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ABSTRACT. The aim of this paper is to analyse the evolution of the COVID-19 pandemic in Rio Grande
do Sul by applying graph-theoretical tools, particularly spectral clustering techniques, on weighted graphs
defined on the set of 167 municipalities in the state with population 10,000 or more, which are based on
data provided by government agencies and other sources. To respond to this outbreak, the state has adopted
a system by which pre-determined regions are assigned flags on a weekly basis, and different measures
go into effect according to the flag assigned. Our results suggest that considering a flexible approach to the
regions themselves might be a useful additional tool to give more leeway to cities with lower incidence rates,
while keeping the focus on public safety. Moreover, simulations show that the combination of pendulum
migration and isolation data used in this paper leads to a coherent qualitative description of the evolution
of the pandemic in Rio Grande do Sul. These simulations also confirm the dampening effect of isolation on
the dissemination of the disease.

Keywords: Spectral clustering, COVID-19 pandemic, discrete epidemiological model.

1 INTRODUCTION

The aim of this paper is to employ graph-theoretical tools to understand the dissemination of
COVID-19 in the Brazilian state of Rio Grande do Sul. These tools may be useful sources of
additional information for decision making by health and government authorities.

The year 2020 has been marked by the global outbreak and spread of the virus SARS-CoV-2,
which causes the coronavirus disease (COVID-19) in humans [8]. In December 2019, several
patients with an unknown severe respiratory disease were traced back to a wholesale market in
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Wuhan, China. Researchers were quick to detect and isolate a novel strain of coronavirus [26].
It was soon discovered that the virus is highly contagious, and that it can be transmitted by in-
fected individuals before they show the first symptoms and even by infected individuals that
remain asymptomatic throughout the course of the disease [25]. This has led to unprecedented
public health measures by the Chinese authorities. A lockdown of Wuhan and 15 other cities in
Hubei Province took effect on January 23 [11]. On January 30, the World Health Organization
(WHO) declared COVID-19 a public health emergency of international concern [8]. In the next
month, a large number countries implemented measures aiming to prevent a global pandemic,
ranging from travel restrictions, contact tracing and social isolation to border closures and lock-
downs [8]. These actions turned out to be unsuccessful in eradicating the disease, and the WHO
characterised the outbreak as a pandemic on March 11. Two days later, it assessed that Europe
had become the epicenter of the pandemic [8]. The virus then quickly reached Brazil.

The first confirmed case of COVID-19 in Brazil dates back to February 26, in the state of São
Paulo, and the Brazilian Health Ministry declared a state of nationwide community transmission
on March 20 [3]. At that point, the number of confirmed cases in the state of Rio Grande do Sul
was 37 [6], and the state government had already instated measures aimed at slowing down the
spread of the virus, including school closures and a ban on commercial interstate travel [4]. In the
next month, a large number of restrictions were imposed on activities that were deemed inessen-
tial. By the end of April, there were 1466 cases and 51 deaths officially attributed to COVID-19
in the state of Rio Grande do Sul [6]. At this point, and as of this writing, there was no vaccine
or proven effective treatment for patients with severe cases of COVID-19 [8]. Recognizing the
seriousness of the health crisis and the social and economic impact of widespread isolation, the
state government unveiled a regulatory model for controlled distancing [5]1, which went into
effect on May 11.

This regulatory model divided the state into 20 (pre-determined) regions based on the availability
of beds in intensive care units (ICU beds) for COVID-19 patients. Every week, each region is
assigned one of four possible flags, yellow (low risk), orange (medium risk), red (high risk) or
black (very high risk), according to a numerical value based on several indices that measure the
spread of the disease and the availability of ICU beds. Each flag entails different social distancing
measures and imposes different constraints on businesses (or even their mandatory closure). This
regulation has legal precedence over more flexible measures determined by local authorities or
by the federal government [2]. Due to its effect on daily lives and on the economic activity, this
model has been in the spotlight, and it has mustered praise, but also faced criticism. We should
mention that, after the adoption of this system in Rio Grande do Sul, other states have followed
suit and devised similar models (for instance, Acre, Mato Grosso, Mato Grosso do Sul, Pará, Rio
de Janeiro, and São Paulo).

The general aim of this paper is to analyse the evolution of the COVID-19 pandemic in Rio
Grande do Sul by applying graph-theoretical tools on data provided by government agencies and
other sources. Given the flag system described above, we believe that clustering techniques are

1https://distanciamentocontrolado.rs.gov.br/

Trends Comput. Appl. Math., 23, N. 4 (2022)
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particularly well-suited for this analysis. The general idea of clustering is to partition a (typically
large) data set into (a much smaller number of) clusters in a way that data in a same cluster
are similar, and data in different clusters are dissimilar. Formal measures of affinity and of the
quality of a given partition rely heavily on the context of the problem being considered. In this
paper, we address clustering from a graph-theoretical perspective. We consider weighted graphs
G = (V,E,ω), where the vertex set V is the data set, the edge set E contains edges connecting
elements of V and the function ω : E → R>0 assigns a positive weight wi j to each edge i j ∈ E.
Our main tool is the use of spectral clustering, which is widely used in exploratory data analysis,
but, to the best of our knowledge, has not been explored in connection with epidemiological
models. Specifically, we would like to contribute in the following directions:

(a) So far, social distancing is the only measure to contain the spread of the disease. What
would be a sensible way of dividing the state into smaller regions, so that each city lies
in a cluster with cities to which it is strongly connected? How does this division relate
with geographical divisions used by the state government? Is this interconnection reflected
in the manner in which the disease has actually spread in the state? Did the response to
self-isolation measures affect the way in which cities were interconnected?

(b) The flag system proposed by the government prescribes constraints on activities and busi-
nesses according to the risk assigned to each region. Would a more flexible approach, in
which cities can be assigned to different regions on a weekly basis, allow more cities to be
assigned lower risk flags?

(c) The availability of data, and the quality of the data, is fundamental to get meaningful
results from any mathematical model. Did our data accurately capture the movement be-
tween cities and rates of social isolation? Can we see the impact of social isolation on the
dissemination of the disease?

