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ABSTRACT. Leishmaniasis is a parasite disease transmitted by the bites of sandflies. There have been
found more than 70 animal species that are natural reservoir hosts of Leishmania. Among the reservoirs,
dogs are the most important ones due to their proximity to the human habitat. In this work, we formulate a
model to assess the impact of vaccination, insecticide-impregnated collars, and treatment on the control of
canine leishmaniasis. To this end, we calculated the Basic Reproduction Number of the disease and carried
out a sensitivity analysis of this parameter concerning the epidemiological and demographic parameters.
The numerical simulations show the correlation between the disease prevalence and the strategies effective-
ness. Control of infection on dogs can be obtained by protecting around 35 percent of dogs with vaccination
and insecticide-impregnated collar.

Keywords: basic reproduction number, endemic proportions, stability analysis.

1 INTRODUCTION

Leishmaniasis is a vector transmitted disease caused by more than 20 species of the protozoa
Leishmania. These parasites are transmitted to animals and humans through the bite of infected
females of at least 30 species of phlebotomine sandflies. Also, it has been documented sexual and
transplacental transmission of leishmaniasis by some authors in mice, humans, and dogs [25]. In
the Americas, more than 15 pathogenic types of Leishmania have been identified in humans,
and nearly 54 non-vector species may potentially be involved in the disease transmission [19].
The disease has been associated with poverty, but social, environmental, and climatological fac-
tors also directly influence the epidemiology of the disease [19]. According to the Panamerican
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142 CANINE LEISHMANIASIS CONTRO

Health Organization (PAHO), leishmaniasis is among the top ten neglected tropical diseases with
more than 12 million infected people, 0.9 to 1.6 million new cases each year, between 20,000
and 30,000 deaths, and 350 million people at risk of infection.

Depending on the Leishmania species and the host immune response, leishmaniasis can be sub-
clinical, or present local skin lesions, or can produce a disseminated infection [2, 13]. There are
three different clinical manifestations of the disease: visceral, mucocutaneous, and cutaneous.
Visceral leishmaniasis (often called kala-azar) is the most serious form of the disease, and it is
characterized by fever, weight loss, hepatosplenomegaly, and anemia. If not treated, the disease
may cause death in more than 90% of the cases. Mucocutaneous leishmaniasis can lead to the
partial or complete destruction of the mucous membranes in the nose and mouth and may cause
severe disability. Cutaneous leishmaniasis is the most frequent form of this infection, causing
mostly ulcerative lesions that leave long life scars [19, 21]. It is interesting to note that clinical
manifestations of leishmaniasis vary by region. In the Mediterranean and South Asia regions,
visceral leishmaniasis is the main form of the disease. In the Americas, the most common man-
ifestations of the disease are cutaneous and mucocutaneous [5, 6]. The countries with the most
cases of visceral leishmaniasis are India, South Sudan, Sudan, Brazil, Ethiopia, and Somalia [19].

Dogs are considered the main domestic reservoir of leishmaniasis, playing an important role in
the occurrence of the disease in humans [4]. Canine leishmaniasis is produced by Leishmania
infantum which can be transmitted by vectors of several species. In experimental conditions,
infected asymptomatic dogs were able to successfully infected sandflies. This implies that they
play an important role in disease transmission, and they should be taken into account since many
dogs are asymptomatic [20, 24]. The leishmaniasis diagnosis in dogs is made considering the
epidemiological origin and the set of clinical signs presented by the dog, but parasitological
diagnosis is the more secure method, and it is based on observation of amastigotes [27, 28].

Parasitological elimination of canine leishmaniasis is very difficult to be achieved, and disease
recurrence seems to be common after therapy. However, the actual medical protocols can promote
clinical cure, increasing the dog’s life expectancy as well as improving its life quality. To avoid
reinfection, the dog must have medical treatment, use insecticide-impregnated collars, and has
continuous veterinary monitoring [24]. In general, local application of insecticides, insecticide-
impregnated collars, and culling of infected dogs have been used to control canine leishmaniasis
since drog therapy is not a sufficient control measure. But, culling of all infected dogs is not
acceptable and cost-effective since the replacement of them in the endemic areas is an observed
common behavior among human populations.

