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ABSTRACT. In this paper we investigate the generalized Pell numbers of order r ≥ 2 through the proper-
ties of their related fundamental system of generalized Pell numbers. That is, the generalized Pell number
of order r ≥ 2, are expressed as a linear combination of a fundamental system of generalized Pell numbers.
The properties of this fundamental system are examined and results can be established for generalized Pell
numbers of order r ≥ 2. Some identities and combinatorial results are established. Moreover, the analytic
study of the fundamental system of generalized Pell is provided. Furthermore, the generalized Pell Cassini
identity type is provided.

Keywords: generalized Pell fundamental system, generalized Pell numbers, combinatorial identities,
analytic representations, Generalized Cassini identity.

1 INTRODUCTION

The usual sequence of Pell numbers (Pn)n≥0 is defined by the initial conditions P0 = 0, P1 = 1,
and the recurrence relation Pn+1 = 2Pn + Pn−1, for n ≥ 1. In the literature, there are various
generalizations of this well known sequence of integers (see, for example, [4, 6, 10, 11], and ref-
erences therein). The sequence (Pn)n≥0 and their generalizations are widely studied from both al-
gebraic, analytic, combinatorial and matrix perspective, and it is an interesting subject of several
important properties and identities (see, for example, [1, 4, 6, 10, 11]).

In this paper we are concerned with the generalization defined by the following linear difference
equation of order r ≥ 2,

Pn+1 = 2Pn +Pn−1 + · · ·+Pn−r+1, for n≥ r, (1.1)

*Corresponding author: Elen Viviani Pereira Spreafico – E-mail: elen.spreafico@ufms.br
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126 ON GENERALIZED PELL NUMBERS OF ORDER r ≥ 2

where the initial conditions P0 = α0, . . . ,Pr−1 = αr−1 are adequately chosen. Let consider the
set Pr = {(P(s)

n )n≥0, 1 ≤ s ≤ r} of sequences of generalized Pell numbers (P(s)
n )n≥0 defined as

follows,

P(s)
n = 2P(s)

n−1 +
r−1

∑
i=1

P(s)
n−i−1 for n≥ r, (1.2)

P(s)
r−s = 1 and P(s)

n = 0 for 0≤ n 6= r− s≤ r−1.

For example, in case r = 3, the set P3 = {(P(s)
n )n≥0, 1≤ s≤ 3} of sequences of generalized Pell

numbers (P(s)
n )n≥0 is given by{

P(s)
n+1 = 2P(s)

n +P(s)
n−1 +P(s)

n−2, for n≥ 3,
P(s)

3−s = 1 and P(s)
n = 0 for 0≤ n 6= 3− s≤ 2.

The set Pr will play a central role in the sequel of this work. Indeed, we explore the family of
generalized Pell numbers (1.1), through the properties of the set Pr. More precisely, we describe
explicitly the closed connection between the sequences (P(s)

n )n≥0 (2≤ s≤ r−1) and the sequence
of generalized Pell numbers (P(r)

n )n≥0. This approach permits us to elaborate some combinatorial
identities and examined the analytical properties of each sequence of the set Pr. Finally, the
combinatorial and the analytical formula of the generalized Pell Cassini identity are investigate.

The content of this paper is organized as follows. In Section 2, we establish that the set Pr is
fundamental system of solutions of (1.1), considered as a difference equation. Moreover, for
every j (1≤ j ≤ r), we show that P( j)

n can be expressed with the aid of P(r)
k (n−1≤ k ≤ n− j).

Sections 3 and 4 are devoted to some results, identities and combinatorial relation, related to
the sequences of generalized Pell numbers. In Section 5 we study the analytical properties of
the elements of the set Pr, and derive the analytic aspect of every sequence of generalized Pell
numbers (1.1). Section 6 concerns the generalized Pell Cassini identity, where its combinatorial
and analytical expressions are considered. Finally, conclusion and perspective are provided in
Section 7.

2 GENERALIZED PELL NUMBERS (1.1) AND THE SET PR

Generally, for the usual generalized Pell numbers (Pn)n≥0 of order r ≥ 2, the initial conditions
are given by,

P0 = · · ·= Pr−2 = 0 and Pr−1 = 1. (2.1)

We can show that the sequence (P(r)
n )n≥0 of the Pell fundamental system Pr, is nothing else but

the generalized Pell numbers (Pn)n≥0 defined by (1.1) and initial conditions (2.1). Let study the
closed connection between the sequence (P(r)

n )n≥0, or equivalently the sequence (Pn)n≥0, and the
other sequences (P(s)

n )n≥0 (1≤ s≤ r−1) of the set Pr.

Trends Comput. Appl. Math., 22, N. 1 (2021)
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First, we establish that we have P(1)
n =P(r)

n−1, for every n≥ 1, and second that each P( j)
n (2≤ j≤ r)

can be expressed in terms of the generalized Pell numbers P(r)
n or P(1)

n . That is, we have P(1)
0 = 1,

P(1)
1 = · · · = P(1)

r−1 = 0 and P(1)
r = 1. On the other hand, we have P(r)

0 = P(r)
1 = · · · = P(r)

r−2 = 0,

P(r)
r−1 = 1. Therefore, we have P(1)

j+1 = P(r)
j = 0, for j = 0, . . . , r−2 and P(1)

r = P(r)
r−1 = 1. And an

induction process allows us to show that P(1)
n = P(r)

n−1, for all n≥ 1.