To address the first two questions, we consider two types of affinity measures. The first type is
based on pendulum migration between cities, by which we mean the daily flow of commuters
for work or education, to which we incorporate data about self-isolation. Our method gives a
partition based solely on pre-pandemic data that captures the connection between the clusters
and the spread of the disease. Moreover, we observed that incorporating isolation had a negligible
effect on the way cities are clustered together. We believe that this suggests that the reaction to
appeals for isolation was similar throughout the state, regardless of the particular way in which
each city was affected by the disease. This seems to highlight the importance of a coordinated
message by federal, state and local, and by the media. The second type of affinity measures is
based on the availability of ICU beds. In this case, considering a more flexible approach to the
regions, by which new clusters are determined on a weekly basis, more cities are assigned lower-
risk flags. This may be useful complementary information for the flag system used in Rio Grande
do Sul.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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As a means to assess the quality of our data, we have also used a discrete SEIR compartmental
model to simulate the spread of the disease and the effect of the social distancing measures
that have been implemented, based on the migration and isolation data used for clustering. In
contrast to clustering techniques, models of this type are a basic tool in the epidemiological
toolbox, both in their discrete and continuous versions, and there is a vast literature related with
them, see [13, 14] and the references therein. Our contribution in this respect was to show that
the data for pendulum migration and isolation, combined with the available disease information,
described a scenario that is coherent with the evolution of the disease in the state. Extrapolating
from this, we conclude that isolation measures have been very important in slowing down the
spread of the disease (often referred to as flattening the curve of new cases).

The remainder of the paper is organized as follows. In Section 2, we describe the data used in
this paper. Section 3 is concerned with spectral clustering and its mathematical foundations. The
affinity measures mentioned above are discussed in that section, and we also analyse the parti-
tions that have been obtained by spectral methods. The SEIR model is introduced and analysed
in Section 4. We finish the paper with concluding remarks.

2 DATA

In this section, we describe the data used in our study. The actual matrices are available in our
git repository2. We consider the 167 municipalities in the state of Rio Grande do Sul whose
estimated population in 2019 is above 10.000 according to the Brazilian Institute of Geography
and Statistics (IBGE) 3. Hereafter they will be referred to as cities. The distance between cities is
given by a square matrix D = (di j) of order n = 167, where di j denotes the average road distance
from the seat of municipality i to the seat of municipality j and vice-versa, as calculated by the
web mapping service Google Maps.

Using data from the population census of 2010, which is the most recent census performed in
Brazil, we define square matrices T = (ti j) and E = (ei j) of order n, where ti j is the number of
daily commuters who reside in i and work in j and ei j is the number of commuters who reside in
i and go to school in j. These matrices have been obtained by extracting anonymized census mi-
crodata related to long-form questionnaires, which are publicly available4, and by extrapolating
them to the entire city population (adjusted to the 2019 values) using the survey weights that are
part of the census microdata. To extract the data from this large dataset, we used the commercial
statistical software Stata..

We also considered data directly related to the spread of the disease, and to the response to it,
which has been extracted directly from the state health authorities [6].

2https://www.github.com/Lucassib/Cluster-COVID-19-RS
3https://www.ibge.gov.br/estatisticas/sociais/populacao
4https://www.ibge.gov.br/estatisticas/sociais/populacao/9662-censo-demografico-2010.html?=&

t=downloads

Trends Comput. Appl. Math., 23, N. 4 (2022)
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In our approach, the time t is measured in weeks, where our weeks correspond to the state’s
epidemiological weeks, which go from Saturday to Friday. Regarding epidemiological data, we
consider N = 17 weeks starting at the week of March 7-13, when the first cases of COVID-19
were officially confirmed in the state, until July 3. We note that most pandemic related data is
actually released on a daily basis, but contains fluctuations that may be attributed to administra-
tive procedures. For instance, the number of reported cases and deaths regularly goes down on
weekends and holidays, and surges in the first business days thereafter, which suggests that it
does not reflect the actual behavior of the disease. Regarding cases and deaths, the weekly data
that we collect is simply the overall number of reported cases in a week. Regarding self-isolation
and ICU beds occupancy rates, we take the average over the time period. We should point out
that the number of ICU beds in the state expanded considerably during the weeks considered,
so that the number of total ICU beds in each city is also tracked on a weekly basis. Finally, we
point out that these data are only used for N = 8 weeks, starting at the week between May 2 and
8 (when the model for controlled distancing was unveiled).

The information about self-isolation in each city i ∈ [n] = {1, . . . ,n} is given by values βi(t) ∈
[0,1] for all t ∈ {1,2, . . . ,N}. This is an index developed by In Loco5, a technology firm with
offices in Brazil and in the United States, calculated from granular anonymized geolocation data
from more than 60 million mobile devices across Brazil. It is defined as the proportion of devices
in a city i that stayed within a radius of 450 meters from their habitual home during day t [10,21].

3 CLUSTERING

Consider a set of points M = {p1, . . . , pn} such that a weight wi j ≥ 0 is assigned to each pair of
points pi and p j, where i ̸= j and i, j ∈ [n]. The aim of data clustering is to partition this set of
points into classes such that elements of the same class are more alike, while elements of different
classes are less alike. The weight wi j measures affinity or similarity in this context6; the larger
the value, the larger their affinity. For general data sets, a large number of similarity measures
appear in the literature, and their quality depends on the context in which they are used [23].

Here, points are cities and weights are used to measure whether cities are highly interconnected
or not. Several such measures will be considered here. For instance, a simple way to measure
interconnection between cities is by simply considering the number of people who commute
between them. This leads to the following matrix, where the weight αi j between cities i and j is
defined through the matrices T and E defined in Section 2:

A0 = (αi j), where αi j = ti j + t ji + ei j + e ji. (3.1)

This choice is justified because, in the context of affinity measures, it is natural to consider
symmetric weights.

5https://www.inloco.com.br/
6We use the word affinity because, in some of our examples, cities that are more different in some aspects will have more
affinity to each other.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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In order to understand how the interconnection between cities was affected during the pan-
demic, we also considered weights given by matrices A(t), for t ∈ {1, . . . ,N}. To incorporate
self-isolation data, we first adjust the rate of self-isolation in each city i in terms of the average
isolation β i, which was calculated using the same cell-phone data for i in the entire month of
February, before the implementation of measures to contain the dissemination of COVID-19. We
define

β
∗
i (t) = max

{
βi(t)−β i

1−β i
,0

}
, (3.2)

so that β ∗
i (t) = 0 if rates of self-isolation are below average (this actually does not happen in our

data set after the first week); otherwise, it is a linear interpolation where 0 corresponds to the
average rate and 1 to full isolation. We are now ready to define

A(t) = (ai j), where ai j =
(
1−β

∗
j (t)
)
(ti j + ei j)+(1−β

∗
i (t))(t ji + e ji). (3.3)

The definition of A(t) reflects our belief that it is conceptually more relevant to consider infor-
mation about isolation in city j to assess the impact on commuting from i to j than information
about isolation in city i. On the other hand, we understand that the nature of our isolation in-
dex, which estimates the number of individuals who never leave their home, could suggest using
indices in city i to limit commutes from i to j. This has been tested and would have negligible
impact on the results. Moreover, it would have been natural to ignore data related to student
mobility as of the third week because all in-person school and university operations had already
been suspended by then. However, this turned out to make clustering more unstable, perhaps
because entries associated with smaller or more remote cities became too small.