According to [22], the induction of protective anti-leishmania immunity response in dogs is a
feasible, important, and cost-effective goal. There are nowadays several types of vaccines for
canine leishmaniasis in the market. These vaccines represent an important advance for the control
of the disease, but, unfortunately, the complexity of the protective response that vaccines have
to induce in the host difficult their efficiency. Therefore, comparisons among already registered
vaccines should go beyond confirming negative serological and parasitological results, including

Trends Comput. Appl. Math., 24, N. 1 (2023)
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also cell-mediated immunity tests [18]. On the other hand, the use of insecticide-impregnated
collars protects the dog against the vector biting in endemic areas [16].

Mathematical models have been important tools to understand different aspects of the leishmani-
asis transmission and the effectiveness of its control measures. In particular, for canine leishmani-
asis, [9] formulated an ordinary differential (ODE) model to evaluate the effectiveness of control
campaigns on visceral leishmaniasis assuming that some dogs have an innate resistance to the
disease. They conclude that infected dog removal or its treatment could be not the best strategy to
decrease the canine infection prevalence. Instead, vector control or the reduction of the suscep-
tible populations would be more effective controls. Considering explicitly the human population
on disease dynamics, and adding a latent compartment on both human and dog populations, [23]
demonstrates that insecticide-impregnated collars, and vector control is more effective than the
elimination of seropositive dogs.

In previous work, [11] studied the impact of asymptomatic carriers on the prevalence of leish-
maniasis. They concluded that treating small percentages of asymptomatic dogs and humans
has an important impact on disease reduction. Inspired by this work, here, a system of differen-
tial equations for the dynamics of canine leishmaniasis assuming medical treatment, protective
measures (collars), as well as vaccination, is proposed. We obtained an expression for the Basic
Reproductive Number that allows us to evaluate the effectiveness of the different treatments us-
ing epidemiological and demographic parameters coming from the literature. We complete our
analysis with numerical simulations and sensitivity analysis to compare the different protection
strategies and to evaluate the importance of the different parameters on the development of the
disease.

This paper is organized as follows. In Section 2 we formulate the model. The mathematical
analysis is given in Sections 3 and 4. Simulations and sensitivity analysis are carried out in
Section 5, and finally, conclusions are presented in Section 6.

2 MATHEMATICAL MODEL

We assume that dogs that are vaccinated do not use insecticide-impregnate collars. The total
dog population is divided into susceptible, vaccinated, dogs with collars, and infected at time
t which are denoted by Sd(t), Vd(t), Cd(t), and Id(t), respectively. The total dog population is
given by Nd(t) = Sd(t)+Vd(t)+Cd(t)+ Id(t). We assume that the dog population has constant
recruitment rate Λd , natural mortality rate given by µ , and specific disease mortality rate due to
leishmaniasis given by δ , with δ < µ . We want to stress that the class of recovered dogs is not
considered in our model since dogs do not recover from leishmaniasis and they do not acquire
immunity [2, 13]. Furthermore, the vaccine only protects temporally, and after a period of time
the dogs become susceptible again.

The vector population is recruited at a constant rate Λv, and has a mortality rate ν . Since sandflies
do not recover from infection, we only consider susceptible and infected individuals, with Sv, and
Iv denoting the total number on each class at time t, respectively. We assume that a particular dog

Trends Comput. Appl. Math., 24, N. 1 (2023)
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receives on average b bites, where b is the biting rate of sandflies, and a proportion b
Iv

Nv
of these

bites comes from infected sandflies, then dogs get infected at a rate of bβSd
Iv

Nv
, where β is the

probability that an infected bite gives rise to a new case in the dog population. Reciprocally,

sandflies get infected by dogs at a rate of αb
Sv

Nv
Id , where α is the transmission probability from

dogs to sandflies.