For 2≤ j ≤ r−2, let prove that P( j)
n = P(1)

n + · · ·+P(1)
n− j+1, for all n≥ r. To this aim, we proceed

by induction, involving a slight similar process as in the proof of P(1)
n = P(r)

n−1, for all n ≥ 1.

For j = 2, we set w(2)
n = P(1)

n +P(1)
n−1, for n ≥ 1 with initial conditions w(2)

1 = 1, = w(2)
s = 0, for

2 ≤ s ≤ r− 1, and w(2)
r = 1. For (P(2)

n )n≥0, we have P(2)
1 = 1, P(2)

s = 0, for 0 ≤ s ≤ r− 1, and
P(2)

r = 1. Hence, we have P(2)
1 = w(2)

1 = 1, P(2)
s = w(2)

s = 0, for 0≤ s≤ r−1, and P(2)
r = w(2)

r = 1.
Therefore, an induction process permits to derive that P(2)

n = w(2)
n = P(1)

n +P(1)
n−1, for every n≥ 1.

For 3 ≤ j ≤ r− 2, suppose that P(k)
n = P(1)

n + · · ·+P(1)
n−k+1, for every n ≥ k− 1. The sequence

(w( j+1)
n )n≥1 defined by w( j+1)

n = P(1)
n +P( j)

n−1. For P( j)
n−1, the first r terms are P( j)

n−1 = 0 for n =

1, . . . , j−1, P( j)
j = 1,P( j)

j+1 = 1 for n = j+1, . . . ,r−1 and P( j)
r = 1. Since P(1)

0 = 0 and P(1)
n = 0,

for n = 1, . . . ,r− 1, by summation P(1)
n +P( j)

n−1 (1 ≤ n ≤ r), and comparison with the values of

P( j+1)
n (n = 1, . . . ,r), we derive that,

w( j+1)
n = P( j+1)

n = 0, for n = 1, . . . , j−1, and n = j+1, . . . ,r−1

w( j+1)
j = P( j+1)

j = 1 and w( j+1)
r = P( j+1)

r = 1.

Therefore, we obtain P( j+1)
n = w( j+1)

n = P(1)
n +P( j)

n−1 = P(1)
n + · · ·+P(1)

n− j+1, for every n ≥ j− 1.
Hence, we get the following result.

Theorem 2.1. Let Pr = {(P(s)
n )n≥0; 1≤ s≤ r} be the generalized Pell numbers (1.2), associated

with the generalized Pell numbers (1.1). Then, for every 1≤ j ≤ r−1, we have

P(1)
n+1 = P(r)

n for n≥ 0, or equivalently P(1)
n = P(r)

n−1 for n≥ 1, (2.2)

P( j)
n = P(1)

n + · · ·+P(1)
n− j+1 = P(r)

n−1 + · · ·+P(r)
n− j, for every n≥ j. (2.3)

We observe that, the first part of Theorem 2.1 is equal to the third part of Lemma 2 of [8].
However, the second part is not common in the literature.

Let consider the case r = 3, then Theorem 2.1 implies that for the set P3 = {(P(s)
n )n≥0, 1≤ s≤ 3}

of the basic sequences of generalized Pell numbers (P(s)
n )n≥0, we have,

P(1)
n+1 = P(3)

n for n≥ 0, or equivalently P(1)
n = P(3)

n−1 for n≥ 1,

P(2)
n = P(1)

n +P(1)
n−1 = P(3)

n−1 +P(3)
n−2, for every n≥ 2.

The Table 1 describes the list of the first terms of the fundamental system P3 = {(P(s)
n )n≥0, 1≤

s≤ 3} of the generalized Pell number of order r = 3.

Trends Comput. Appl. Math., 22, N. 1 (2021)
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128 ON GENERALIZED PELL NUMBERS OF ORDER r ≥ 2

Table 1: List of generalized Pell number of order r=3.

n 0 1 2 3 4 5 6 7 8 9 10 11 ...

P(1)
n 1 0 0 1 2 5 13 33 84 214 545 1388 ...

P(2)
n 0 1 0 1 3 7 18 46 117 298 759 1933 ...

P(3)
n 0 0 1 2 5 13 33 84 214 545 1388 3535 ...

And a direct computation shows that the property P(2)
n = P(1)

n +P(1)
n−1 = P(3)

n−1 +P(3)
n−2, for every

n≥ 2, is verified.

