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ABSTRACT. Different types of mathematical models have been used to predict the dynamic behavior of
the novel coronavirus (COVID-19). Many of them involve the formulation and solution of inverse problems.
This kind of problem is generally carried out by considering the model, the vector of design variables, and
system parameters as deterministic values. In this contribution, a methodology based on a double loop
iteration process and devoted to evaluate the influence of uncertainties on inverse problem is evaluated. The
inner optimization loop is used to find the solution associated with the highest probability value, and the
outer loop is the regular optimization loop used to determine the vector of design variables. For this task,
we use an inverse reliability approach and Differential Evolution algorithm. For illustration purposes, the
proposed methodology is applied to estimate the parameters of SIRD (Susceptible-Infectious-Recovery-
Dead) model associated with dynamic behavior of COVID-19 pandemic considering real data from China’s
epidemic and uncertainties in the basic reproduction number (%;). The obtained results demonstrate, as
expected, that the increase of reliability implies the increase of the objective function value.

Keywords: inverse problem, reliability-based optimization, modeling, COVID-19.

1 INTRODUCTION

Since November 2019, the world has observed the spread of a new disease, the COVID-19 (Coro-
navirus disease 2019). On 11 March 2020, the World Health Organization (WHO) declared
COVID-19 a pandemic. Since then, the scientific community have made efforts—in different
areas—to understand and mitigate the effects of this disease. By July 27, 2020, more than 67,000
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articles related to the COVID-19 have been published [12], many of them dealing with mathemat-
ical models related to the spread of the disease. To evaluate the individual behavioral response,
governmental actions, zoonotic transmission and emigration of a large proportion of the popu-
lation in a short period of time and vaccine administration related with the COVID-19, various
mathematical model-based predictions have been proposed and studied [10]. These models are
obtained through the formulation and solution of an inverse problem and aim to describe a state
of infection (susceptible and infected) and a process of infection (the transition between these
states) by using compartmental relations. In this case, the population is divided into compart-
ments by taking assumptions about the nature and time rate of transfer from one compartment to
another [2,20].

The solution of inverse problems represents a significant challenge due to the complexity and
non-linearity of the mathematical models frequently addressed. These models are typically asso-
ciated with non-linear equations that represent mass, energy, and momentum balances, which are
submitted to physical, constitutive, environmental, and design limitations. During the parameter
estimation process, the vector of design variables and system parameters are usually consid-
ered as deterministic values; however, in a real-world scenario, we must consider some degree
of uncertainty. In general, these uncertainties are related to [15]: i) geometrical and constitutive
parameters, and ii) simplifications adopted in the model formulation.

Probabilistic methods have been widely used in optimization problems, in order to mitigate pos-
sible uncertainties inherent to mathematical models. An approach capable of providing results
that incorporate the influence of uncertainties in the system is the reliability-based optimization.
The problem is modeled using random variables and the reliability depends on satisfying the
probabilistic constraints of the problem. In this context, the incorporation of uncertainties in the
analysis of simulations of compartmental models can be a good alternative in an attempt to quan-
tify uncertainties related to an epidemic. Taking into account the randomness related to contacts
between individuals in a population, the parameters that describe the evolution of an epidemic
over time can vary due to uncertainties.

In this contribution, the aim is to evaluate the influence of uncertainties related to the basic re-
production number (%), during the solution of an inverse problem used to predict the dynamic
behavior of COVID-19 pandemic considering real data from China’s epidemic. In order to deter-
mine the parameters that characterizes the proposed mathematical model (compartmental SIRD
- Susceptible-Infectious-Recovery-Dead model), a reliability inverse problem is formulated and
solved considering the Differential Evolution Algorithm (DE) [18,19] as optimization tool. In or-
der to evaluate the presence of uncertainties, the Inverse Reliability Analysis IRA) strategy [11]
approach is considered.

The analysis of the uncertainties in the value of % is promptly justified by the following aspects:
(i) the values of % are intrinsically dependent on the methodology employed, even for a specific
type of dynamic model [7] and (ii) there is a large range for values of % for the China’s pandemic
scenario (for instance, Riou and Althaus [14] reported 0.8 < %y < 5 in their computational
experiments). In this sense, the computational framework developed here—based on a reliability
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approach—provides a flexible tool to evaluate the effects of the commented uncertainties in the
prediction of the spread of the disease.