The parameters σ and η are, respectively, the per capita vaccination of susceptible dogs and
collar-use rates by susceptible dogs. In both cases, only qσSd and pηSd of these dogs are ef-
fectively protected against the disease, where q and p are the vaccine and collar efficiency,
respectively.

Dogs that are immunized mount an immunity response during a period of time equal to 1/ε after
that they become susceptible again, and dogs that receive treatment become susceptible after
1/τ elapsed time. Besides, collars offer protection for a 1/κ period of time. A summary of the
model’s parameters, their units, description, and main references are in Table 1.

Table 1: Summary of epidemiological and demographic parameters that appear in the model,
with their corresponding descriptions and range of values [1, 3, 5, 7, 12, 19, 26]

parameter meaning range of values
b sandfly biting rate 0.14 - 0.79 day−1

β sandfly-dog probability of transmission 0.15 - 0.25
α dog-sandfly probability of transmission 0.05 - 0.385
ε rate of losing immunity 0.0033 - 0.0044 day−1

ν average sandfly mortality rate 0.09 - 0.42 day−1

µ average dog’s mortality rate 0.0003 - 0.0009 day−1

δ disease mortality rate 0.0002 - 0.0007 days−1

κ rate of losing collar 0.0028 - 0.0045 days−1

τ rate of treatment 0.0067 - 0.0083 days−1

σ vaccination rate 0 - 1
η rate of the collar use 0 - 1
q vaccine efficiency 32.8 - 95.0%
p collar efficiency 44.7 - 88.3%

Trends Comput. Appl. Math., 24, N. 1 (2023)
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According to the assumptions above, the dynamics of the disease transmission is governed by
the non-linear ordinary differential system:

dSd

dt
= Λd −qσSd − pηSd −bβSd

Iv

Nv
−µSd + εVd +κCd + τId

dVd

dt
= qσSd − εVd −µVd

dCd

dt
= pηSd −κCd −µCd

dId

dt
= bβSd

Iv

Nv
− (τ +δ +µ)Id (2.1)

dSv

dt
= Λv −bαSv

Id

Nd
−νSv

dIv

dt
= bαSv

Id

Nd
−νIv

dNd

dt
= Λd −µNd −δ Id .

Since Nv(t) = Sv(t)+ Iv(t)→
Λv

ν
, we can assume that the vector population is already at equi-

librium N̄v =
Λv

ν
, that is, Sv + Iv =

Λv

ν
= N̄v. Furthermore, it can be proved that the vector field

of the system (2.1) points to the interior of the region

Ω = {Sd +Vd +Cd + Id = Nd ≤ Λd

µ
, Sv + Iv = N̄v},

which implies that the solution trajectories remain in Ω for all t ≥ 0 .

To simplify, (2.1) we normalize the dog and vector populations

sd =
Sd

Λd/µ
, vd =

Vd

Λd/µ
,cd =

Cd

Λd/µ
, id =

Id

Λd/µ
, nd =

Nd

Λd/µ
,

and
sv =

Sv

N̄v
, iv =

Iv

N̄v
.

Since sv = 1− iv, the ODE system for the proportions sd ,vd ,cd , id , iv, nd are given by

dsd

dt
= µ − (qσ + pη)sd −bβ sd iv + εvd +κcd + τid −µsd

dvd

dt
= qσsd − εvd −µvd

dcd

dt
= pηsd −κcd −µcd

did
dt

= bβ sd iv − (τ +δ +µ)id (2.2)

div
dt

= bα(1− iv)id −ν iv

dnd

dt
= µ −µnd −δ id .