Let (P̃n)n≥0 be a sequence of generalized Pell numbers defined by the recursive relation (1.1),
and whose initial conditions are P0 = α0, P1 = α1, . . . ,Pr−1 = αr−1, and (wn)n≥0 be the sequence
defined by wn = α0P(1)

n +α1P(2)
n + · · ·+αr−1P(r)

n , for every n ≥ 0. We can verify that w0 = α0,
w1 = α1, . . . ,wr−1 = αr−1, and the sequence (wn)n≥0 satisfies the recursive relation (1.1). Thus,
for every n≥ 0, we have P̃n = wn. Moreover, suppose that α0P(1)

n +α1P(2)
n + · · ·+αr−1P(r)

n = 0,
for every n ≥ 0. Then, for n = j (1 ≤ j ≤ r), we derive that α j = 0. Therefore, the sequences
of the set Pr = {(P(s)

n )n≥0; 1 ≤ s ≤ r} are linearly independent. Hence, we have the following
proposition.

Proposition 2.1. Let (P̃n)n≥0 be a sequence of generalized Pell numbers defined by the recursive
relation (1.1), and whose initial conditions are P0 = α0, P1 = α1, . . . ,Pr−1 = αr−1, then

P̃n = α0P(1)
n +α1P(2)

n + · · ·+αr−1P(r)
n , for every n≥ 0. (2.4)

In other terms, the set Pr = {(P(s)
n )n≥0; 1≤ s≤ r} is a basis of the vector space E

(r)
K (over K=R

or C) of solutions of Equation (1.1).

Proposition 2.1 shows the main role of the set Pr, known in the literature as fundamental system
of solutions of (1.1), when (1.1) is considered as a difference equation. According to Theorem
2.1 the sequence (P(r)

n )n≥0 play a fundamental role. The sequence (P(r)
n )n≥0 (and also (P(1)

n )n≥0),
is called in the literature the fundamental solution of Equation (1.1). In the sequel, we can also
call it the generalized Pell fundamental sequence of order r and denote P(r)

n = Pn.

3 PELL FUNDAMENTAL SYSTEM PR AND SOME GENERALIZED PELL
IDENTITIES

Let consider the vector column P( j,n) = (P( j)
n ; P( j)

n+1; . . . ; P( j)
n+r−1)

t , for n ≥ r− 1, for every j
1≤ j ≤ r, and the matrix,

ĈP(n) = [P(1,n), . . . ,P( j,n), . . . ,P(r,n)].

Since the set Pr is a fundamental system of solutions of (1.1), considered as a difference equa-
tion, then the matrix ĈP(n) = (c(n)i j )1≤i, j≤r, represents the Pell Casoratian matrix associated with

Pr. The main goal here, is to exhibit the explicit expressions for the entries c(n)i j of the matrix

Trends Comput. Appl. Math., 22, N. 1 (2021)



i
i

“A9-1500-8013” — 2021/3/22 — 11:18 — page 129 — #5 i
i

i
i

i
i

PEREIRA SPREAFICO and RACHIDI 129

ĈP(n), and derive some identities. A direct verification shows that the Casoratian matrix can be
written under the form,

Ĉ(n) = J×Mn× J,

where J = (bi, j)1≤i, j≤r is the anti-diagonal unit matrix, namely, bi, j = 1, for i+ j = r+ 1, and
bi, j = 0, otherwise and Mn = (P( j)

n+r−i−1)1≤i, j≤r. We show that the matrix Mn, can be written
under the form Mn = An, where A is the classical companion matrix

A= A[2,1, ...,1] =


2 1 1 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0


(for more details see [2] and references therein). Hence, we get the following property.

Proposition 3.2. Consider the set Pr = {(P(s)
n )n≥0; 1 ≤ s ≤ r} of sequences of generalized Pell

numbers (1.2) . Then, the associated Casoratian matrix Ĉ(n) and the powers An of the companion
matrix A are similar. More precisely, we have the matrix identity,

Ĉ(n) = JAnJ = (c(n)i j )1≤i, j≤r, (3.1)

for every n ≥ 0, where the entries c(n)i j are given by c(n)i j = P( j)
n+i−1 (1 ≤ i, j ≤ r), and J =

(bi, j)1≤i, j≤r is the anti-diagonal unit matrix.

Expression (3.1) implies the matrix identity Ĉ(n+m) = Ĉ(n).Ĉ(m), for every n and m. Hence, the
entries of the matrix Ĉ(n+m) = (c(n+m)

i j )1≤i, j≤r, are expressed in terms of those of the matrices

Ĉ(m) = (c(m)
i j )1≤i, j≤r and Ĉ(n) = (c(n)i j )1≤i, j≤r as follows,

c(n+m)
i j =

r

∑
k=1

c(n)ik c(m)
k j =

r

∑
k=1

c(m)
ik c(n)k j , for every n, m≥ 0, (3.2)

where 1 ≤ i, j ≤ r. In fact, according to Proposition 3.2, Expression (3.2) is equivalent to the
identity,

P(q)
m+s+p =

r

∑
d=1

P(d)
m+pP(q)

s+d−1 =
r

∑
d=1

P(d)
s+pP(q)

m+d−1,

for any integer m , s ≥ 0 and p, q (1 ≤ p, q ≤ r). Therefore, since P(1)
n+1 = Pn and P( j)

n = P(r)
n−1 +

...+P(r)
n− j = Pn−1 + ...+Pn− j, we have the identity,

P(r)
m+s+p = Pm+s+p =

r

∑
d=1

P(d)
m+pPs+d−1 =

r

∑
d=1

P(d)
s+pPm+d−1.

for q = r. More generally, for 1≤ q≤ r−1, we have,

P(q)
m+s+p =

r−1

∑
d=1

[
d

∑
i=1

Pm+p−i

][
q

∑
j=1

Ps+d− j−1

]
+Pm+p

[
q

∑
k=1

Ps+r−1−k

]
.

