)µF2

+ (α1 +µE)
2(α2 +µA)

3(α3 +µF1 +µF2)

+ (α2 +µA)
3(α3 +µF1)

2(α1 +µE +µF2)

+ (α2 +µA)
3
µ

2
F2
(α1 +α3 +µE +µF1)

+ 2(α1 +µE)(α2 +µA)
3(α3 +µF1)µF2

+ (α1 +µE)
2(α3 +µF1)

3(α2 +µA +µF2)

+ (α2 +µA)
2(α3 +µF1)

3(α1 +µE +µF2)

+ (α3 +µF1)
3
µ

2
F2
(α1 +α2 +µE +µA

+ 2(α1 +µE)(α2 +µA)(α3 +µF1)
3
µF2

+ (α1 +µE)
2
µ

3
F2
(α2 +α3 +µA +µF1)

+ (α2 +µA)
2
µ

3
F2
(α1 +α3 +µE +µF1)

+ (α3 +µF1)
2
µ

3
F2
(α1 +α2 +µE +µA)

+ 2(α1 +µE)(α2 +µA)(α3 +µF1)µ
3
F2

+ 4(α1 +µE)
2(α2 +µA)(α3 +µF1)µF2(α2 +µA +µF2)
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+ 4(α1 +µE)(α2 +µA)
2(α3 +µF1)µF2(α3 +µF1 +µF2)

+ 4(α1 +µE)(α2 +µA)(α3 +µF1)
2
µF2(α1 +µE +µF2)

+ φα1α2α3(α1 +α2 +α3 +µA +µE +µF1 +µF2)
2 > 0 .

The expression is positive because all parameters of the model are positive. In the case k = 1, it reads

a11a12a13−a2
11−a10a2

13 = (α1 +µE)
3(α2 +µA)

2(α3 +µF1 +µF2)Q
3
0

+ (α1 +µE)
3(α3 +µF1)

2(α2 +µA +µF2)Q
3
0

+ (α1 +µE)
3
µ

2
F2
(α2 +α3 +µA +µF1)Q

3
0

+ (α1 +µE)
3(α2 +µA)(α3 +µF1)µF2 Q2

0(2Q0 +1)

+ 2(α1 +µE)
2(α2 +µA)

2(α3 +µF1)
2Q2

0

+ 2(α1 +µE)
2(α2 +µA)

2
µ

2
F2

Q2
0

+ 2(α1 +µE)
2(α3 +µF1)

2
µ

2
F2

Q2
0

+ 4(α1 +µE)
2(α2 +µA)(α3 +µF1)µF2(α2 +α3 +µA +µF1 +µF2)Q

2
0

+ (α1 +µE)
2(α2 +µA)

3(α3 +µF1 +µF2)Q
2
0

+ (α1 +µE)
2(α3 +µF1)

3(α2 +µA +µF2)Q
2
0

+ (α1 +µE)
2
µ

3
F2
(α2 +α3 +µA +µF1)Q

2
0

+ (α1 +µE)(α2 +µA)
3(α3 +µF1 +µF2)

2Q0

+ (α1 +µE)(α3 +µF1)
3(α2 +µA +µF2)

2Q0

+ (α1 +µE)µ
3
F2
(α2 +α3 +µA +µF1)

2Q0

+ 2(α1 +µE)(α2 +µA)
2(α3 +µF1)

2
µF2(2Q0 +1)

+ 2(α1 +µE)(α2 +µA)
2(α3 +µF1)µ

2
F2
(2Q0 +1)

+ 2(α1 +µE)(α2 +µA)(α3 +µF1)
2
µ

2
F2
(2Q0 +1)

+ (α2 +µA)
3(α3 +µF1)µF2(α1 +α3 +µE +µF1 +µF2)

+ (α2 +µA)(α3 +µF1)
3
µF2(α1 +α2 +µE +µA +µF2)

+ (α2 +µA)(α3 +µF1)µ
3
F2
(α1 +α2 +α3 +µE +µA +µF1)

+ 2(α2 +µA)
2(α3 +µF1)

2
µ

2
F2

+ 2φα1α2α3(α1 +µE)(α2 +α3 +µA +µF1 +µF2)> 0 .

It is also positive because all parameters of the model are positive.

Finally, for k = 0, R(0)
15 = a00 = (α1 + µE)(α2 + µA)(α3 + µF1)(µF2)(1−Q0) and for k = 1, R(1)

15 = a10 =

φα1α2α3

(
1− 1

Q0

)
. In both cases, the signal of the matrix element will depend on Q0 to be 0 < Q0 < 1 or

Q0 > 1. Moreover, the factors (1−Q0) and
(

1− 1
Q0

)
have opposite signals in those cases. Therefore, in the
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case 0 < Q0 < 1, R(0)
15 > 0 and the first column of the Routh Table for k = 0 will be strictly positive, causing

P0 to be stable. Yet, for k = 1, in the same case, R(1)
15 < 0, and there will have a change of sign in the last

element of the first column of the Routh Table, causing P1 to be unstable. Now, turning to the case Q0 > 1,
we now have R(0)

15 < 0 for k = 0 and R(1)
15 > 0 for k > 1. Hence the change of sign in the first column of the

Routh Tables switches and now P0 becomes unstable and P1 becomes stable. In the case Q0 = 1, R(k)
15 = 0

for k = 0,1, P0 and P1 are coincident and trivial,the independent terms ak0 of the characteristic polynomials
ΦPk (λ ), k = 0,1 vanish and there take place a null eigenvalue, λ = 0. This fact together with the change of
stability in ρ = 1 is sufficient to characterise the point as an transcritical bifurcation point.
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