Trends Comput. Appl. Math., 24, N. 1 (2023)
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146 CANINE LEISHMANIASIS CONTRO

3 DISEASE-FREE EQUILIBRIUM AND BASIC REPRODUCTIVE NUMBER

We find the equilibrium states of the system (2.2) by setting the derivatives on the left-hand side
to zero and solving the resulting algebraic equations. The disease-free equilibrium corresponds
to the state where dogs and sandfly populations are free of leishmaniasis, that is, (id = iv = 0),
and it is given by

E0 = (s̄d , v̄d , c̄d ,0,0,1)

where

s̄d =
1

1+ pη

κ+µ
+ qσ

ε+µ

v̄d =
qσ s̄d

ε +µ
(3.1)

c̄d =
pη s̄d

κ +µ
.

The Basic Reproductive Number represents the number of secondary cases that one primary
infected individual can generate over the course of its infectious period in a wholly susceptible
population. It is a threshold condition that says when the infection can persist or die out. To
calculate the basic reproductive number associated with the model (2.2), we assume a scenario
without vaccination or collars use. Therefore, in this case, the disease-free equilibrium is given
by (1,0,0,0,0,1). In [8], the authors define mathematically the basic reproductive number of
a disease as the spectral ratio of the next-generation operator Φ associated to the disease-free
equilibrium.

The next-generation operator Φ corresponding to model (2.2) is given by the product of two
matrices: the non-negative matrix of the infection terms, K, and the inverse of the matrix of the
transmission terms, T , which for the model given by (2.2) are

K =

 0 bβ

bα 0


and

T =

τ +δ +µ 0

0 ν

 .

Therefore, Φ = KT−1 is written as

Φ =


0

bβ

ν

bα

τ +δ +µ
0,



Trends Comput. Appl. Math., 24, N. 1 (2023)
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and

R̄0 =

√
bβ

ν

bα

τ +δ +µ
. (3.2)

Observe that bβ/ν and bα/(τ + δ + µ) are the partial reproduction numbers corresponding to
the infections produced by an infected sandfly over a susceptible dog population, and an infected
dog over a sandfly population, respectively; and R̄0 is the geometric mean of those quantities.

Following [30], in this paper we will define the basic reproductive number as R0 = R̄2
0.

Assuming that a fraction qσ of the population is protected by vaccination per unit of time, and a
fraction pη is protected by collars use, the fraction of susceptible in the absence of the disease
becomes s̄d , and the number of secondary cases derived from a primary case is reduced to

R̃0 = R0s̄d , (3.3)

which implies that the disease can be eradicated if

s̄d ≤ 1
R0

.

Substituting s̄d obtained in (3.1), assuming R0 > 1, and a fixed proportion η of dogs with collars,
the fraction σ of dogs that should be vaccinated to eradicate the disease should satisfy

((R0 −1)(κ +µ)− pη)(ε +µ)

q(κ +µ)
< σ . (3.4)

Similarly, assuming R0 > 1 and a fixed proportion σ of vaccinated dogs, the fraction η of dogs
that have to use collars to eradicate the disease should satisfy

((R0 −1)(ε +µ)−qσ)(κ +µ)

p(ε +µ)
< η . (3.5)

3.1 Stability of disease-free equilibrium

The characteristic equation corresponding to the linearization of the system (2.2) around the
trivial steady state P0 has an eigenvalue equal to −µ , and the others are given by the roots of the
two polynomials

p1(λ ) = λ
2 +(τ +δ +µ +ν)λ +ν(τ +δ +µ)(1−R0s̄d)

and
p2(λ ) = λ

3 +a1λ
2 +a2λ +a3

where

a1 = qσ +(pη +µ)+(ε +µ)+(κ +µ),

a2 = (pη +µ)(ε +µ)+(qσ +µ + pη)(κ +µ)+(ε +µ)(κ +µ +qσ),

a3 = (qσ + pη +µ)(ε +µ)(κ +µ).

Trends Comput. Appl. Math., 24, N. 1 (2023)
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The two coefficients of the polynomial p1(λ ) are positive if R0s̄d = R̃0 < 1, therefore, its roots
have negative real parts. On the other hand, the three coefficients of p2(λ ) are positive, and it is
clear that a1a2 > a3. By the Routh-Hurwitz criteria [14] for a polynomial of degree 3, the roots
of p2 have negative real parts. Therefore, we have proven the following result.