Trends Comput. Appl. Math., 22, N. 1 (2021)
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Theorem 3.2. Let (Pn)n≥0 the generalized Pell fundamental sequence. Then, for every m , s≥ 0,
q (1≤ q≤ r), we have the following identities,

Pm+s =
r−1

∑
d=1

[
d

∑
j=1

Pm− j

]
Ps+d−1 +PmPs+r−1, (3.3)

q

∑
k=1

Pm+s−k =
r−1

∑
d=1

[
d

∑
1≤i≤d, 1≤ j≤q

Pm−iPs+d− j−1

]
+Pm

[
q

∑
k=1

Ps+r−1−k

]
. (3.4)

Using Expression (3.3), we obtain the following corollary.

Corollary 3.2. 1) The generalized Pell fundamental sequence (Pn)n≥0 of order r = 3, satisfies the
identity,

Pm+s = Pm−1Ps +(Pm−1 +Pm−2)Ps+1 +PmPs+2,

for every m≥ 3 and s≥ 0.

2) For r = 4, the generalized Pell fundamental sequence (Pn)n≥0 satisfies the identity,

Pm+s = Pm−1Ps +Ps+1(Pm−1 +Pm−2)+(Pm−1 +Pm−2 +Pm−3)Ps+2 +PmPs+3,

for every m≥ 4 and s≥ 0. For example, using values described in Table 1 for m = 4 and s = 7,
we have P11 = P3P7 +(P3 +P2)P8 +P4P9.

For a given companion matrix A = A[a0,a1, . . . ,ar−1], it was established in [7, Proposition 2.1]
that the entries c(n)i j of the powers An are expressed in terms of a family of generalized Fibonacci

sequences v(i)n , where v(i)n+1 = a0v(i)n + a1v(i)n−1 + . . .+ ar−1v(i)n−r+1, with v(i)n = δn,i, for 0 ≤ n ≤
r− 1 (see also formulas (18)-(19) of [2], page 348). Thus, we can show that Formula (4) of [8]
represents a particular case of the preceding studies. Moreover, using the previous formula (3.2),
we can recover Theorem 2 of [8].

4 COMBINATORIAL IDENTITIES FOR THE PELL FUNDAMENTAL SYSTEM PR

Let a1, a2, · · · ,ar−1 be real or complex numbers and consider the following combinatorial
expression,

ρ(n,r) = ∑
k1+2k2+···+rkr=n−r

(k1 + · · ·+ kr)!
k1!k2! . . .kr!

ak1
1 ak2

2 ...akr
r , for every n≥ r, (4.1)

where ρ( j,r) = 0, for 0 ≤ j ≤ r − 1, and ρ(r,r) = 1. Since (k1+···+kr−1)!
k1!...k j−1!(k j−1)k j+1!...kr! =

k j
(k1+···+kr−1)!

k1!k2!...kr! , we derive that ρ(n,r) satisfies the following linear difference equation ρ(n+
1,r) = a1ρ(n,r)+a2ρ(n−1,r)+ · · ·+arρ(n− r+ 1,r), for every n ≥ r. Specially, for a1 = 2,
a2 = · · ·= ar = 1, we get

ρ(n+1,r) = ∑
k1+2k2+···+rkr=n−r+1

(k1 + · · ·+ kr)!
k1!k2! . . .kr!

2k1 , for every n≥ r, (4.2)

Trends Comput. Appl. Math., 22, N. 1 (2021)
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with ρ( j,r) = 0 for 0 ≤ j ≤ r− 1 and ρ(r,r) = 1. Therefore, the sequence {ρ(n+ 1,r)}n≥0

satisfies the Expression (1.1) and its initial conditions are given by ρ(0,r) = · · ·= ρ(r−2,r) = 0
and ρ(r,r) = 1. Therefore, we formulate the following result.

Proposition 4.3. (Combinatorial expression of generalized Pell numbers) The combinatoric
expression of the generalized Pell fundamental sequence (Pn)n≥0 is given by,

Pn = ρ(n+1,r) = ∑
k0+2k1+···+rkr−1=n−r+1

(k0 + · · ·+ kr−1)!
k0!k1! . . .kr−1!

2k0 , for n≥ r, (4.3)

where Pj = ρ( j,r) = 0, for 0≤ j ≤ r−2, and Pr−1 = ρ(r,r) = 1 .