This work is organized as follows. Section 2 presents the description of mathematical model
considered to represent the evolution of COVID-19 pandemic. In Section 3 the general aspects
regarding the Reliability-Based Optimization are presented. A review about DE to deal with
mono-objective optimization is presented in Section 4. In Section 5, the proposed methodology is
discussed. The results obtained from the application of the methodology are presented in Section
6. Finally, the conclusions are outlined in Section 7.

2 MATHEMATICAL MODELING IN EPIDEMIOLOGY

Traditionally, models based on compartments have been used to represent dynamic behavior of
diseases [1,3,9] . These models are constituted by compartments—each of them representing frac-
tions of the population—interconnected by specific terms. These terms are determined as functions
of the hypotheses considered during the formulation of the particular model of disease.

2.1 The SIRD Model

As mentioned earlier, the aim of this contribution is to determine the parameters of an epidemio-
logical model to predict the evolution of COVID-19 epidemic considering real data from China’s
pandemic. For this purpose, the SIRD (Susceptible-Infectious-Recovery-Dead) model is con-
sidered [1]. Here, among other possible formulations for the SIRD model [9], we employ the
formulation described by Chatterjee et al. [3]. In SIRD model, an individual/host is susceptible
to infection and the disease can be transmitted from any infected individual to any susceptible
individual. For the susceptible individuals, the dynamics is described by:

% — _BSI/N, S(0)=S, @

where ¢ is the time, B is the per capita transmission rate, Sy is the initial condition for the
susceptible population and N is the population size. Similarly, for the infected individuals, we
have:

%:ﬁS[/N—(XI—}/I, I100) =1y 2.2)
where « is the effective per day recovery rate, y is the per-capita death rate, and [y is the ini-
tial condition for the infected population. The individuals that dead due to disease are given by

following relation:
dD
— =9I, D(0)=Dy (2.3)
dt

where Dy is the initial condition for the dead population. The recovery individuals are modelled

by the following differential equation:
dR _
dar

where Ry is the initial condition for the recovered population.

al, R(0)=R, (2.4)
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The schematic representation of this model, with each compartment, is presented in Fig. 1.
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Figure 1: Compartments in the SIRD model [1, 3].

Here, we used a normalized version of the SIRD model, considering Sy, I, D, and Ry, defined
as Sy = S/N, I, =I/N, D, = D/N and R, = R/N. In this case, the constraint regarding the
population size N is represented by Sy (#) 4+ 1,(t) + Dn(f) + Ra(¢) = 1. This normalized system is
represented by the following set of differential equations:

dasy

e —BSuln,  Su(0) = Syo (2.5)
dI,
E = ﬁSnIn - (Ot + '}’)In; In(O) = 1Ino (2.6)
dD,
dt“ = ¥l,, Dy(0)= Dy 2.7
dR
dt“ =al,, Ry(0)=Ryp (2.8)

Similarly, Syo, Ino, Dno and Ry represent the initial conditions for the susceptible, infected, dead
and recovered populations, respectively, for the normalized model.

To predict the dissemination spread of infectious disease into a population, the basic reproduc-
tion number (%) is usually considered as an epidemiological metric. As mentioned by Anastas-
sopoulou and co-workers [1], this parameter represents the average number of secondary cases
that result from the introduction of a single infectious case in a totally susceptible population
during the infectiousness period.

It is important to mention that this parameter is affected by type of pathogen, environmental
conditions and behaviour of infected population, among others [24]. In addition, when %y >1,
the infection will be able to start spreading in a population, i.e., for an epidemic to occur in a
susceptible population this parameter must be greater than 1 [1]. By using this value, the potential
size of an outbreak can be evaluated and the proportion of the population that must be vaccinated
can be estimated [7].