3.1 Normalized cut

Before introducing the other affinity measures used in this paper, we first describe the framework
of our analysis. We think of the data points as vertices in a graph G=(V,E), where we use V = [n]
for simplicity. The weight between pi and p j is viewed as a weight ω(i j) = wi j associated with
the edge i j of G (if wi j = 0, we assume that vertices i and j are not adjacent in G).

In general terms, a clustering problem in G = (V,E) consists of finding a partition V =V1 ∪·· ·∪
Vk of the vertex set into a pre-determined number k of classes, where the partition optimizes
some measure of quality of the partition. There are several such measures proposed in the lit-
erature [23]. In this paper, we work with the the normalized cut introduced by Shi and Malik
in [12]. To define it, some additional notation is needed. Given U ⊂ V , let U = V \U be the
complement of U with respect to V . Moreover, for S,T ⊂ V , let W (S,T ) = ∑i∈S, j∈T wi j. For a
partition P = {V1, . . . ,Vk} of V , let

NCut(P) =
k

∑
ℓ=1

Cut(Vℓ,Vℓ)

Vol(Vℓ)
, (3.4)

where

Cut(P) =
1
2

k

∑
ℓ=1

W (Vℓ,Vℓ) and Vol(Vℓ) = ∑
i∈Vℓ

∑
j∈V

wi j.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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Finding an optimal partition in this context is to find a partition P of V that minimizes the value
of NCut(P). Note that this objective function takes both aims of clustering into account. On
the one hand, the only weights that appear on numerators of terms in (3.4) are weights of edges
whose endpoints lie in distinct classes, so that minimizing the function favors partitions such that
vertices in different classes have small weight. On the other hand, the denominator of the term
associated with Vi in (3.4) counts the weight of each edge with both endpoints in Vi twice, while
the other edges incident with Vi are only counted once. So, increasing the weight of internal edges
would decrease the value of the cut. Unfortunately, the authors of [12] showed that the problem
of finding such a partition is NP-hard for general graphs (even if k = 2).

However, this problem is well-suited for a spectral approach. The following definitions are well
known in spectral graph theory. The weighted adjacency matrix W = (wi j) of a graph G = (V,E)
with weight function ω is defined by wi j = ω(i j) if i j ∈ E and wi j = 0 otherwise. The degree of
a vertex i ∈V in G is given by di = ∑

n
j=1 wi j. The diagonal matrix with the degrees d1, . . . ,dn on

the diagonal is called the degree matrix D.

At this point, we could simply present the procedure that we use to cluster our data; however, we
believe that explaining how it works, and its connection to linear algebra, clarifies our approach.
The following computation are performed in detail in [23]. Given a positive integers n and k
and a partition P = {V1, . . . ,Vk} of the vertex set of a graph G = (V,E) with weight function
ω and no isolated vertices, consider the matrix XP ∈ Rn×k whose columns are the k vectors
x(ℓ) = (x1

(ℓ),x2
(ℓ), . . . ,xn

(ℓ))T with coordinates

x(ℓ)j =

{
1

Vol(Vℓ)
if j ∈Vℓ;

0 otherwise,

for all ℓ ∈ {1, . . . ,k} and j ∈ {1, . . . ,n}. Using the Laplacian matrix L = D−W associated with
the weighted graph G, it turns out that

NCut(P) =
k

∑
ℓ=1

Cut(Vℓ,Vℓ)

Vol(Vℓ)
=

k

∑
ℓ=1

x(ℓ)
T

Lx(ℓ) = tr(XT
PLXP).

Writing YP = D− 1
2 XP we obtain that

NCut(P) = tr(Y T
P(D− 1

2 LD− 1
2 )YP) = tr(Y T

PLYP),

where L = D− 1
2 LD− 1

2 is the normalized Laplacian matrix associated with G. Therefore finding
an optimal partition in the sense of [12] is equivalent to finding a partition P that minimizes

ncutk(G) = min
Q

NCut(Q) = min
Q

tr(Y T
QLYQ),

where Q ranges over all partitions of V into exactly k sets. It is easy to see that Y T
QYQ = I, and

by the Rayleigh-Ritz Theorem [17, Theorem 13], we have

min
Y∈Rn×k,Y T Y=I

tr(Y T LY ) = λ1 + · · ·+λk, (3.5)

Trends Comput. Appl. Math., 23, N. 4 (2022)
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where 0 = λ1 ≤ ·· · ≤ λk are the k smallest eigenvalues of the symmetric matrix L . Moreover,
equality is achieved by matrices Y whose columns are orthogonal unit vectors generated by
eigenvectors associated with the eigenvalues λ1, . . . ,λk. As we have discussed, each partition of
V into k parts is associated with a matrix Y as above. However, there are matrices Y that are
feasible for (3.5), but are not of the form YQ for any partition Q. This leads to the the following
inequality:

ncutrel
k (G) = min

Y∈Rn×k,Y T Y=I
tr(Y T LY )≤ ncutk(G). (3.6)

As in usual LP-relaxations, the left-hand side of the inequality (3.6) may be computed efficiently
and gives a lower bound on the value of an optimal partition. On the other hand, there is no
obvious connection between a matrix Y that achieves ncutrel

k (G) in (3.6) (i.e. a matrix constructed
from eigenvectors associated with the smallest eigenvalues of L ) and a partition into k parts
P such that NCut(P) is close to ncutk(G). The following heuristic tries to find good quality
partitions. To turn the matrix Y into a partition P , it uses a well-known geometric method, known
as K-means [16]. One way of assessing the quality of the output partition P is by looking at the
ratio NCut(P)/ncutrel

k (G)≥ 1. If this ratio is exactly 1, the partition P is optimal. Otherwise, it
gives an upper bound on the actual value of the ratio ρ(P) = NCut(P)/ncutk(G) (however, we
should mention that the gap between ncutrel

k (G) and ncutk(G) may be very large in general). It is
important to mention that this heuristic has been quite successful in practice, we refer to [18, 19,
24] for more explanation about these empirical findings. Moreover, defining the best choice for
the number of clusters k is an important problem with no definitive solution. Parameters that are
often used to indicate a good choice of k are the spectral gap (this is the ratio between consecutive
eigenvalues, small ratios followed by a larger jump λk+1/λk indicate that k is a good choice) and
the closeness to 0 (k is the number of eigenvalues below a certain threshold), and the stability of
the clusters obtained in repeated iterations of the procedure, but other criteria also appear in the
literature [23].