More generally, a direct application of Expressions (2.2)-(2.3) (see Theorem 2.1) and Expres-
sion (4.3) (see Proposition 4.3) lead to the combinatorial formulas of the sequences of the Pell
fundamental system Pr.

Proposition 4.4. Let Pr = {(P(s)
n )n≥0; 1 ≤ s ≤ r} be the Pell fundamental system, associated

with the generalized Pell numbers (1.1). The combinatorial expression of each element (P(s)
n )n≥0,

where 1≤ s≤ r, is given by,

P(s)
n =

s

∑
j=1

ρ(n+ s− j,r), when 2≤ s≤ r, (4.4)

P(1)
n = Pn−1 = ρ(n,r), for n≥ r+1, (4.5)

with n≥ r+ s, where the ρ(n,r) are given as in (4.3).

Proof. Indeed, since P(1)
n = Pn−1, Expressions (2.2) and (4.3) imply that P(1)

n = Pn−1 = ρ(n,r),
for every n ≥ r+ 1. For 2 ≤ j ≤ r− 1, Formulas (2.3) and (4.3), give immediately Expression
(4.4), namely, P(s)

n = Pn−1 + · · ·+Pn−s = ∑
s
j=1 ρ(n− j+1,r). �

By a direct application of Theorem 3.2 and Proposition 4.4, we can obtain some identities involv-
ing the combinatorial expression (4.2) of the ρ(n,r). More precisely, by combining Expressions
(4.4)-(4.5) and (3.3)-(3.4), we arrive at the identities.

Corollary 4.2. The combinatorial expressions of the generalized Pell numbers identities (4.4)-
(4.5), are given by

ρ(m+ s+1,r) =
r

∑
d=1

[
d

∑
j=1

ρ(m− j+1,r)

]
ρ(s+d,r), (4.6)

q

∑
k=1

ρ(n+ s− k+1,r) =
r

∑
d=1

[
d

∑
1≤i≤d, 1≤ j≤q

ρ(n− i+1,r)ρ(s+d− j,r)

]
. (4.7)

For r = 2, formulas of Corollary 4.2 show that the combinatorial identities (4.6)-(4.7) take the
form,

ρ(m+ s+1,r) = ρ(m,r)ρ(s+1,r)+ρ(m+1,r)ρ(s,r),

Trends Comput. Appl. Math., 22, N. 1 (2021)
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for every n≥ 2 and s≥ 0. Let r = 3 then, for every n≥ 2 and s≥ 0, we have the identity,

ρ(m+ s+1,r) = ρ(m+1,r)ρ(s+2,r)+(ρ(m,r)+ρ(m−1,r)ρ(s,r)+ρ(m,r)ρ(s+1,r),

On the other hand, a direct computation using the identity
(k0 + · · ·+ kr−1−1)!

k0! . . .(kp−1)! . . .kr−1!
=

kp

k0 + · · ·+ kr−1
× (k0 + · · ·+ kr−1)!

k0! . . .kr−1!
, allows us to obtain,

Pn = P(1)
n+1 = ∑

k0+2k1+···+rkr−1=n

k1 + · · ·+ kr−1

k0 + · · ·+ kr−1

(k0 + · · ·+ kr−1)!
k0! . . .kr−1!

2k0 .

This expression can be derived from [2, Proposition 3.1] and [5, Theorem 3.1].

It was established in that the Chen-Louck Theorems [5, Theorem 3.1] can be recovered by a direct
computation from Expression (22) of [2]. In [8] the authors recall the Chen-Louck Theorem (see
Theorem 5 of [8]), and formulate the combinatorial expression of the generalized Pell numbers
P(i)

n , by considering other kind of initial conditions, see, for instance [8, Corollary 2].

We conclude this section by observing that Expression (4.1) can be written under the form
ρ(n,r) = H(r)

n−r+1(a0, . . . ,ar−1), for every n≥ r, where the H(r)
n (x1, . . . , xr) are the multivariate

Fibonacci polynomials of order r (see [9]). Therefore, according to Expressions (4.3) and (4.5),
the fundamental generalized Pell numbers can be written as a multivariate Fibonacci polynomials
of order r under the form Pn = ρ(n+ 1,r) = H(r)

n−r+2(2, 1, . . . , 1), for every n ≥ r. On the other
side, with the aid of Formula (4.4) we can deduce that each element of the set Pr takes the form

P(s)
n =

s

∑
j=1

H(r)
n+s− j−r+2(2, 1, . . . , 1), for 2≤ s≤ r and every n≥ r.

5 ANALYTICAL EXPRESSIONS OF THE GENERALIZED PELL NUMBERS

It well known that, the analytic formula for linear recursive sequences, is related to the roots
of the associated (so-called) characteristic polynomial (see, for example, [3, 12], and references
therein). Here the roots of the characteristic polynomials of the Pell recursive equation (1.1)
given by P(z) = zr − 2zr−1− zr−2− ·· · − z− 1 are simple. Indeed, we observe that for r = 2,
the simple roots of the characteristic polynomial P(z) = z2− 2z− 1, are λ1 = 1−

√
2 and λ2 =

1+
√

2. For r = 3 we obtain the approximating simple roots of the characteristic polynomial
P(z) = z3 − 2z2 − z− 1, are given by λ1 = −0.2734+ 0.5638i, λ2 = −0.2734− 0.5638i and
λ3 = 2.5468. For the general case r ≥ 4, we have the following result.