For the model described by Egs. (2.5)-(2.8), the parameter % is given by following relation [1]:
B

Ko

As pointed out in Section 1, the uncertainties regarding the value of % justify the study of the
reliability problem.
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3 RELIABILITY-BASED OPTIMIZATION

Uncertainties are related to the observations of most phenomena that occur in nature. In general,
this kind of problem can be modeled using random variables. In the case of optimization prob-
lems, reliable results can be interpreted as those that meet certain failure criteria. Specifically in
terms of reliability-based optimization, probabilistic constraints are incorporated into the prob-
lem, so that optimizers calculated under these conditions satisfy certain levels of reliability and,
therefore, represent reliable solutions.

Initially, let X = (X, ..., X,,) bet a set of n continuous random variables. The functional rela-
tionship between these variables is performed by means of a performance function, represented
as Y = g(X). The boundary between the safe and failure regions, which represents the state in
which a system can no longer fulfill the function for which it is designed, is called the limit state
function and denoted by Y = 0. Therefore, the probability of failure of a given random event, in
terms of the performance function g (X), is defined as

p=PlX) 0= [ fxdx, 3.1
g(x)<0

where f; (x) represents the joint probability density function and the integration is performed
over the failure region.

Equation (3.1) may be computationally expensive to be solved, since the number of random
variables in practical applications is generally high. Additionally, the limit state can be described
by a highly nonlinear function. Thus, there is rarely a closed-form solution for the integration
of Eq. (3.1). One possible treatment is to use analytical approximations of such integrals, which
are simpler to calculate. The following is an inverse approach to reliability analysis, capable of
approximating reliable solutions through an iterative technique. For more details on reliability-
based optimization, refer to Haldar and Mahadevan [6].

3.1 Inverse Reliability Analysis

Consider the case in which the failure region in the reliability problem is constrained by
g(X) < 1, in such a way that g(X) is highly nonlinear. In this case, Fy () =P [g(X) < 7],
where Fy represents the cumulative distribution function. A generalized probability index g is
a monotonically decreasing function, such that

Fe(n) =@ (—Q) , (3.2)

where @ represents the standard normal cumulative distribution function. In the specific case
where the failure region is determined by g (X) < 0, Eq. (3.2) is represented by

F (0) <@(-Q0) (3.3)
and Q is a scalar that represents the target reliability index.

Trends Comput. Appl. Math., 22, N. 1 (2021)
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Equation (3.3) can take two distinct forms, taking into account the corresponding inverse
transformations, given by
Q=-d ' (F (0)) > (3.4a)

and

n*=F ' (®(-Q)) >0, (3.4b)
where Q is the reliability index and n* is called the target probabilistic performance measure.
One may notice that Eq. (3.4a) is the compact form of

Y T |
a=e (/g(x)gof"(x)dx)’

whose approximation can be calculated using the reliability index approach [13].

In turn, the inverse approach, which is the focus of this work, given by Eq. (3.4b), can be under-
stood as the determination of a vector of design variables which satisfies the probabilistic con-
straint for a given target probability of failure, since FX_1 (pr) > 0, where pr = ®(—Q;) = F; (0)
is the limiting probability of failure. In this case, given a vector of variables X, the probabilistic
constraint is satisfied when n* > 0, such that

* _ p—1
m=h (/g<x>sn*f"(x)dx)’

Therefore, in the performance measurement approach [21], the value of the performance function
G (U) must be minimized, while the distance between the origin of the standard normal space
and the radius Q remains constant, that is, u* = argmin G (u), subject to ||u|| = €. The approx-

u
imate solution to this problem can be calculated using the Advanced Mean Value method, whose
fundamental description is presented below.

3.1.1 Advanced Mean Value Method

One of the first algorithms designed to solve inverse reliability problems by means of the perfor-
mance measurement approach, which stands out for its relative efficiency and simplicity, is the
Advanced Mean Value (AMV) method [25,26]. The method was originally proposed as a com-
putationally efficient technique to calculate the cumulative distribution function of a response
function. Later, the method was adapted to be applied in the reliability analysis.

In the first step of the algorithm, the random variables of the original problem must be trans-
formed into the standard normal space using the Rosenblatt transformation [16]. Let Fy (x) be
the cumulative distribution function of the random variable X. The transformation is expressed
by u=®"! (F (x)), where ® represents the standard normal cumulative distribution function.
Transformations of this type are always possible for continuous random variables. A particularly
simple transformation can be used when the random variables are mutually independent, that is,
u = (x— ;) /0oy It is important to emphasize that the transformation preserves the probability

Trends Comput. Appl. Math., 22, N. 1 (2021)
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and, therefore, such procedure does not introduce any type of potential error to the calculation of
the probability of failure.