We now state the heuristic of Shi and Malik [12], iterated S times. Given an affinity matrix W
associated with an n-vertex graph G = (V,E), do the following:

(1) Let D to be the degree matrix associated with W and construct its normalized Laplacian
matrix L = D−1/2LD−1/2, where L = D−W .

(2) Compute vectors x1,x2, . . . ,xk ∈ Rn , where each xi is a unit eigenvector associated with
the eigenvalue λi, where λ1, . . . ,λk are the k smallest eigenvectors of L (counting multi-
plicity). In the case of repeated eigenvalues, the eigenvectors associated with them must
be orthogonal. Form the matrix X = [x1x2 . . .xk] ∈ Rn×k by stacking these eigenvectors in
columns.

(3) Form the matrix Y = (yi j) from X = (xi j) by renormalizing each of the rows to have unit
length (i.e. yi j = xi j/∑

n
j=1 xi j).

(4) for s = 1, . . . ,S do (let Q denote the best partition obtained up to a given step, where the
starting partition is arbitrary.)

Trends Comput. Appl. Math., 23, N. 4 (2022)
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(4.1) Treating the ith row of Y as a point yi ∈Rk, split {y1, . . . ,yn} into k clusters S1, . . . ,Sk

via K-means.

(4.2) Let P be the partition such that vertex i is assigned to cluster ℓ if and only if yi lies
in Sℓ.

(4.3) If NCut(P)< NCut(Q), redefine Q as P .

(5) Return Q, the partition with minimum Ncut obtained in step (4).

3.2 Affinity based on pendular migration

When we compute the eigenvalues of the matrix L associated with the affinity measure A0

defined in (3.1), we find determine that there is a considerable eigenvalue gap between λ10 and
λ11, which suggests that k = 10 is a good choice for the number of clusters. When we apply the
above procedure to the affinity measure A0 for S = 500, we obtain the partition given in Figure 1,
whose gap is NCut(P)/ncutrel

k (G) ≈ 1.3256. This means that P is at most 32.56% above the
actual value of ncutk(G), but the gap is typically much smaller (and may possibly be optimal).
Regarding stability, this partition P has been obtained 183 times out of the 500 iterations of the
procedure.

Spectral Clustering Pre-determined Regions

Figure 1: Clustering obtained by spectral clustering with respect to measure A0 for k = 10 clus-
ters. The largest city in each cluster is marked with a larger circle. The regions defined by the
government are on the right.

Even though the data used to obtain this partition is not related to the pandemic, if we look at
the evolution of the number of cases during this time period, the connection between the clusters
and the spread of the disease is perceptible. For instance, Figure 2 shows how real data about

Trends Comput. Appl. Math., 23, N. 4 (2022)
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the disease evolved in cities of two neighboring clusters of Figure 1 (left), namely the black
and red clusters, in four different weeks (detailed material for all clusters is available in our git
repository). The red cluster consists of four cities: Gramado, Canela, Nova Petrópolis and São
Francisco de Paula (which are part of a nationally renowned touristic area) and the other cluster
is centered in Caxias do Sul, the second largest city in the state by population. One important
feature about these clusters is that they are subsets of the same region, according to the state 20
pre-determined regions. Note that the largest cities of all remaining clusters are also the largest
city in their pre-determined region. The first cases appear in the cluster of Caxias do Sul quite
early, and they quickly spread to cities in the same cluster, which has a relatively large number
of active cases by May 2, the first week displayed in the figure (and the ninth week with cases
in the state). On the other hand, there are no recorded cases in the cluster of Gramado until the
week of May 9. After the first case is identified, all the other cities in the cluster record cases in
a span of three weeks.

Figure 2: Clockwise, starting from the top left. Cases on the weeks from May 2-8, May 9-15,
May 16-22 and from May 30 to June 5. Gray stands for no active cases, green for cases in the
interval [1,50], blue for [51,100] and red above 100. Dark colors mean that the number of active
cases has increased from the previous week, light colors mean that they have decreased.

This behavior supports the choice of pendulum migration as a footprint for the spread of the
disease, as was done in [22], for instance. However, instead of census data, the authors of [22]
used mobile geolocation data from [21] to monitor the movement between cities.

As mentioned at the beginning of this section, instead of using A0, one could adjust the measure
to incorporate rates of isolation, using a different measure A(t) (defined in (3.3)) at each time

Trends Comput. Appl. Math., 23, N. 4 (2022)
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t. As it turns out, the difference in the partition obtained when performing the above clustering
procedure for A(t) instead of A0 is minor. Indeed, the Hamming distance at any time t between the
two partitions was at most 1 (out of 167). This may indicate that public response to self-isolation
has been rather uniform throughout the state.

3.3 Affinity based on available ICU beds

As mentioned in the introduction, the state government introduced regulation to define when
mandatory protocols of social distancing must be put into effect. Every Saturday, each region,
out of a pre-determined set of 20 regions (which in turn are sorted into seven macroregions), is
assigned one of four possible flags, yellow, orange, red or black, according to a numerical value
based on several indices, which take the number of cases, the number of hospitalizations, the
number of deaths and the availability of ICU beds into account. Once a flag has been assigned,
cities in the region must adapt to the state regulations associated with that flag (local governments
may enforce stricter rules, if desired).

Even though this method was met by a very positive reception from health and local authorities,
its implementation quickly led to complaints by cities and economic agents who deem to have
been treated unfairly. For instance, in the first weeks using this method, it was pointed out that
several cities where no cases had ever been recorded had been assigned orange or red flags (owing
to an outbreak or a shortage of ICU beds in their region, for instance). Moreover, since the index
for a region incorporates data from the macroregion to which it belongs, a high risk flag can
be assigned to a region in which no city had a substantial number of cases. In some instances,
this has led to loud public outcry and threats of disobedience by local authorities, which in turn
led to negotiations and adjustments. At the present moment, regulations include automatic ‘flag
reductions’ for cities that meet certain criteria. This is the case for cities where no new cases have
been recorded in the past two weeks, for instance. Moreover, each city can appeal to a board after
its weekly classification has been revealed. When this happens, the city is allowed to present new
data, such as an expansion on the total number of ICU beds.