Lemma 5.1. For r ≥ 4, the roots of the polynomial P(z) = zr − 2zr−1− zr−2− ·· ·− z− 1, are
simple.

Proof. For r ≥ 4, we have P(z) = zr− 2zr−1− zr−2− ·· ·− z− 1 = zr− zr−1− zr−1
z−1 . Hence, it

ensue P(z) = zr− zr−1− zr−1
z−1 = S(z)

z−1 , where S(z) = zr+1− 3zr + zr−1 + 1. Let λ ∈ Z(P) = {z ∈
C, P(z) = 0}, since P(1) 6= 0, we show that P(λ ) = 0 if, and only if, S(λ ) = 0, or equivalently,

λ
r+1−3λ

r +λ
r−1 +1 = 0. (5.1)
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Suppose that λ is a root of P(z), with multiplicity ≥ 2. Let P′(z) = S(z)−S′(z)(z−1)
(z−1)2 , where P′(z) be

the derivative of P(z). Therefore, P′(λ ) = 0 implies S′(λ ) = 0. Thus, get,

S′(λ ) = [(r+1)λ 2−3rλ +(r−1)]λ r−2 = 0, (5.2)

because S(λ ) = 0 and λ 6= 1. On the other hand, since S(0) = 1 6= 0, we derive that S′(λ ) = 0 is
equivalent to the equation,

(r+1)λ 2−3rλ +(r−1) = 0, (5.3)

whose roots are λ1 =
3r−
√

5r2 +4
2(r+1)

-λ2 =
3r+
√

5r2 +4
2(r+1)

. Taking into account Expressions (5.1)

and (5.2), allows us to show that λ satisfies the equation,

λ
r+1−λ

r−1 = λ
r−1[λ 2−1] = λ

r−1[λ +1][λ −1] = r. (5.4)

For the root λ1, since
√

5r2 +4 < 3r, for r ≥ 4, we show that λ1 > 0. Further along, a direct
computation implies that λ1− 1 < 0. Therefore, we have, 0 < λ1 < 1. Using Expression (5.4),
we have r = λ

r−1[λ +1][λ −1]< 0, which is impossible, because r ≥ 4. Consequently, the root
λ1 is not a root of the polynomial P′(z) or equivalently, λ1 is not a root of the polynomial P(z) of
multiplicity ≥ 2 .

Let consider the root λ2. For each r≥ 4, we have λ2 ≥ 5r
2(r+1) = 2+ r−4

2(r+1) > 2. Once again, using
Expression (5.4), we obtain,

r = λ
r−1
2 [λ 2

2 −1]> 3λ
r−1
2 > 3×2r−1 > 3(r−1)> r.

which is impossible. Thus, the root λ2 is not a root of P′(z), namely, λ2 is not a root of multiplicity
≥ 2 of the polynomial P(z). Therefore, the roots of the polynomial P(z) are simple. �

In the aim to apply Lemma 5.1 for providing the analytic formula of each sequence of the set Pr,
we are going to use the result of [3, Theorem 2.2], where the combinatorial expression (4.1) of
ρ(n,r), is expressed in terms of the roots of the characteristic polynomial P(z) = zr− a1zr−1−
·· ·−ar−2z−ar. Indeed, this expression of ρ(n,r) is given by,

Lemma 5.2. (see [2,3]) Suppose that the roots λ1,· · · , λr of P(z) = zr−a1zr−1−·· ·−ar−2z−ar

(ar 6= 0) satisfy λi 6= λ j for i 6= j. Then, we have

ρ(n,r) =
r

∑
i=1

λ
n−1
i

P′ (λi)
=

r

∑
i=1

λ
n−1
i

∏
k 6=i

(λi−λk)
for every n≥ r, (5.5)

otherwise ρ(r,r) = 1 , ρ(i,r) = 0 for i≤ r−1, where P′(z) = dP
dz (z).

Following Propositions 4.3-4.4, the combinatorial expressions of the Pell fundamental system,
are given by Expressions (4.3), (4.4) and (4.5), namely, we have,

Pn = ρ(n+1,r), P(1)
n = Pn−1 = ρ(n,r) and P(s)

n =
s

∑
j=1

ρ(n+ s− j,r),
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for n≥ r, n≥ r+1 or r≥ r+ s, respectively, where the ρ(n,r) are given as in (4.1), with a1 = 2,
a2 = · · · = ar = 1. Using Lemmas 5.1 and 5.2, and Expressions (4.3)-(4.5), we show that the
analytical expression of each sequence of Pr, is as follows.