At each iteration, one must calculate the search direction

W _  VGluw

a _
| VGl ]|

(3.5)
and the estimate of the most probable point of failure in the iteration k + 1 is calculated using
ukh) = 0a®. Since Q is constant throughout the iterations, it is assumed that an approxi-
mation of the vector of design variables that satisfies the target reliability index is sufficiently
accurate when &®) = [|u(®) —u<k’1)H < &, where € is the error threshold. When k — o, the
point u* is expected to be obtained, which represents the approximate solution of the reliability-
based optimization problem, that is, the point on the hypersphere of radius Q;, which satisfies the
established level of reliability (defined in terms of the reliability index).

4 DIFFERENTIAL EVOLUTION

Differential Evolution (DE) is a metaheuristic algorithm proposed by Storn and Price [18], which
has attracting attention in the last years, as a consequence of its simplicity and powerful perfor-
mance [5]. The structure of the canonical version of the method is based on three mechanisms:
mutation, crossover (or recombination) and selection. These steps are performed for each ele-
ment of the population, formed by NP individuals, for a quantity of generations (represented by
Gmax)- In the first step, called mutation, two elements in the population are randomly selected,
subtracted, multiplied by a factor (the perturbation rate F) and, then, added to a third random
individual in the population, as follows:

rand/1 — V=X, +F (Xr, —X;) 4.1)

where x,,, X, and x,, are candidate-solutions randomly selected in the population. This new vec-
tor (v) is the mutant vector. The representation rand /1 indicates that the vector X;, is randomly
selected and only one pair of vectors (X, and X,, ) is used (other schemes are possible [18]). In the
second step, the crossover, the mutant vector v is combined, coordinate to coordinate, to the cur-
rent individual in the population (x), following some stochastic rules (controlled by a crossover
constant, CR), producing a candidate-vector (usually represented by u). Finally, a greedy selec-
tion rule is employed to choose between the original individual (x) and the candidate-vector (u)
to form the offspring in a new generation.

5 METHODOLOGY

In this section, the procedure adopted to solve both deterministic and reliable inverse problems
are presented.

Trends Comput. Appl. Math., 22, N. 1 (2021)
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5.1 Inverse Deterministic Problem

In order to determine the SIRD parameters, it is necessary to formulate and solve an inverse
problem considering the real data from China. In general, the identification procedure consists in
obtaining the model parameters through the minimization of the difference between calculated
and reported values. For this purpose, the SIRD parameters (8, v and ) are considered as de-
sign variables in the proposed inverse problem. The non-dimensional value for the number of
infectious individuals (/) also is considered as an unknown variable. This is adopted in order
to guarantee a coherent initial condition for the differential equation system, i.e., the initial con-
dition for the normalized number of susceptible individuals is defined as a function of I, that
is, (Sn(0), Ih(0), Dn(0), Ry(0)) = (1 — Lo, Ino, 0, 0). Thus, the proposed inverse (deterministic)
problem considers the design variables ¥, 3, @ and I,o. In this case, the objective function is
the sum of squared residuals related to reported data of dead and infected individuals. Thus, the
objective is to minimize

OF = 1 f (1”.p - 151-‘“) a1 f (Dre.p - Dsi-m) ’ (5.1)
max (I;ep)Z = ni ni max (D;ep)Z = ni ni
subject to Eqs. (2.5)—(2.8), where the superscripts “rep” and “sim” stand for reported and
simulated data, respectively, and M is the number of reported data.

5.2 Inverse Reliability Problem

To formulate the inverse reliability problem considered in this work, it is necessary to define a set
of random variables and their functional relationship. For this purpose, the probability of failure
is based on the saturation of the parameter %y, defined by Eq. (2.9), in relation to a reference
value. Mathematically, this deterministic constraint can be represented as Z — % ret < 0, where
o ret 1s the upper limit of the basic reproduction number, defined by the solution of the inverse
deterministic problem.