Given this reality, we aim to look at the partition into regions under a more flexible perspective.
To this end, we propose affinity measures that consider the availability of ICU beds (updating it
weekly) and consider what happens when we re-organize the regions on a weekly basis. For a
city i, let ui(t) be the average total number of ICU beds in i at time t, and let ℓi(t) be the average
number of ICU beds that are available (i.e. unoccupied and ready to accommodate new patients)
in i at time t. The first measure is ‘static’, as it only considers the total number of ICU beds at the
beginning of the recording process:

C0 = (γi j), where γi j =
|ui(0)−u j(0)|

di j + c
, (3.7)

where ui(0) denotes the total number of ICU beds in city i on May 2 and di j is the distance
between i and j given by matrix D (see Section 2) and the constant c = 10 avoids the effect of
very small distances.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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Week of June 13-19 Week of June 20-26

Figure 3: Partitions obtained using the affinity measure (3.8) using data from the weeks from
June 13-19 (left) and June 20-26 (right).

The intuition behind this definition is that the health systems of two cities i and j that are ge-
ographically close, but whose health infrastructure is very different, would tend to be intercon-
nected (with the city with small health capability transferring patients to the other), while two
cities whose health capacities are equivalent would be less dependent on each other.

The second measure is ‘dynamic’, not only updating the number of ICU beds, but also
considering the actual number of ICU beds that are ready to accommodate new patients:

C(t) = (ci j(t)), where ci j = max
{

ηi(t)
ℓ j(t)− ℓi(t)

di j + c
,η j(t)

ℓi(t)− ℓ j(t)
di j + c

}
, (3.8)

where c = 10 and ηi(t) =
ui(t)−ℓi(t)+1

ui(t)+1 . This quantity ηi(t) may be viewed as a rate of urgency
for city i to look for ICU beds outside its borders. This rate is 1 if it does not have any ICU
beds or if all its ICU beds are occupied, and decreases as the percentage of available beds gets
larger. The term ℓi(t)−ℓ j(t) accounts for the fact that a city j with more available ICU beds than
i would be desirable to receive patients rom i. In other words, the affinity measure of intercon-
nection between i and j goes up from the perspective of i if its health system is strained and j is
geographically close and has more available beds.

Applying the above spectral partitioning procedure with the affinity measure defined in (3.8) for
k = 20 (the number chosen by the state) and S = 500 produces the partitions in Figure 3 in two
consecutive weeks. In this particular case, 26 cities switched regions from one week to the next.

Our aim using this measure is to assess whether allowing the regions to be re-organized on a
weekly basis can bring meaningful additional information to one of the features of the state flag
system, namely that the state consists of 20 pre-determined regions, which are in turn combined

Trends Comput. Appl. Math., 23, N. 4 (2022)
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into seven macroregions. To this end, we shall first give a general description of the way in
which the state assigns flags to regions (the formula is in the appendix). The flag is based on
11 individual indices, classified in two main types, disease propagation or healthcare capacity,
and computed in one of three levels (within each region, within each macroregion or statewide).
For each index, four intervals have been defined, and a flag is assigned to the index according to
the interval it belongs to. The flag actually assigned to the region is obtained from a weighted
average of the flags assigned to the different indices.

Here, we have devised an alternative formula (the formula is in the appendix), which uses exactly
the same indices wherever possible. An important difference is that we do not use any indices
related with macroregions, as it would not make sense to assign a city to a new region every
week, while at the same time assume that cities lie in a fixed macroregion. Unfortunately, some
of the data available for macroregions was not publicly available, or was less reliable, for the
cities themselves. Because of this, we transferred the weight of these indices to other indices
measuring similar features for cities. To assess what the dynamic clustering obtained using our
matrices might say about the clustering defined by the state, we proceed in two steps. The first
compares the flags assigned to the 20 pre-determined regions using the state’s formula and this
new formula. Figure 4 does this for the weeks from June 13-19 and June 20-26. (A comparison
for all seven weeks under consideration may be found in our git repository).

The second step is to split the state in 20 regions on a weekly basis (which we call the dynamic
partition) and compare the flags assigned by the new formula to these regions and to the 20 pre-
determined regions. This is done in Figure 5, which suggests that more cities would be assigned a
lower-risk flag in the dynamic partition. On the week from June 13-19, 26 cities had a lower-risk
flag for the dynamic regions, 13 cities had a higher-risk flag for the dynamic region, and 128
cities remained the same. On the week from June 20-26, these numbers where 50, 2 and 115,
respectively.

In short, our computations suggest that the flags assigned with the new formula are related with
the flags from the original formula. Moreover, flags assigned in the second step show that parti-
tioning on a weekly basis allows for more flexibility than considering the same partition through-
out. This sends the message that it might be possible to devise a formula that takes more, or more
reliable, information into account (as in the government’s formula), and that allows regions to be
adapted on a weekly basis.

We should emphasize that we do not believe that the new formula presented here is better than
the formula used by the state government, quite the opposite, but simulations suggest that the
new formula was able to capture the main features of the government’s formula using the data
available to us. We are also not suggesting that our regions are necessarily better than the pre-
determined regions defined by the state government. Even though our results show that a more
flexible approach would allow more cities to be assigned lower-risk flags, implementing weekly
changes to the regions would bring its own challenges. The government’s regions are heavily
based on the way in which the public health system is organized and on the reality that many
cities of small and average size do not have hospitals, particularly hospitals equipped with ICU

Trends Comput. Appl. Math., 23, N. 4 (2022)
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Our formula (June 20-26)

Figure 4: Flags assigned by the state formula (left) and by our formula (right) on the weeks from
June 13-19 (top) and June 20-26 (bottom).

beds to treat complex cases, and therefore need to establish formal agreements with one or more
cities to which their patients can be transferred. Because of this, periodic changes to the regions
would require that some cities direct their patients to hospitals in different cities every week,
which is certainly not easy to implement. However, in exceptional situations such as a pandemic,
this might be justified, and accepted by local governments, given the benefit of more leeway to
cities that are not as directly affected by the disease.
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Figure 5: Flags assigned by our formula to the state’s regions (left) and to the dynamic regions
(right) on the weeks from June 13-19 (top) and June 20-26 (bottom). Flags are given by colors,
regions are labelled 0 to 19.

