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ABSTRACT. Stagnation points beneath solitary gravity-capillary waves in the weakly nonlinear weakly
dispersive regime in a sheared channel with finite depth and constant vorticity are investigated. A Korteweg-
de Vries equation that incorporates the surface tension and the vorticity effects is obtained asymptotically
from the full Euler equations. The velocity field in the bulk fluid is approximated which allow us to compute
stagnation points in the solitary wave moving frame. We show that stagnation points bellow the crest of
elevation solitary waves exist for large values of the vorticity and Bond numbers less than a critical value
that depends on the vorticity. Remarkably, the positions of these stagnation points do not depend on the
surface tension. Besides, we show that when there are two stagnation points located at the bottom of the
channel, they are pulled towards the horizontal coordinate of the solitary wave crest as the Bond number
increases until its critical value.
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1 INTRODUCTION

Particle trajectories beneath gravity water waves have been studied ever since Stokes [17] (1847).
Our understanding of this problem has developed quite a bit since then. There have been many
numerical and theoretical works on particle trajectories using different frameworks and there-
fore it is hard to give a comprehensive overview of contributions. For the interested reader, we
summarize here some works in which this problem has been studied.

Stokes [17] showed that for periodic surface waves in the shallow water and deep water regime,
the particle trajectories follow loops with a mean Stokes’ drift (small horizontal displacement)
in the wave propagation direction. Consequently, he concluded that in the presence of a counter-
current closed orbits always exist. However, the successive approximation method used in his
work lacked of mathematical rigour. A rigorous proof of the Stokes’ drift existence in the shallow
water and deep water regime was given by Ursell [19]. Only recently, Constantin and Villari [4]
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266 STAGNATION POINTS BENEATH ROTATIONAL SOLITARY WAVES

proved the nonexistence of closed orbits for the linear problem and Constantin and Strauss [5]
proved that it is always possible to find closed orbits in the presence of a uniform counter-current.
Notwithstanding, the position of the particles that describe closed orbits were not determined.
These orbits were later computed numerically by Nachbin and Ribeiro-Jr [14] using a bound-
ary integral method for the full Euler equations. Particle trajectories have also been computed
numerically using asymptotic models such as the Korteweg-de Vries equation (KdV) [1, 2, 8, 9],
Serre equations [12] and Schrödinger equation [3, 6].

In the presence of a linear sheared current and in the moving frame of the water surface the
dynamical system of particle trajectories becomes autonomous and the flow structure can be
seen through the streamlines. In this case, an interesting flow structure so-called Kelvin cat-
eyes arises. This structure is featured by the existence of stagnation points (critical points of
the autonomous dynamical system) and closed streamlines. Using the full Euler equations, Teles
Da Silva and Peregrine [18] used a boundary integral formulation to capture closed streamlines.
Related results and anomalies in the pressure in the bulk fluid were later reported by Ribeiro-Jr
et al. [15] using the conformal mapping method and a time-dependent Kelvin cat-eye structure
over a variable topography was captured by Flamarion et al. [7] for the linear problem. Similar
results with respect to solitary waves for the KdV equation was also obtained by Johnson [11]
using an asymptotic method. More recently, Guan [9] used the Korteweg-de Vries equation to
compute closed streamlines beneath solitary waves. He showed that the KdV predictions agree
well with the full Euler equations for solitary waves with small amplitudes.

When surface tension is included to the full Euler equations, Martin [13] proved the existence of
steady periodic equatorial geophysical water waves with capillary effects and stagnation points.
He also showed that if the vorticity is large enough these flows possess stagnation points. Hur
and Wheeler [10] found Kelvin cat-eye streamline patterns beneath Crapper’s capillary waves in
a rotational flow with constant vorticity. Stagnation points for periodic pure capillary waves and
gravity-capillary waves were also found in the recent work of Shoji and Okamoto [16]. To the
best of our knowledge there are no articles studying the submarine Kelvin cat-eye structure and
stagnation points beneath solitary waves for KdV equation in the presence of surface tension.