In the context of reliability-based optimization, 8, & and 7 are now random variables. Consider-
ing the Rosenblatt transformation (see Section 3.1.1), the probability of failure can be represented
as

ug +uic
,ua"'lxt26+,uy+u36

_%O,ref <0/ >0 (5.2)

where g, [y and Wy represents the average values for the parameters 8, o and ¥, respectively,
o is the standard deviation and © is the probability of success.

It is important to emphasize that uncertainties are related to 8, @ and ¥ due to the random nature
of epidemiological models. On the other hand, the variable I,,g is considered a deterministic value.
The inverse reliability problem consists in calculating the deterministic and random variables in
order to minimize Eq. (5.1), subject to the probabilistic constraint given by Eq. (5.2)) and to the
SIRD model, Egs. (2.5)—(2.8)).

Trends Comput. Appl. Math., 22, N. 1 (2021)
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To solve this problem, DE and AMV methods are employed together, using a double-loop struc-
ture. The main steps of the algorithm are the following: in the outer loop, the deterministic
candidate solutions (vectors of design variables) are generated using DE; In the inner loop, for
each candidate solution AMV runs in order to determine the value of the inequality constraint
through the determination of the vector of random variables; Deterministic and random variables
are used to evaluate the objective function and the inequality constraints. In this case, the ob-
jective function is penalized if any constraint is violated, by means of the Static Penalization
Method [22].

6 RESULTS AND DISCUSSION

In this Section, we present the results for the inverse deterministic problem, also considering a
deterministic constraint regarding the value of %, in order to illustrate the deterioration of the
unconstrained solution with respect to the constrained problems. The inverse reliability problem
is also analyzed, and reliable simulated profiles are presented. For both problems, we adopt the
number of daily infected individuals and the cumulative number of dead individuals to solve the
inverse problems, reported from January 22, 2020 to May 1, 2020 [4, 8].

As pointed out previously, the inverse problems are solved by the DE algorithm, with the follow-
ing parameters: NP =25, CR = 0.8, F = 0.8, G = 500 and strategy rand/1 (see Eq. (4.1)). The
evolutionary process is interrupted if a given number of generations is found (in this case, 500).
The SIRD model is numerically solved by a 4-th order Runge-Kutta algorithm.

6.1 Inverse Deterministic Problem

This first case considers that all variables have no uncertainties, in a classical inverse problem
approach. The objective function (to be minimized) is represented by Eq. (5.1). We used the
following design space for the SIRD parameters: 0 < <1;0<a<1;0<y<1;0< <1
(these values are defined after some preliminary runs). In order to produce a simple statistical
analysis, each algorithm runs 20 times by using 20 different seeds for the random generation of
the initial population.

Table 1 presents the results (best, average and worst) obtained by using DE, which obtained
good estimates for the unknown parameters and, consequently, for the objective function. From
the physical point of view, 7 equal to 2.3927 x 103 implies a small per capita death rate, o equal
to 7.5125 x 1072 represent a moderate effective per day recovery rate. I represents the initial
fraction of cases that were reported (observed). Finally, the probability of disease transmission
per contact of the China’s population is equal to 0.3686, approximately.

Figure 2 present the non-normalized simulated and reported profiles considering the estimated
parameters. In Figs 2(b) and 2(c) we can observe the quality of obtained profiles in comparison
to real data. Figure 2(a) presents the evolution of susceptible population during the epidemic. As
expected, after the maximum value observed for the number of infected population, the number
of susceptible individuals decreases. Besides, both the number of dead and recovered individuals

Trends Comput. Appl. Math., 22, N. 1 (2021)
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Table 1: Results for the inverse problem (final time equal to 95 Days).