4 SEIR MODEL

Using the data collected in the previous sections, it is possible define a discrete model for the
spread of the disease, which gives a qualitative description of the evolution of the disease and
helps us understand the effect of different parameters associated with the disease and of measures
to contain it. We consider a discrete susceptible-exposed-infectious-recovered (SEIR) epidemio-
logical model, where the spread of the disease is represented by a recurrence relation indexed by
a discrete parameter t ∈ {0,1, . . .}. This recurrence relations are give the expected behavior of a
stochastic process defined on a digraph G = (V,E,ω), where each vertex represents a city and
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the weight wi j of an arc i j represents the number of commuters from i to j on an average day.
Each city i ∈ V has population Pi and, for all t ≥ 0, the vector xi(t) = (Si(t),Ei(t), Ii(t),Ri(t))
stands for the number of susceptible, exposed, infected and removed inhabitants of city i at time
t, respectively. As usual, all susceptible individuals are assumed to be prone to contracting the
disease. Exposed individuals have been infected, but are not yet contagious, while infected in-
dividuals are capable of infecting susceptible individuals. Removed individuals either recovered
(and became immune from the disease) or passed away. Initially, each city i is assigned a vector
xi(0) with the number of individuals in each class at the start of the process.

We now describe how our system evolves. As in the work of Silva, Pereira and Nonato [22], we
assume that most of the movement between cities may be attributed to daily commutes. On day
t, part of the population of each city leaves their city to work or study, and comes back in the
evening. This leads to a row stochastic matrix M = (pi j) of order n, where n = |V |. We interpret
pi j as the relative flow from city i to city j, given by pi j = (ti j + ei j)/Pi, where ti j and ei j come
from the matrices T and E from Section 2. This corresponds to the proportion of the population
of i that regularly commutes to j. The diagonal entries are given by pii = 1−∑ j ̸=i pi j.

As a consequence, during the day each city j has an effective population of

P′
j = ∑

i∈V
pi jPi.

We shall also assume that all classes of individuals are equally likely to move between cities, so
that the effective number of individuals of each class in city j on day t is given by

S′j(t) = ∑
i∈V

pi j(t)Si(t), E ′
j(t) = ∑

i∈V
pi j(t)Ei(t),

I′j(t) = ∑
i∈V

pi j(t)Ii(t), R′
j(t) = ∑

i∈V
pi j(t)Ri(t).

In our model, infections only occur during the day (at the city where each individual spends the
day). Each such individual is assumed to meet L other individuals in a normal day. However,
assuming that a susceptible individual spends the day at city j, the number of actual meetings
on day t is assumed to be L(1− β ∗

j (t))
2, where β ∗

j (t) is the relative rate of isolation of city j
on day t, given in (3.2). This rate has been assumed under the simplifying assumption that the
probability that, for a meeting to happen, both participants cannot be under self-isolation, and
this would happen with probability (1−β ∗

j (t))
2 if the decision to self-isolate were taken by each

individual spending the day in city j, independently of all others, with probability β ∗
j (t). When

an individual is infected, we assume that the disease takes its course in 14 days, following the
phases described in guidelines of the Center for Disease Control and Prevention (CDC) [9]. In the
first four days [15], incubation occurs, in the next 5 days, infected individuals are contagious [20]
and, in the final five days, individuals are still convalescent, but do not transmit the disease [7].
While infectious, we assume that the probability that an encounter between a susceptible and an
infected individual leads to an infection is given by τ(k), where k is the number of days since
the infected individual became contagious. As in [20], we assume that τ(k) follows a triangular

Trends Comput. Appl. Math., 23, N. 4 (2022)



i
i

“A7-1496-9690” — 2022/10/11 — 18:16 — page 721 — #17 i
i

i
i

i
i

L. E. ALLEM, C. HOPPEN, M. M. MARZO and L. S. SIBEMBERG 721

distribution over the five days, with a peak on the third day. We have τ(k) = 0 for k > 5. The
area of the triangle in the definition of this distribution is given by R0/L, to ensure that the basic
reproductive number (assuming no isolation) is R0 = 2.4, following a situation report by the
WHO [1] (see also [7]).

The recurrence relations become

Si(t +1) = Si(t)−R0Si(t)∑
j

pi j
∑

t
k=t−4(1−β ∗

j (t))
2I′new

j (k)τ(k− t +5)

P′
j(t)

Inew
i (t +1) = R0Si(t)∑

j
pi j

∑
t
k=t−4(1−β ∗

j (t))
2I′new

j (k)τ(k− t +5)

P′
j(t)

Ei(t +1) = Ei(t)+ Inew
i (t +1)− Inew

i (t −2)

Ii(t +1) = Ii(t)+ Inew
i (t −2)− Inew

i (t −13)

Ri(t +1) = Ri(t)+ Inew
i (t −13)

In the above, for simplicity, we assume that Inew
i (s) = 0 for all s ≤ 0 and i ∈ [n]. Just to illustrate

where these equations come from, we discuss the case where an individual in city i does not
contract the disease at time t +1 in the case where there is no social distancing. With probability
pi j, the individual moved to city j on day t + 1. The probability that an encounter leads to an
infection is

R0

L

t

∑
k=t−4

τ(k− t +5)
I′new

j (k)

P′
j(t)

,

so that the probability that no encounter leads to an infection, given that the individual spends
the day in city j, is(

1− R0

L

t

∑
k=t−4

τ(k− t +5)
I′new

j (k)

P′
j(t)

)L

≈ 1−R0

t

∑
k=t−4

τ(k− t +5)
I′new

j (k)

P′
j(t)

.

Since the same holds for each susceptible individual in i and knowing the proportion of suscepti-
ble individuals that commute from i to j, the first equation in the above system gives the expected
number of susceptible individuals at time t that remain susceptible at time t +1.

We run this model starting with the official state data on May 26 to simulate the evolution of
the disease until July 9. The number of new infections in the days before this date are estimated
using data from May 20-26, where we assume that new cases correspond to 10% of the number
of active cases. The results for the cities of Porto Alegre (the state capital and largest city), Rio
Grande (the largest port in Southern Brazil and the city with highest average rate of self-isolation)
and Antônio Prado (a small city with a population of about 13,000, where the average rates of
self-isolation are lowest) appear in Figure 6.