In this work, our goal is to investigate the role of the surface tension on particle trajectories
beneath gravity-capillary solitary waves in the presence of a vertically sheared current with con-
stant vorticity. More precisely, we are interested in studying the effects of the surface tension on
stagnation points. We focus on gravity-capillary waves in the weakly nonlinear, weakly disper-
sive regime. Under these assumptions, we derive a Korteweg-de Vries equation that incorporates
the surface tension and the vorticity effects asymptotically from the full Euler equations. This
allow us to approximate the velocity field in the bulk fluid and consequently compute particle
trajectories. The problem is reformulated in the moving frame of elevation solitary waves and
stagnation points are found bellow their crests for large values of the vorticity and for Bond
numbers less than a critical value that depends on the vorticity. Furthermore, we show that the
position of these stagnation points do not depend on the surface tension. In addition, we show
that when there are two stagnation points at the bottom of the channel, they are pulled towards
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the horizontal coordinate of the solitary wave crest as the Bond number increases until its critical
value.

2 MATHEMATICAL FORMULATION

In this section, we present the mathematical formulation of the problem and derive asymptotically
a KdV equation for rotational gravity-capillary solitary waves.

We consider a two-dimensional incompressible flow of an inviscid fluid with constant density (ρ)
in a finite depth channel (h) with constant vorticity (−ω) under the gravity force (g) and surface
tension (σ ). Under these assumptions the velocity field in the bulk fluid can be written as

∇φ̃(x,y, t)+(ωy,0), (2.1)

where φ̃(x,y, t) is the harmonic component of the velocity field. The governing equations that
model the problem are the full Euler equations

φ̃xx + φ̃yy = 0 for −h < y < η̃(x, t), (2.2)

φ̃y = 0 at y =−h, (2.3)

η̃t +ηx

(
ωη̃ + φ̃x

)
− φ̃y = 0 at y = η̃(x, t), (2.4)

φ̃t +
1
2

(
φ̃

2
x +2ωη̃φ̃x + φ̃

2
y

)
+gη̃ −ωψ̃ − σ

ρ

η̃xx

(1+ η̃2
x )

3/2 = 0 at y = η̃(x, t), (2.5)

where ψ̃ is the harmonic conjugate of φ̃ and η̃ is the free surface. It is convenient to rewrite
the system (2.2)-(2.5) using dimensionless variables. To this end, we consider λ as a typical
wavelength, a as a typical wave amplitude, c0 = (gh)1/2 the linear long-wave speed and introduce
the scaling

x → λx, y → hy, t → λ

c0
t, η̃ = aη , φ̃ =

ac0λ

h
φ , ψ̃ = ac0ψ. (2.6)

Sustituting (2.6) in (2.2)-(2.5) we obtain the following set of dimensionless equations

µ
2
φxx +φyy = 0 for −1 < y < εη(x, t), (2.7)

φ̃y = 0 at y =−1, (2.8)

ηt + εηx

(
Ωη +φx

)
− 1

µ2 φy = 0 at y = εη(x, t), (2.9)

φ̃t +
ε

2

(
φ

2
x +2Ωηφx +

1
µ2 φ

2
y

)
+η −Ωψ − µ2Bηxx

(1+ ε2µ2η2
x )

3/2 = 0 at y = εη(x, t), (2.10)

where ε = a/h is the nonlinearity parameter, µ = h/λ is the shallow water parameter, −Ω =

−ωh/c0 is the dimensionless vorticity and B = σ/ρgh2 is the Bond number. We point out that
when B ̸= 0 the dynamic of the free surface is controlled by the effects of the surface tension
and by fluid inertia. On the other hand, when B = 0, the dynamic is fully dominated by fluid
inertia [20].