Best Average Worst
B (Day™ 1) 0.3686 0.3686 0.3686
y(Day™ 1) 23927x1073 2.3924x1073 2.3922x1073
o (Day ') 7.5125x1072 7.5124x1072 7.5124x1072

Lo 2.7806x1073  2.7806x1073 2.7805%x1073
OF 0.8249 0.8249 0.8249
7 1.4x10™ Do
£1.2x107 ER
3 = 5x107
Z1.0x10’ =
o el 4
=8.0x10* = 4x10 « RealData
b ’ . LS?’ 10* Infectious
£ 6.0x10™ 5 X )
£ 4.0x10" E 2x107]
4
Z2.0x10*; Z1x10]
“e o 0.0] Ol
T T T T A e S S 0 10 20 30 40 50 60 70 80 90 100
0 10 20 30 40 50 60 70 80 90 100 Time (Days)
Time (Days)
(a) Susceptible. (b) Infectious.
75250+ _
£ 4500 - § 1.2x10°
5 37501 : ' 1.0x10™
RS b 4
& 30007 Z8.0x10"]
52250 ° “]
2 Real Data E 6.0x10
£ 1500 Dead E4.0x10']
Z
& 7504 £2.0x10*
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time (Days) Time (Days)
(c) Dead (Cumulative). (d) Recovered.

Figure 2: Simulated and reported profiles considering the best estimated parameters.

stabilize with the reduction in the number of infected individuals (see Figs. 2(c) and 2(d)). Finally,
it is important to mention that the results are weighted in relation to the number of infected
individuals estimated by using DE, i.e., the population size is a fraction of chinese population
that, effectively, would have been diagnosed.

Considering the best values presented in the previous table, the basic reproduction number is
equals to Zy = 4.7554. Recently, Sanche et al. [17] reported %y = 5.7 for the situation of the
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epidemic in China. One may notice that this value agrees with the results obtained in this work.
Wearing et al. [23] demonstrated that the use of different methodologies to evaluate %, may
produce significant differences in this parameter.

As mentioned earlier, the basic reproduction number is used as the epidemiological metric. In
order to evaluate the influence of the estimated parameters (B, ¥, a and I) with respect to Zy,
new simulations considering the inclusion of a deterministic inequality equation in the original
inverse deterministic problem were performed. Table 2 presents the obtained parameters consid-
ering different values for the % r.r. In this table we can observe that the increase of the parameter
o rer implies in an increase in the range that defines the inequality constraint. This allows more
combinations among B, a, ¥ and, consequently, a better adjustment of the model in relation to
reported data, as observed in Fig. 3. In summary, as the value of the parameter % is equal to
4.7554 (for the unconstrained problem), only for values of % .t greater than 4.7554, the in-
equality constraint is, naturally, satisfied. An interesting result can be observed for % e = 1,
particularly in Fig. 3(c). We can note that the profiles for susceptible, infected and recovery in-
dividuals are quite different for % rof = 1 in comparison to other values; on the other hand, the
behavior for dead individuals is, somehow, similar. This pattern can be explained by the high
value for the parameter ¥ when % r.f = 1 — in fact, the inverse problem is “trying” to match the
real profile of dead individuals.

Table 2: Best results for the inverse problem considering different values for the parameter Z rer
(final time equal to 95 days).

Horet B Day ")  y(Day ) o (Day ') I OF

1 0.2649 1.8787x107"  7.7165x1072  4.1938x1073  17.2903
2 02253  3.5523x1072  7.7164x1072 2.1340x1072 15.9483
3 0.2450  4.5079x1073  7.6254x1072  4.1302x1073  9.5994
4 0.3193  2.6826x1073 7.5835x1072 2.8668x1073 22746
5 0.3686  2.3927x1073  7.5125x1072 2.7806x1073  0.8249

6.2 Inverse Reliability Problem

In the inverse reliability problem, we consider the following design space: 0 < ug < 1;0 < fig <
L0<u,<land0</lp<1.

The parameter % rct, necessary to formulate the inverse reliability problem in Eq. (5.2), was
considered equal to 4.7554. It is important to mention that this value corresponds to the solution
of the inverse deterministic problem and represents the limit value for the basic reproduction
number.