It is striking to compare it with the behavior of these quantities in the case where there is no
social distancing (that is β ∗

j (t) = 0 for all j and t) and with the situation in which the high rates
of self-isolation observed on the week between March 21 and 27 had been maintained after May
26 (βi = 0.614, on average). This appears in Figure 7.

Trends Comput. Appl. Math., 23, N. 4 (2022)



i
i

“A7-1496-9690” — 2022/10/11 — 18:16 — page 722 — #18 i
i

i
i

i
i

722 A SPECTRAL CLUSTERING APPROACH FOR THE EVOLUTION OF THE COVID-19 PANDEMIC

0 10 20 30 40 50 60
Time (days)

0

20

40

60

80

100

120

140

Da
ily

 n
ew

 c
as

es

Porto Alegre
Antônio Prado
Rio Grande

0 10 20 30 40 50 60
Time (days)

0

200

400

600

800

Cu
m

ul
at

ed
 c

as
es

Porto Alegre
Antônio Prado
Rio Grande

Figure 6: Number of new cases and the cumulative number of cases (per 100,000 inhabitants) in
three cities of Rio Grande do Sul. The x axis represents the number of days after May 26.

To see the effect of self-isolation in this model, in Figure 8 we plot the number of cases in Porto
Alegre on July 9 assuming that the rate of self-isolation remained constant throughout the time
period, and is given by the corresponding value on the x-axis.

According to our data, the average rate of isolation in Porto Alegre has been about 44.3% during
this time period. We note that a simple calculations shows that, while the number of susceptible
individuals is much higher than the number of individuals in the other classes, isolation would
need to be above 55% to keep the effective reproductive number of the disease below 1.

Even though we have opted to plot the evolution of the disease from May 26 to avoid intrinsic
errors coming from initial conditions where the number of infected individuals was very small,
we should mention that the isolation data were successful at explaining the ups-and-downs in the
number of cases in the first weeks of the pandemic in Porto Alegre. According to the simulations,
the number of cases remained stable between March 31 and the week of May 26, and started
growing rapidly since then. State data report that the number was stable until early June, and
grew rapidly since then. (Specific data are in the ancillary files.)
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Figure 7: On the top: Number of new cases in Porto Alegre assuming the actual isolation data
(left), no isolation (center) and strict isolation (right). In the middle: number of active cases in
each scenario. On the bottom: cumulative number of cases in each scenario.
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Figure 8: Number of active cases, and the cumulative number of cases in Porto Alegre on July 9,
assuming that the rate of isolation remains constant, and is given by the value on the x axis.
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5 CONCLUDING REMARKS

In this paper, we looked at the evolution of the COVID-19 pandemic in Rio Grande do Sul using
graph theory. We applied spectral clustering techniques on weighted graphs defined on the set of
167 municipalities in the state with population 10,000 or more, using official data provided by
government agencies and isolation data by In Loco. Results related with our first measure, based
on data for pendulum migration, provided a partition of the state into 10 clusters. The largest city
in all but one of the clusters is also the largest city in its own governmental region, and the only
exception gives two regions where the evolution of the disease was quite different. This confirms
that pendulum migration is an important means of spreading the disease. Our results have also
shown that, in this situation, considering dynamic clusters that incorporate self-isolation data
would give essentially the same clusters. In future work, it would be interesting to see if this can
also be observed in other regions, particularly if they are more heterogeneous.

Given the specific context of the flag system in Rio Grande do Sul, our main contribution was
obtained using an affinity measure based on the availability of ICU beds. Our results suggest that
considering a flexible approach to the regions themselves would be a useful additional tool in
giving more leeway to cities with lower incidence rates, while keeping the focus on public safety.
However, this is just a first step in evaluating the adequacy of such an approach. Future work
could look for more data (in a municipal level), which would allow a direct comparison with the
government system. Moreover, implementing this approach on the ground would require state
and local authorities to assess the practicality of periodic changes to the regions. For instance,
this would need to be met with changes in patient transfer protocols.

To evaluate the quality of the data used for clustering, we have observed that disease informa-
tion from the literature, combined with the isolation data, have provided a coherent qualitative
description of the evolution of the pandemic in Rio Grande do Sul using a simple discrete SEIR
model. Extrapolating from this, we conclude that isolation measures have been very important in
slowing down the spread of the disease. Of course, better results would be achieved with a better
understanding of the behavior of the disease and with a model that takes more information into
account.

Acknowledgments
The authors are particularly indebted to In Loco for providing data about self-isolation in the
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A FORMULA FOR FLAGS

This appendix contains the formulae used to compute the flags. The formulae are weighted means of a
series of parameters.

A.1 Government formula

The parameters used in the government formula are as follows:

R j = Number of cities in region j ∈ {1,2, . . . ,20}.

Mk = Number of cities in macroregion k ∈ {1,2,3,4,5,6,7}, where Mk( j) is the macroregion containing
region j.

S = Total number o cities (167)

Pj = Population of region j

a(t) = New hospitalizations due to COVID-19 in week t

b(t) = SARS patients in ICU beds in week t

c(t) = New confirmed COVID-19 patients in regular hospital beds in week t

d(t) = New confirmed COVID-19 patients in ICU beds in week t

e(t) = Active cases in week t

f (t) = Recovered people during the seven weeks prior to t

g(t) = Deaths due to COVID-19 in week t

h(t) = COVID-19 patients in ICU beds in week t

i(t) = Free ICU beds in week t

BR j
1 (t) = a(t)

1+a(t−1) ; B
Mk( j)
2 (t) = b(t)

1+b(t−1) ; B
Mk( j)
3 (t) = c(t)

1+c(t−1) ; B
Mk( j)
4 (t) = d(t)

1+d(t−1) ; BR j
5 (t) = e(t)

1+ f (t) ;

BR j
6 (t) = a(t)·100,000

Pj
; BR j

7 (t) = g(t)·h(t)
h(t−1) ; B

Mk( j)
8 (t) = i(t)

h(t) ; B
Mk( j)
9 (t) = i(t)

i(t−1) ; BS
10(t) =

i(t)
h(t) ; BS

11(t) =
i(t)

i(t−1)

Each parameter is associated with a ‘flag’ according to the following ranges:

β
R j
1 (t) =


0, if BR j

1 (t)< 1.05

1, if 1.05 ≤ BR j
1 (t)< 1.2

2, if 1.2 ≤ BR j
1 (t)< 1.5

3, if 1.5 ≤ BR j
1 (t)