Theorem 1. The disease-free equilibrium is locally asymptotically stable if and only if R̃0 =

R0s̄d < 1. In particular, this holds for R0 < 1, and any s̄d ∈ [0,1].

Global stability of the disease free-equilibrium for R̄0 < 1, which gives R0 < 1, can be proved
using the next generation operator and a comparison theorem. Therefore, it follows that, if R̄0 < 1,
the disease can not be maintained independently of the initial conditions.

Theorem 2. The disease free-equilibrium is globally asymptotically stable for R̄0 < 1. Proof.
Since sd and (1− iv) are less or equal than one, then system (2.2) satisfies the following inequality
for t ≥ 0:

d
dt

(
id(t)
iv(t)

)
≤ (K −T )

(
id(t)
iv(t)

)
.

If R̄0 < 1, the spectral radius of KT−1 is less than one, equivalently K−T has all of its eigenval-
ues on the left half plane. It follows that the linear system Z̄′ = (K−T )Z̄(t), Z̄ = (Z1(t),Z2(t)), is
asymptotically stable for R̄0 < 1, and consequently the solutions of this system tend to zero as t
goes to infinity. By comparison results given in [15], it follows that the solutions of system (2.2)
approach zero when t → ∞. Therefore, the disease-free equilibrium is globally asymptotically
stable for R̄0 < 1. □

4 ENDEMIC EQUILIBRIUM

Denote by E1 = (s∗d ,v
∗
d ,c

∗
d , i

∗
d , i

∗
v ,n

∗
d) the endemic equilibrium of system (2.2). In terms of s∗d and

i∗v , the variables v∗d ,c
∗
d , i∗d and n∗d can be written as

v∗d =
qσ

ε +µ
s∗d , c∗d =

η p
κ +µ

s∗d , i∗d =
bβ s∗d i∗v

τ +δ +µ
, and n∗d =

µd −δ i∗d
µd

> 0.

Substituting i∗d in the equation (5) of system (2.2) we obtain

(R0(1− i∗v)s
∗
d −1)i∗v = 0.

By hypothesis i∗v ̸= 0, which implies

s∗d =
1

R0(1− i∗v)
. (4.1)

We notice that for 0 < s∗d < 1 and 0 < i∗v < 1, it is necessary that R0 > 1.

Now, substituting s∗d , v∗d , i∗d in the equation (1) of system (2.2), and multiplying the result by
R0(1− i∗v), we obtain

µR0(1− i∗v)−
(

qσ µ

ε +µ
+

pηµ

κ +µ
+bβ i∗v +µ

)
+

τβb
τ +δ +µ

i∗v = 0.

Trends Comput. Appl. Math., 24, N. 1 (2023)
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After some simplifications, we can rewrite the last expression as

µR0 −
qσ µ

ε +µ
− pηµ

κ +µ
−µ =

(
bβ

δ +µ

τ +δ +µ
+µR0

)
i∗v .

The right-hand side of this equation is bigger than zero. The left-hand side can be written as

µ

(
R0 −

pη(ε +µ)+qσ(κ +µ)

(ε +µ)(κ +µ)
−1
)
= µ

(
R0 −

1
s̄d

)
= µ

1
s̄d

(R0s̄d −1) .

The expression above is bigger than zero if and only if R̃0 = R0s̄d > 1, where s̄d is given in (3.1),
and it follows that,

ī∗v =
µ(R0s̄d −1)

s̄d(bβ
δ+µ

τ+δ+µ
+µR0)

. (4.2)

Therefore, we have the following result.

Theorem 1. If R̃0 = R0s̄d > 1, system (2.2) has a unique endemic equilibrium E1. For this, it is
necessary that R0 > 1/s̄d .