To evaluate the influence of uncertainties, 25 values (equally spaced) considering the following
range for the parameter Q were studied: 1 < Q <5 (that corresponds to 84.14% < © < 99.99%).
For each random variable (8, o and 7), the coefficient of variation (cov) equal to 0.05 and 0.1

Trends Comput. Appl. Math., 22, N. 1 (2021)
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El.4x105- _Roref=5 %\ 6x10*R0.ref =5
5 1.2x107 _5 5x10*] Roref =4
= 1.0x10° 2 410" ’
= S 4x10
= 4 =
= 8.0x107 = 3x10" * Real Data
2 6.0x10' AN
2 4 on10f B 2x10™
£4.0x10 =i 1x104
\ZiZ.Ox104‘ 1 2 0Jo —
“n 0.0{R oy =2 ~ o LRO,;~ef:1
T T T T T T T T T | -1x T T T T T T T T T T |
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time (Days) Time (Days)
(a) Susceptible. (b) Infectious.
%\5250- RO,ref %) .
= 4500 Real Data 2 1.35x10’1 Roref =5
= S 1.20x10° 0
_;3750~ 2 1.05x10’
5 22507 S 6.00x10'] 2\
"2 1500 2 450x10°; 0.ref =
5 £ 3.00x10'1 Ro.ref =2
g 7501 z 1'50)51(5)3 |
Q04 & 001 [ =
e -1.50x10* t————— ,R(,)’ref, 1, ,
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time (Days) Time (Days)
(c) Dead (Cumulative). (d) Recovered.

Figure 3: Simulated and reported profiles considering different values for the parameter % ref-

was adopted. Furthermore, we considered two types of distributions for each random variable

(normal and lognormal).

The random variables u are considered equal to zero in the first iteration of the IRA strategy. The
Euclidean norm of the vector u being smaller than 1.0 x 10~ along two consecutive iterations
was considered as the stopping criterion used to finish the IRA strategy. Table 3 shows the results
considering different values for the parameter Q and different types of distribution.

With respect to the deterministic solution, it is observed in this table that the increase of the
parameter € implies on an increase of the objective function value, i.e., a more reliable solution
represents a deteriorated solution in relation to the deterministic value. In addition, it is also
possible to observe a reduction in the values of the design variable ug in relation to deterministic
solution. On the other hand, both the parameters (i, and I, are increased by increasing the
parameter Q. In a similar way that occurs in the deterministic inverse problem, the increase
in the value of yy, must promote an increase in the number of dead individuals — in order to
assure that the constraint regarding the parameter %, is not activated. The parameter Ly has fell
variation for each value of the parameter Q and for each type of distribution.
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Table 3: Results for the inverse reliability problem (final time equal to 95 days).

Q (Reliability), cov = 0.05 - Normal Q (Reliability), cov = 0.05 - LogNormal
1(84.14%) 2.5(99.38%) 5(99.99%) 1(84.14%) 2.5(99.38%) 5 (99.99%)

,ug 0.3531 0.3189 0.2701 0.3531 0.3192 0.2717
Hy X 103 2.4471 2.6955 3.6039 2.4470 2.6918 3.5374
g X 102 7.7165 7.7026 7.6974 7.7165 7.7023 7.6909
Io x 10° 2.7272 2.8757 3.5146 2.7272 2.8732 3.4672
OF 0.9628 2.3019 6.6220 0.9624 2.2868 6.4338

Q (Reliability), cov = 0.1 - Normal Q (Reliability), cov = 0.1 - LogNormal

1(84.14%) 2.5(99.38%) 5(99.99%) 1(84.14%) 2.5(99.38%) 5 (99.99%)

uE 0.3299 0.2701 0.2265 0.3301 0.2718 0.2200
My X 10° 2.5911 3.6039 16.5553 2.5889 3.5335 12.2093
ul x 102 7.7165 7.7165 7.7167 7.7162 7.7161 7.7159
I 103 2.8067 3.5146 12.5514 2.8052 3.4645 9.4883
OF 1.7090 6.6220 14.5111 1.6991 6.4181 14.1303
"Day!.

In terms of the average number of evaluations required, IRA (87525) required a value higher
in relation to deterministic problem (11725). Obviously, this is an expected behavior due to the
characteristics of the DE algorithm. It should be remembered that a population of candidates
is proposed for each generation of DE, increasing the required number of evaluations of the
objective function.