Trends Comput. Appl. Math., 24, N. 2 (2023)
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In order to obtain an asymptotic model from equations (2.7)-(2.10), the weakly nonlinear (ε ≈ 0)
weakly dispersive (µ2 ≈ 0) regime is considered. Moreover, we assume that nonlinearity and
dispersion are balanced as ε = µ2 and that the potential velocity is given by the power series
expansion [20]

φ(x,y, t) =
∞

∑
n=0

fn(x, t)(y+1)n. (2.11)

Substituting equation (2.11) in condition (2.7), we formally obtain

0 = εφxx +φyy =
∞

∑
n=0

ε∂
2
x fn(x, t)(y+1)n +

∞

∑
n=2

n(n−1) fn(x, t)(y+1)n

=
∞

∑
n=0

(
ε∂

2
x fn(x, t)+(n+2)(n+1) fn+2(x, t)

)
(y+1)n.

(2.12)

Thus, after some algebra we have the following expression for the potential velocity

φ(x,y, t) =
∞

∑
n=0

(−1)n εn

(2n)!
∂ 2n f0

∂x2n (y+1)2n +
∞

∑
n=0

(−1)n εn

(2n+1)!
∂ 2n+1 f1

∂x2n+1 (y+1)2n+1. (2.13)

From the Neumann condition (2.8) we conclude that f1(x, t) ≡ 0. Consequently, the potential
velocity and its harmonic conjugate can be written as

φ(x,y, t) =
∞

∑
n=0

(−1)n εn

(2n)!
∂ 2nΦΦΦ

∂x2n (y+1)2n, (2.14)

ψ(x,y, t) =
∞

∑
n=0

(−1)n εn

(2n+1)!
∂ 2n+1ΦΦΦ

∂x2n+1 (y+1)2n+1, (2.15)

where ΦΦΦ(x, t)= φ(x,−1, t) is the potential velocity evaluated at the bottom of the channel. Substi-
tuting equations (2.14)-(2.15) into Kinematic and Bernoulli conditions (2.8)-(2.9) and neglecting
the second order terms as done by Guan [9] we obtain

ΦΦΦtt −ΦΦΦxx −ΩΦΦΦtx − ε

[
ηxΦΦΦx +Ωηηx +ηΦΦΦxx

]
− ε

[1
2

ΦΦΦttxx −
1
2
(
ΦΦΦ

2
x
)

t −
Ω

6
ΦΦΦtxxx −

1
6

ΦΦΦxxxx

]
− εBηxxt = 0.

(2.16)

Notice that substituting equation (2.13) into (2.10) we obtain

η =−ΦΦΦt +ΩΦΦΦx +O(ε), (2.17)

then using this fact in equation (2.16) yields

ΦΦΦtt −ΦΦΦxx −ΩΦΦΦtx − ε

[
ηxΦΦΦx +Ωηηx +ηΦΦΦxx

]
− ε

[(1
2
−B

)
ΦΦΦttxx −

1
2
(
ΦΦΦ

2
x
)

t −
(

Ω

6
−ΩB

)
ΦΦΦtxxx −

1
6

ΦΦΦxxxx

]
= 0.

(2.18)

Trends Comput. Appl. Math., 24, N. 2 (2023)
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In an effort to obtain an asymptotic model for right-going traveling waves, we introduce the new
variables ξ = x− ct and τ = εt, where c is the solution of c2 +Ωc = 1 on the positive branch,
i.e.,

c =−Ω

2
+

√
Ω2 +4

2
. (2.19)

Denote by ΦΦΦ(ξ ,τ) and η(ξ ,τ) the potential velocity evaluated at the bottom of the channel and
the free surface in the new coordinate system respectively. Thus,

ΦΦΦx = ΦΦΦξ , (2.20)

ΦΦΦt =−cΦΦΦξ + εΦΦΦτ , (2.21)

ΦΦΦtt = c2
ΦΦΦξ ξ −2cεΦΦΦξ τ +O(ε2), (2.22)