Theorem 5.3. Let Pr = {(P(s)
n )n≥0, 1 ≤ s ≤ r} be the set defined as in (1.2). Then, the analytic

expression of each sequence (P(s)
n )n≥0 ( 1≤ s≤ r), is given by,

Pn = ρ(n+1,r) =
r

∑
i=1

λ n
i

P′ (λi)
=

r

∑
i=1

λ n
i

∏
k 6=i

(λi−λk)
, for n≥ r,

P(1)
n = Pn−1 = ρ(n,r) =

r

∑
i=1

λ
n−1
i

P′ (λi)
=

r

∑
i=1

λ
n−1
i

∏
k 6=i

(λi−λk)
, for n≥ r+1,

P(s)
n =

s

∑
j=1

ρ(n+ s− j,r) =
s

∑
j=1

r

∑
i=1

λ
n+s− j−1
i
P′ (λi)

=
s

∑
j=1

r

∑
i=1

λ
n+s− j−1
i

∏
k 6=i

(λi−λk)
, for r ≥ r+ s,

where λ1,. . ., λr the simple roots of the polynomial P(z) = zr−2zr−1− zr−2−·· ·− z−1.

For r = 3, the fundamental system is P3 = {(P(s)
n )n≥0, 1≤ s≤ 3}. The roots of the polynomial

P(z) = z3−2z2− z−1 are λ1 =−0.2734+0.5638i, λ2 =−0.2734−0.5638i and λ3 = 2.5468.
Then, using Theorem 5.3, we obtain,

Pn =
λ n

1

3λ 2
1 −4λ1−1

+
λ n

2

3λ 2
2 −4λ2−1

+
λ n

3

3λ 2
3 −4λ3−1

, for n≥ 3,

P(1)
n =

λ
n−1
1

3λ 2
1 −4λ1−1

+
λ

n−1
2

3λ 2
2 −4λ2−1

+
λ

n−1
3

3λ 2
3 −4λ3−1

, for n≥ 4,

P(2)
n =

λ n
1 +λ

n−1
1

3λ 2
1 −4λ1−1

+
λ n

2 λ
n−1
2

3λ 2
2 −4λ2−1

+
λ n

3 +λ
n−1
3

3λ 2
3 −4λ3−1

, for n≥ 5.

Proposition 2.1, Lemma 5.3 and Theorem 5.3 imply the following general result.

Proposition 5.5. Let (P̃n)n≥0 be a sequence of generalized Pell numbers defined by the recursive
relation (1.1), and whose initial conditions are P0 = α0, P1 = α1, . . . ,Pr−1 = αr−1. Then, the
analytic formula for (P̃n)n≥0 is given by,

P̃n = α0

r

∑
i=1

λ
n−1
i

P′ (λi)
+α1

2

∑
j=1

r

∑
i=1

λ
n+2− j−1
i
P′ (λi)

+ · · ·+αr−1

r

∑
i=1

λ n
i

P′ (λi)
(5.6)

where λ1,. . ., λr the simple roots of the polynomial P(z) = zr− 2zr−1− zr−2− ·· ·− z− 1. For
clarifying, take r = 3 and (P̃n)n≥0 be a sequence of generalized Pell numbers, with initial condi-
tions P0 = α0, P1 = α1, and P2 = α2. Applying Proposition 5.5 we obtain the following analytic
formula for P̃n.
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P̃n = α0

3

∑
i=1

λ
n−1
i

P′ (λi)
+α1

2

∑
j=1

3

∑
i=1

λ
n+2− j−1
i
P′ (λi)

+α2

3

∑
i=1

λ n
i

P′ (λi)
, (5.7)

for every n≥ 0, where λ1,λ2, λ3 the simple roots of the polynomial P(z) = z3−2z2− z−1.

Result of the previous Theorem 5.3 shows that we have a compact and explicit formula for the
family of generalized Pell numbers Pr. More generally, for a given sequence of general Pell
numbers, with arbitrary initial conditions, the compact explicit analytic formula is presented
in Proposition 5.5. This formula is obtained without using the usual heavy computation of the
determinant. In [8] the authors gave the analytic formulas of the family of generalized Pell P(i)

n ,
only in terms of the determinants, see for instance [8, Theorem 4] and [8, Corollary 1].

6 PELL GENERALIZED CASSINI IDENTITY

We consider here the process of building the type of Cassini identity for the generalized Pell
fundamental system Pr. Following Section 3 the Pell Casoratian matrix is given by

ĈP(n) = [P(1,n), . . . ,P( j,n), . . . ,P(r,n)],

where P( j,n) is the vector column P( j,n) = (P( j)
n ; P( j)

n+1; . . . ; P( j)
n+r−1)

t , for every n ≥ r− 1
and every j, 1 ≤ j ≤ r. Hence, the determinant properties imply that the Casoratian of the Pell
fundamental system P, takes the following form,

CP(n) = det([P(1,n),P(2,n), . . . , ,P(r−2,n),P(r,n− r+2),P(r,n)]),

for every n≥ r. By iteration of the preceding process and taking into account that P(1)
n+1 = Pn, we

show that the generalized Pell Cassini identity, is obtained from the Pell Casoratian of the set Pr

as follows,

det([P(r,n+1),P(r,n), . . . ,P(r,n− j), . . . ,P(r,n− r+2)]) = ε.CP(n),

where ε = −1 or + 1. More precisely, let consider the permutation cycle σr defined by σr =

