Acessibilidade / Reportar erro

Surface Quality Analysis of Friction Stir Welded Joints by Using Fourier Transformation and Local Binary Patterns Algorithms

Abstract:

Friction Stir Welding process is an advanced solid-state joining process which finds application in various industries like automobiles, manufacturing, aerospace and railway firms. Input parameters like tool rotational speed, welding speed, axial force and tilt angle govern the quality of Friction Stir Welded joint. Improper selection of these parameters further leads to fabrication of the joint of bad quality resulting groove edges, flash formation and various other surface defects. In the present work, a texture based analytic machine learning algorithm known as Local Binary Pattern (LBP) and Fourier transformation algorithm are used for the extraction of texture features of the Friction Stir Welded joints which are welded at a different rotational speed. It was observed that LBP algorithm can accurately detect any irregularities present on the surface of Friction Stir Welded joint and Fourier transformation method can detect the groovy edges present on the Friction Stir Welded joint. In the case study, an image based defect recognition system by using Fourier transformation method is constructed. Five types of filters i.e. Ideal Filter, Butterworth Filter, Low pass Filter, Gaussian Filter and High Pass Filter were used. The results showed that the high pass filter has more capability to detect the edges in comparison to other four filters. It was also observed that Ideal filter has a lot of distortions when compared to the Gaussian Filter and Butterworth Filter.

Key-words:
Friction stir welding; Local binary pattern; Fourier transformation; Machine vision

Associação Brasileira de Soldagem Rua Dr Guilherme Bannitz, 126 conj 42, 04532-060 - São Paulo/SP Brasil, Tel.: (55 11) 3045 5040, Fax: (55 11) 3045 8578 - São Paulo - SP - Brazil
E-mail: abs@abs-soldagem.org.br