ΦΦΦxt =−cΦΦΦξ ξ + εΦΦΦξ τ . (2.23)

In particular, from equation (2.17) we have

η = (c+Ω)ΦΦΦξ +O(ε). (2.24)

Substituting the relations (2.20)-(2.23) into (2.18) after some algebra we have

ΦΦΦξ τ +
(Ω2 +3)(c+Ω)

2c+Ω
ΦΦΦξ ΦΦΦξ ξ +

( c2

3(2c+Ω)
− B

2c+Ω

)
ΦΦΦξ ξ ξ ξ = 0. (2.25)

Using equation (2.24) in equation (2.25) yields the Korteweg-de Vries equation that incorporates
both, the surface tension and vorticity effects

ητ +αηηηηξ +βηξ ξ ξ = 0, where α =
Ω2 +3
2c+Ω

and β =
( c2

3(2c+Ω)
− B

2c+Ω

)
. (2.26)

It is worth to mention that the dispersive term of this KdV equation vanishes when B=Bc ≡ c2/3.
This critical value as a function of the vorticity parameter is depicted in Figure 1. Traveling
sech2–like solutions for equation (2.26) only exists when B ̸= Bc. In addition, elevation solitary
wave solutions of (2.26) occur when 0 ≤ B < Bc and depression solitary wave solutions of (2.26)
occur when B > Bc. From this point on, we focus only on elevation solitary waves (0 ≤ B < Bc).

Solitary wave solutions of (2.26) are described by the formula [20]

η(ξ ,τ) = Asech2(k(ξ −Cτ)), where k =

√
αA
12β

and C =
αA
3

. (2.27)

Consequently, from equation (2.24) we obtain

ΦΦΦξ (ξ ,τ) =
A

c+Ω
sech2(k(ξ −Cτ)). (2.28)

Once we are interested in investigating particle trajectories for the full model using the KdV
model as an approximation, we have to express the free surface and the potential velocity using
the Euler coordinates. The solitary wave solution in Euler coordinates is

η(x, t) = Asech2
(

k(x− (c+ εC)t)
)
, where k =

√
αA
12β

and C =
αA
3

, (2.29)

Trends Comput. Appl. Math., 24, N. 2 (2023)
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Figure 1: The critical value of the Bond number (Bc) as a function of the vorticity parameter (Ω).

and the horizontal velocity evaluated at the bottom of the channel is

ΦΦΦx(x, t) =
A

c+Ω
sech2

(
k(x− (c+ εC)t)

)
. (2.30)

3 COMPUTING PARTICLE TRAJECTORIES

In this section we formulate the dynamical system of particles in the bulk fluid and investigate
the role of the surface tension on the particle trajectories.

Particle trajectories beneath the solitary wave (2.29) can be computed approximately by solving
the dynamical system

dx
dt

= Ωy+ εφx(x,y, t)≈ Ωy+ εΦΦΦx(x, t), (3.1)

dy
dt

= φy(x,y, t)≈−εΦΦΦxx(x, t)(y+1). (3.2)

In order to compute stagnation points, it is convenient to solve (3.1)-(3.2) rewriting the horizontal
speed at the bottom of the channel (2.30) in the wave moving frame X = x−(c+εC)t and Y = y.
In this new framework, particle trajectories are solutions of the autonomous dynamical system

dX
dt

= ΩY − (c+ εC)+ εΦΦΦX (X), (3.3)

dY
dt

=−εΦΦΦXX (X)(Y +1), (3.4)

which are represented by the streamlines i.e., particle trajectories are the level curves of the
stream function ΨΨΨ(X ,Y ), which is given by

ΨΨΨ(X ,Y ) = εΦΦΦX (X)(Y +1)+
Ω

2
Y 2 − (c+ εC)Y. (3.5)

Trends Comput. Appl. Math., 24, N. 2 (2023)
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Figure 2: Typical phase portrait of (3.3)-(3.4) for a linear sheared current with A = 0.5, Ω =−20
and B = 0.5. The dots represent the position of the stagnation points.