τ1,2oτ2,3o . . .oτ j, j+1o . . .oτr−1,r, where τi, j (i 6= j) is the transposition which permutes i and
j. Then, a straightforward computation, using P(1)

n = Pn−1, permit us to obtain det(C̃P(n)) =
ε(σr)CP(n), where ε(σr) = (−1)r−1 is the signature of σ ∈Sr, the group of permutations of
the set {1, 2, . . . , r} and C̃ (n) = (C̃

(n)
i,k )1≤i,k≤r is the matrix,

C̃P(n) = [P(r,n),P(r,n−1), . . . ,P(r,n− j), . . . ,P(r,n− r+1)],

called the Cassini matrix, whose entries are given by C̃
(n)
i,k = Pn−k+i. Summarizing, the

generalized Pell Cassini identity is formulated in the following result.

Theorem 6.4. Let P= {(P(s)
n )n≥0; 1≤ s≤ r} be the Pell fundamental system, and consider the

associated Casoratian CP(n). Then, the generalized Pell Cassini Identity, is given by,

det([P(r,n), . . . ,P(r,n− r+1)]) = ∑
σ∈Sr

ε(σ)Pn−σ(1)+1 . . . .Pn−σ(r)+r = ε(σr)CP(n)

= (−1)(n+1)(r−1),
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where Sr is the group of permutations of the set {1, 2, . . . , r} and ε(σ) is the signature of
σ ∈Sr. Theorem 6.4 shows that the generalized Pell Cassini identity, is expressed in terms of
the fundamental solution (Pn)n≥0 of (1.1), considered as a linear difference equation. For r = 3,
the generalized Pell Cassini identity is given by,

det([P(3,n),P(3,n−1),P(3,n−2)]) = ε(σ3).C(n) = (−1)2(n+1) = 1,

where ε(σ3) is the signature of σ3. And, a direct computation shows that the preceding expression
takes the form,

Pn(P2
n −Pn+2Pn−2−2Pn+1Pn−1)+Pn+2P2

n−1 +Pn−2P2
n+1 = 1.

Moreover, using Expression (4.3), the generalized Cassini identity of order r, takes the following
combinatorial form,

∑
σ∈Sr

ε(σ)

[
r

∏
i=1

ρ(n−σ(i)+ i+1,r)

]
= (−1)(n+1)(r−1), (6.1)

where Sr is the group of permutations of the set {1, 2, . . . r} and ε(σ) is the signature of σ ∈Sr.

We conclude this section by establishing the analytic formula of the generalized Pell Cassini
identity. Indeed, combining the combinatorial identity (6.1), with the analytic formulas of Pn

given in Theorem 5.3, we get the following analytic expression of the generalized Pell Cassini
identity,

det([P(r,n), ...,P(r,n− r+1)]) = ∑
σ∈Sr

ε(σ)
r

∏
k=1

[
r

∑
i=1

λ
n−σ(k)+k
i
P′ (λi)

]
= (−1)(n+1)(r−1),

where the λi are the simple roots of P(z) = zr−2zr−1−zr−2−·· ·−1, and Sr is the permutations
group of {1, 2, . . . , r}, and ε(σ) is the signature of σ ∈Sr.

The results of this section allow us to see that the Pell Cassini identity is formulated only in terms
of the fundamental solution (Pn)n≥0.

7 CONCLUSION AND PERSPECTIVES

In this study we have considered another approach for investigating the generalized fundamental
Pell system, related to the difference equation (1.1) defining the generalized Pell numbers. Our
advance is based on the properties of the fundamental system Pr. Therefore, some results and
various identities about the generalized Pell numbers are established. On the other side, the an-
alytic formula of the sequences that make up the set Pr of generalized Pell fundamental system
are established without using the usual method of the determinant. Furthermore, the generalized
Pell Cassini identity is studied. Moreover, the comparison of literature is considered. It should
be emphasized that, in the best of our knowledge, our procedure and results are not common in
the literature.

Finally, it is noted that our approach can be used for to examine other type of generalized Pell
numbers. Some partial and significant results have been obtained in this direction.
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RESUMO. Neste artigo investigamos os números de Pell generalizados de ordem r≥ 2 por
meio das propriedades do sistema fundamental de números de Pell generalizados associado.
Ou seja, o número de Pell generalizado de ordem r ≥ 2 é expresso como uma combinação
linear de um sistema fundamental de números de Pell generalizados. As propriedades deste
sistema fundamental são examinadas e os resultados podem ser estabelecidos para números
de Pell generalizados de ordem r ≥ 2. Algumas identidades e resultados combinatórios são
estabelecidos. Além disso, o estudo analı́tico do sistema fundamental de Pell generalizado
e a identidade Pell-Cassini generalizada são fornecidos.

Palavras-chave: sistema fundamental de Pell generalizado, números de Pell generalizados,
identidades combinatórias, representações analı́ticas, identidade de Cassini generalizada.
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