4.1 Global stability of the endemic equilibrium

In this section we prove the global stability of the endemic equilibrium E1 under the conditions
ε = κ = τ = δ = 0. For this end we construct the following Lyapunov function as in [10]

V (X) = c1

(
sd − s∗d − s∗d ln

sd

s∗d

)
+ c2

(
id − i∗d − i∗d ln

id
i∗d

)
+ c3

(
sv − s∗v − s∗v ln

sv

s∗v

)
+ c4

(
iv − i∗v − i∗v ln

iv
i∗v

)
(4.3)

where X = (sd , id ,sv, iv). The orbital derivative of V is given by

V̇ (X) = c1

(
1−

s∗d
sd

)
(µ −bβmsd iv − (qσ + pη +µ)sh)

+ c2

(
1−

i∗d
id

)
(bβmsd iv −µid)

+ c3

(
1− s∗v

sv

)
(ν −bαsvid −νsv) (4.4)

+ c4

(
1− i∗v

iv

)
(bαsvid −ν iv) .

Trends Comput. Appl. Math., 24, N. 1 (2023)
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From system (2.2) at equilibrium we obtain the following identities:

µ = bβ s∗d i∗v +(qσ + pη +µ)s∗d

µ =
bβms∗d i∗v

i∗d
(4.5)

ν = bαs∗v i∗d +νs∗v

ν =
bαs∗v i∗v

ν i∗v
.

Substituting the above identities in (4.4), and after several calculations and simplifications, we
obtain

V̇ (X) = −c1(qσ + pη +µ)
(sd − s∗d)

2

sd
− c3ν

(sv − s∗v)
2

sv

+ c1bβ s∗d i∗v

[
1−

s∗d
sd

− sd iv
s∗d i∗v

+
iv
i∗v

]
+ c2bβ s∗d i∗v

[
1+

sd iv
s∗d i∗v

− id
i∗d
−

sd ivi∗d
s∗d i∗v id

]
+ c3bαs∗v i∗d

[
1− s∗v

sv
− svid

s∗v i∗d
+

id
i∗d

]
+ c4bαs∗v i∗d

[
1+

svid
s∗v i∗d

− iv
i∗v
− svid i∗v

s∗v ivi∗d

]
.

(4.6)

Taking c1 = c2, c3 = c4, and c1,c3 such that c1bβ s∗d i∗v = c3bαs∗v i∗d = A, after some
simplifications V̇ (X) becomes

V̇ = −c1(qσ + pη +µ)
(sd − s∗d)

2

sd
− c3ν

(sv − s∗v)
2

sv

−4A
[

1
4

(
s∗d
sd

+
s∗v
sv

+
sd ivi∗d
s∗d i∗v id

+
svid i∗v
s∗v ivi∗d

)
−1
]

≤ −c1(qσ + pη +µ)
(sd − s∗d)

2

sd
− c3ν

(sv − s∗v)
2

sv
≤ 0 (4.7)

due to the fact that the geometric mean is less or equal than the arithmetic mean. Therefore
(sd(t), id(t),sv(t), iv(t))→ (s∗d , i

∗
d ,s

∗
v , i

∗
v).

Since sd(t)→ s∗d , and id → i∗d , vd(t), cd(t) and nd(t) in (2.2) satisfy

vd(t)→
qσs∗d
ε +µ

= v∗d ,

cd(t)→
pηs∗d
κ +µ

= c∗d ,

and
nd → µd

µd
= 1.

Trends Comput. Appl. Math., 24, N. 1 (2023)



i
i

“A10-1612-9826” — 2023/2/28 — 18:42 — page 151 — #11 i
i

i
i

i
i

L. ESTEVA, C. P. FERREIRA and C. VARGAS 151

Therefore, we have the following result.

Theorem 4. Under the conditions ε = κ = τ = δ = 0, the endemic equilibrium E1 is globally
asymptotically stable.