Figure 4 presents the simulated and reported profiles considering the best estimated parame-
ters by using Q = {1, 2.5, 5}, cov = 0.05 and Normal distribution. In all these figures, we can
observe the influence of reliability in each population profile in relation to deterministic solu-
tion. The increase of the parameter Q imply on increase of distance between numerical solution
and reported data. In practice, a more reliable solution avoid that small perturbations violate
the probabilistic inequality constraint considered. On the other hand, any small perturbation in
relation to obtained deterministic solution implies a greater chance of violating the inequality
constraint considered. As pointed out previously, the more reliable solution implies a high quan-
tity of dead individuals—as can be seen in the profiles depicted in Fig. 4(c)—as a consequence of
the higher value for the parameter L, in order to maintain the constraint regarding the parameter
K inactive.

Figure 5 presents the influence of the type of distribution and the coefficient of variation by using
the IRA strategy. In these figures we can observe, for this application, small differences only for
Q greater than, approximately, 3.5 and 2.5, respectively for normal and lognormal distributions.
In relation to coefficient of variation, it is possible to observe significant differences in each
profile, i.e., the increase of this parameter implies in increase of the objective function value. This
result is expected, since the increase in cov implies on an increase of the range considered for
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Figure 4: Simulated and reported profiles considering the best estimated parameters by using
Q={1, 2.5, 5}, cov = 0.05 and Normal distribution.

calculating the means of random variables and, consequently, more violations in the probabilistic
inequality equations can be obtained.

7 CONCLUSIONS

This paper investigated the influence of uncertainties in the determination of the parameters of
a SIRD (Susceptible-Infectious-Recovery-Dead) model used to predict the dynamic behavior of
COVID-19 pandemic in China. For this purpose, the Inverse Reliability Analysis was consid-
ered. In the proposed methodology, two loops are performed. The inner optimization loop is
used to find the solution associated with the highest probability value and the outer loop is the
regular optimization loop used to determine the vector of design variables. The obtained results
demonstrated that small quantities affected the objective function value, i.e., the increase of the
reliability parameter implies on an increase of the objective function value. It is worth mention-
ing that the probability distribution of the system outputs should be known to apply the proposed
approach, as required by other reliability based optimization methods.
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Figure 5: Influence of the type of distribution and the coefficient of variation considering the
solution obtained by IRA.

Finally, it is worthwhile to mention that the insertion of a reliability analysis technique in the
formulation of the inverse problem implies increasing the value of the objective function, i.e.,
larger deviations between the simulated and reported profiles are observed. However, a reliable
solution, unlike a deterministic solution, is less sensible to small perturbations. Thus, the study of
uncertainties in the formulation and solution of inverse problems—especially in a core parameter
such as Zy—is justified in terms of this less sensibility of design variables.
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RESUMO. Diferentes tipos de modelos matemdticos tém sido usados para prever o
comportamento dindmico do novo coronavirus (COVID-19). Muitos deles envolvem a
formulacdo e solugdo de problemas inversos. Esse tipo de problema geralmente consid-
era que o modelo, o vetor de varidveis de projeto e os pardmetros do sistema sdo todos
valores deterministicos. Nesta contribuicdo, uma metodologia baseada em um processo
de iteragdo de loop duplo é considerada para avaliar a influéncia de incertezas durante a
resolug@o do problema inverso, proposto para estimar os pardmetros do modelo. No loop
intermo, a solucdo associada ao maior valor de probabilidade associada as varidveis que
apresentam incerteza é determinada. J4 no loop externo, os valores das varidveis deter-
ministicas é obtida. Para essa finalidade, a Andlise de Confiabilidade Inversa é considerada
como ferramenta de confiabilidade e o algoritmo de Evolugdo Diferencial é usado como
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ferramenta de otimizagdo. Para fins de ilustragdo, a metodologia proposta ¢ aplicada para
estimar os parametros do modelo SIRD (Susceptivel- Infeccioso-Recuperado-Morto) asso-
ciado ao comportamento dindmico da pandemia de COVID-19, considerando dados reais da
epidemia da China e incertezas no ndimero bdsico de reproducéo (%). Os resultados obti-
dos demonstram que o aumento da confiabilidade implica no aumento do valor da fungéo
objetivo.

Palavras-chave: problema inverso, otimizagdo baseada em confiabilidade, modelagem,
COVID-19.
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