β
R j
2 (t) =


0, if B

Mk( j)
2 (t)< 1.05

1, if 1.05 ≤ B
Mk( j)
2 (t)< 1.3

2, if 1.3 ≤ B
Mk( j)
2 (t)< 1.5

3, if 1.5 ≤ B
Mk( j)
2 (t)

β
R j
3 (t) =


0, if B

Mk( j)
3 (t)< 1.05

1, if 1.05 ≤ B
Mk( j)
3 (t)< 1.2

2, if 1.2 ≤ B
Mk( j)
3 (t)< 1.5

3, if 1.5 ≤ B
Mk( j)
3 (t)

β
R j
4 (t) =


0, if B

Mk( j)
4 (t)< 1.05

1, if 1.05 ≤ B
Mk( j)
4 (t)< 1.1

2, if 1.1 ≤ B
Mk( j)
4 (t)< 1.25

3, if 1.25 ≤ B
Mk( j)
4 (t)
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β
R j
5 (t) =


0, if BR j

5 (t)< 0.25

1, if 0.25 ≤ BR j
5 (t)< 0.5

2, if 0.5 ≤ BR j
5 (t)< 0.75

3, if 0.75 ≤ BR j
5 (t)

β
R j
6 (t) =


0, if BR j

6 (t)< 1.5

1, if 1.5 ≤ BR j
6 (t)< 3

2, if 3 ≤ BR j
6 (t)< 5

3, if 5 ≤ BR j
6 (t)

β
R j
7 (t) =


0, if BR j

7 (t)< 0.25

1, if 0.25 ≤ BR j
7 (t)< 0.6

2, if 0.6 ≤ BR j
7 (t)< 1

3, if 1 ≤ BR j
7 (t)

β
R j
8 (t) =


0, if 4 < B

Mk( j)
8 (t)

1, if 2.35 < B
Mk( j)
8 (t)≤ 4

2, if 1.5 < B
Mk( j)
8 (t)≤ 2.35

3, if B
Mk( j)
8 (t)≤ 1.5

β
R j
9 (t) =


0, if 4 < B

Mk( j)
9 (t)

1, if 2.35 < B
Mk( j)
9 (t)≤ 4

2, if 1.5 < B
Mk( j)
9 (t)≤ 2.35

3, if B
Mk( j)
9 (t)≤ 1.5

β
R j
10 (t) =


0, if 1.001 < BS

10(t)

1, if 0.8 < BS
10(t)≤ 1.001

2, if 0.7 < BS
10(t)≤ 0.8

3, if BS
10(t)≤ 0.7

β
R j
11 (t) =


0, if 1.001 < BS

11(t)

1, if 0.95 < BS
11(t)≤ 1.001

2, if 0.8 < BS
11(t)≤ 0.95

3, if BS
11(t)≤ 0.8

Fix the weights α1 = α2 = α3 = α4 = 0.375,α5 = 1,α6 = α7 = α8 = α9 = α10 = α11 = 1.25. The flag
assigned to cities in region j in week t is

B j(t) =

⌊
11

∑
n=1

αn ·β
R j
n (t)

⌋
.

A.2 Our formula

Our formula is computed using the parameters of the government formula that have been obtained for cities.

C j = Counts the total of municipalities in the cluster j ∈ {1,2, . . . ,20}

BC j
1 (t) = e(t−1)

e(t−2) ; BC j
2 (t) = d(t)

1+d(t−1) ; BC j
3 (t) = e(t)

1+ f (t) ; BC j
4 (t) = g(t)·h(t)

h(t−1) ; BC j
5 (t) = e(t)·100,000

Pj
; BC j

6 (t) = i(t)
h(t) ;

BC j
7 (t) = i(t)

i(t−1) ; BS
8(t) =

i(t)
h(t) ; BS

9(t) =
i(t)

i(t−1)

Each parameter is associated with a ‘flag’ according to the following ranges:

β
C j
1 (t) =


0, if BC j

1 (t)< 1.05

1, if 1.05 ≤ BC j
1 (t)< 1.2

2, if 1.2 ≤ BC j
1 (t)< 1.5

3, if 1.5 ≤ BC j
1 (t)

β
C j
2 (t) =


0, if BC j

2 (t)< 1.05

1, if 1.05 ≤ BC j
2 (t)< 1.1

2, if 1.1 ≤ BC j
2 (t)< 1.25

3, if 1.25 ≤ BC j
2 (t)
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β
C j
3 (t) =


0, if BC j

3 (t)< 0.25

1, if 0.25 ≤ BC j
3 (t)< 0.5

2, if 0.5 ≤ BC j
3 (t)< 0.75

3, if 0.75 ≤ BC j
3 (t)

β
C j
4 (t) =


0, if BC j

4 (t)< 0.25

1, if 0.25 ≤ BC j
4 (t)< 0.6

2, if 0.6 ≤ BC j
4 (t)< 1

3, if 1 ≤ BC j
4 (t)

β
C j
5 (t) =


0, if BC j

5 (t)< 30

1, if 30 ≤ BC j
5 (t)< 90

2, if 90 ≤ BC j
5 (t)< 270

3, if 270 ≤ BC j
5 (t)

β
C j
6 (t) =


0, if 4 < BC j

6 (t)

1, if 2.35 < BC j
6 (t)≤ 4

2, if 1.5 < BC j
6 (t)≤ 2.35

3, if BC j
6 (t)≤ 1.5

β
C j
7 (t) =


0, if 1 < BC j

7 (t)

1, if 0.8 < BC j
7 (t)≤ 1

2, if 0.7 < BC j
7 (t)≤ 0.8

3, if BC j
7 (t)≤ 0.7

β
C j
8 (t) =


0, if 4 < BS

8(t)

1, if 2.35 < BS
8(t)≤ 4

2, if 1.5 < BS
8(t)≤ 2.35

3, if BS
8(t)≤ 1.5

β
C j
9 (t) =


0, if 1.001 < BS

9(t)

1, if 0.95 < BS
9(t)≤ 1.001

2, if 0.8 < BS
9(t)≤ 0.95

3, if BS
9(t)≤ 0.8

Fix the weights α1 = α2 = 0.75,α3 = 1,α4 = α5 = α6 = α7 = α8 = α9 = 1.25, the flag assigned to the
cities in cluster j in week t is

B j(t) =

⌊
9

∑
n=1

αn ·β
C j
n (t)

⌋
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