5 NUMERICAL RESULTS AND SENSITIVITY ANALYSIS

Sensitivity Analysis is a method that measures how the variations of one or more input param-
eters impact the model response. This analysis is useful because it indicates the most important
parameters and the less important ones. In this work, we use the partial rank correlation coef-
ficient (PRCC) method to measure the sensitivity of R̃0 to parameter variations [17, 29]. The
results are illustrated in Figure 1. The contribution of each parameter for the R̃0 value is ranked
by the height of each bar. Positive values indicate that the increase of the parameter promotes
the increase of R̃0, while negative ones indicate that the increase of the parameter promotes the
decrease of R̃0.

Figure 1: Sensitivity analysis. The output is R̃0. The inputs are b, β , ν , µ , δ , α , τ , q, p, σ ,
η , κ , and ε , respectively, sandfly biting rate, probability of transmission from vector-to-dog,
sandfly mortality rate, dog natural mortality rate, disease-induced mortality rate, probability of
transmission dog-to-vector, rate of treatment, vaccine efficacy, collar efficacy, the proportion of
vaccinated dogs, proportion of dogs using the collar, rate of losing collar, and rate of losing
immunity.
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It is worth mentioning that PRCC is a global sensitivity analysis that permits us to rank the
importance of the parameters for the output of the model, but it does not provide a measure for
quantitative rank. The main hypothesis behind this method is that the relationship between each
input parameter and the output, R̃0, is monotone increasing or monotone decreasing. To carry
out the sensitivity analysis, we use the Latin hypercube sampling (LHS) method. N = 80,000
sets were formed with parameters values taken uniformly from their range given in Table 1. This
ensures that the parameter space is explored properly.

As we can see in Figure 1, the sensitivity analysis shows that the parameters that have more in-
fluence in R̃0, in decreasing order, are b, α , ν , η , σ , β , q, p, κ , τ , ε and finally, with PRCC of the
same magnitude, δ and µ . These parameters denote respectively, sandfly biting rate, probability
of transmission from dog to sandfly, sandfly mortality rate, proportion of dogs using the collar,
the proportion of vaccinated dogs, probability of transmission from sandfly to the dog, vac-
cine efficiency, collar efficiency, rate of losing collar, rate of treatment, rate of losing immunity,
disease-induced mortality rate, and dog mortality rate.

Let us define
Q1 =

pη

κ +µ
and Q2 =

qσ

ε +µ
,

which represent the average number of dogs that are protected with collars and vaccination,
respectively. Applying the PRCC method, we measure the sensibility of R̃0 under variations of
the transmission rates, bβ , bα , vector mortality ν , and Q1, Q2. For this, we fixed the parameter
values µ = 0.0006, τ = 0.0075, ε = 0.00385, κ = 0.00365, δ = 0.00045 corresponding to their
mean values which, according to Figure 1, are the less relevant to R̃0 variations. In Figure 2
we observe that the transmission rate from dog to sandfly bα , sandfly mortality rate ν , average
protected dogs Q1 and Q2 have a similar impact on the increase or reduction of R̃0. On the other
hand, the same figure shows that the effect on R̃0 of the transmission rate from dog to sandfly,
bα, is greater than the transmission from sandfly to dog, bβ , which indicates the importance of
dogs on the disease prevalence.

From the first equation of (3.1) and equation (3.3) we derived a linear relation between Q1 and
Q2 which is illustrated in Figure 3 for different values of R0. Given a value of R0, the relation
R0s̄d < 1 is satisfied above the corresponding line Q1Q2. Furthermore, the values of Q1 and Q2

increase when vaccine efficiency, or the fraction of vaccinated dogs, or dogs population with
collar increase, and they decrease when the rate of loss of immunity increases.