The streamlines (3.5) are computed using the function contour that is implemented in MATLAB.

In the absence of surface tension, Guan [9] investigated particle trajectories beneath solitary
waves in the presence of a linear sheared current through the Korteweg-de Vries equation. He
showed that the orbits obtained from the asymptotic approximation agree well with the ones
computed through the full Euler equations when the solitary waves have small amplitudes. Based
on his results, in all simulations presented in this article we fix ε = 0.1. A typical phase portrait
of (3.3)-(3.4) is shown in Figure 2.
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Figure 3: The vertical coordinate of the stagnation point (0,Y ∗) as a function of the vorticity
parameter for different values of an amplitude of the solitary wave (2.29).
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We find stagnation points for large values of the vorticity parameter beneath elevation solitary
waves with 0 ≤ B < Bc. It is remarkable that the presence of surface tension does not change
the position of the stagnation points bellow the crest of the solitary wave. Denoting by (0,Y ∗)

the coordinates of a stagnation point bellow the crest of a solitary wave (2.29), we see that the
vertical coordinate Y ∗ satisfies the equation

0 = ΩY ∗− (c+ εC)+ εΦΦΦX (0) = ΩY ∗− (c+ εC)+
εA

c+Ω
, (3.6)

which only depends on the vorticity parameter and on the amplitude of the solitary wave, but
not on the surface tension. Figure 3 displays the vertical coordinate of these stagnation points
(Y ∗) as a function of the vorticity parameter for different values of the amplitude of the solitary
wave (2.29). Notice that the stagnation point appears initially at the bottom of the channel for a
critical value of the vorticity and once the vorticity increases the stagnation points move upwards.
Nonetheless, all stagnation points remain located close to the bottom of the channel. Besides,
solitary waves of small amplitudes require stronger vorticity values so that stagnation points can
arise.

0 100 200 300 400 500 600 700 800 900
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10
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=-30

=-40

=-50

Figure 4: The horizontal coordinate of the stagnation point (X∗,−1) as a function of the Bond
number for different values of the vorticity parameter and amplitude A = 0.5.

There are also regimes in which two stagnation points symmetric with respect to the y−axis exist
at the bottom of the channel. Denote these two stagnation points by (±X∗,−1) with X∗ > 0.
Therefore, the horizontal coordinate X∗ is obtained by solving the equation

0 =−Ω− (c+ εC)+ εΦΦΦX (X∗) =−Ω− (c+ εC)+
εA

c+Ω
sech2(kX∗) = 0. (3.7)

Differently from the stagnation point bellow the solitary wave crest, in this case the surface
tension affects its position. In fact, we notice that the point X∗ approaches zero as B → Bc. In
addition, for a fixed value of Ω, the coordinate X∗ decreases as a function of the Bond number

Trends Comput. Appl. Math., 24, N. 2 (2023)
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(B). More details of these dependences are depicted in Figure 4 for a fixed value of the solitary
wave amplitude.

4 CONCLUSIONS

In this paper, we have obtained a Korteweg-de Vries equation for gravity-capillary waves in
the presence of a vertically sheared current with constant vorticity using asymptotic analysis
for the full Euler equations. We computed numerically stagnation points that are beneath the
crest of elevation solitary waves for large values of the vorticity and Bond number in the range
0 ≤ B < Bc. In addition, we showed that the surface tension does not affect the position of these
stagnation points. Besides, we showed that when there are two stagnation points located at the
bottom of the channel, they are pulled towards the horizontal coordinate of the solitary wave
crest as the Bond number increases until its critical value. It would be interesting to investigate
the existence of stagnation points when the Bond number is critical. However, the asymptotic
model deduced in this article is not appropriate for this study. An attempt to obtain a higher-
order KdV model that incorporates the surface tension and vorticity effects seems a natural path
to be pursued in future.
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