Figure 4 shows the prevalence of the infection i∗d in dog’s population as a function of the vaccina-
tion and collar-use rates. The parameters are b = 0.7, β = 0.25, α = 0.385, ν = 0.2, µ = 0.0003,
τ = 0.0067, δ = 0.0005, R0 = 5.6, ε = 0.0033, κ = 0.0045, q = 0.7, and p = 0.6. As vaccination
and collar-use increase, disease prevalence rapidly decreases.
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Figure 2: Sensitivity analysis. The output is R̃0. The inputs are bβ , bα , ν , Q1 and Q2, respectively,
rate of transmission from vector-to-dog, rate of transmission dog-to-vector, sandfly mortality
rate, the average number of dogs that are protected from getting leishmaniose because of collar-
use and that vaccination. The length of the bars indicates the importance of the corresponding
parameter on R̃0. The positive bars indicate increasing and the negative ones decreasing of R̃0.
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Figure 3: Parameter space of Q1×Q2×R0. Each straight line corresponds to a given value of R0.
Above each line the disease can be controlled, below it the disease persists on the population.
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Figure 4: Plot of η ×σ × i∗d . Disease prevalence, i∗d as a function of vaccination rate and collar-
use rate, σ and η , respectively. The level curve corresponds to i∗d = 0.1.

Figure 5: Plot of η ×σ ×P. Proportion of susceptible dogs that are protected from Leishmaniasis
P as a function of vaccination rate and collar-use rate, respectively, σ and η . The level curve
corresponds to the contour P = 0.35.
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Figure 5 shows the relation between the proportion of vaccinated individuals (or using collar),
and vaccination rate (or collar-use rate). The parameter set is the same as in Figure 4. The
proportion P is measured as

P =
s∗d(u)− s∗d(p)

s∗d(u)
, (5.1)

where the denominator represents the number of susceptible individuals before the introduction
of the protection strategy, and the numerator corresponds to the number of unprotected individ-
uals moved from the susceptible compartment to the protected one after the application of the
protection strategy. We use s̄d given in (3.1) with and without protection, s∗d = (R0(1− i∗v))

−1,
with i∗v given by equation (4.2) to obtain s∗d(u) and s∗d(p).

Comparing Figures 4 and 5 we can see that low prevalence of canine leishmaniasis can be
achieved when the chosen control strategy achieves around 35% of the population. Furthermore,
the same disease prevalence can be attained by combining both controls and taking into account
the efficiency and cost of each one.

6 DISCUSSION

Canine leishmaniasis is a vector-borne disease that is widely distributed in the world. As with
many other parasite diseases, a lot of factors challenge its control, among them, we can cite
its multi-host characteristics, development of drug resistance, high percentage of asymptomatic
hosts, environmental and socioeconomic factors. In the human population, 90% of affected indi-
viduals are located in five countries: India, Bangladesh, Nepal, Brazil, and Sudan. In the Amer-
icas, the case fatality rate can achieve 8% and physical effects associated with the disease can
range from mild scars to disfigurement [19]. The development of efficient vaccines and leishma-
niasis treatment is still a challenge. Vector control relies on the use of nets and insecticides, not
always correctly used.

Dogs are considered an important target to disease control due to their closeness to humans,
and for this reason vaccination, collars impregnated with insecticide, treatment, and culling of
infected dogs have been used as alternatives to diminishing the spread of the disease. In this work,
we proposed a model to evaluate the efficiency of collars, vaccination, and treatment as a strategy
against canine leishmaniasis. To this end, we obtained the basic reproduction number, R0, as a
measure of the disease prevalence, and control strategies efficiency. Using field and laboratory
parameter values given in Table 1, we obtained that the vaccination and insecticide-impregnated
collar use have practically the same efficiency (see Figure 2). The difficulty associated with
collar use relies on its expiration date, renew of the collar, and its cost. On the other hand, the
low efficiency of the actual vaccines jeopardizes the disease control by this method. According
to the values of the parameters in Table 1, equation (5.1) indicates that the control of infection on
dogs can be obtained by protecting around 35 percent of dogs with vaccination and collars (see
Figure 5).

Culling of infected dogs is recommended in many countries where human leishmaniasis is en-
demic. But, as mention in the Introduction, there is a general agreement that controls efforts must
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focus on the use of vaccines, collars, and control of the transmitter vector. This argument is sup-
ported by the observation that in endemic regions, culling dogs are replaced by new ones that can
be rapidly spread the disease.
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