USO DA ANÁLISE FAUNÍSTICA DE INSETOS NA AVALIAÇÃO DO IMPACTO AMBIENTAL

S. SILVEIRA NETO^{1,2}; R.C. MONTEIRO²; R.A. ZUCCHI^{1,2}; R.C.B. de MORAES²

²Departamento de Entomologia, ESALQ/USP, C.P. 9, CEP 13418-900 Piracicaba,SP.

RESUMO: Com o objetivo de avaliar o impacto ambiental ocorrido na área experimental do Departamento de Entomologia - ESALQ/USP, num período de 25 anos, aplicou-se a análise faunística aos resultados da coleta de insetos, com armadilha luminosa, em 1965/66 e 1990/91. Comparando-se os índices fisiográficos das épocas estudadas, verifica-se uma redução de 35,1% entre 1965/66 e 1990/91. Como conseqüência, o índice de diversidade também diminuiu em 60,3% nas datas estudadas, em decorrência da menor coleta de insetos, caracterizando considerável impacto ambiental.

Descritores: índices faunísticos, armadilha luminosa, ambiente

FAUNISTIC INSECT ANALYSIS FOR ENVIRONMENTAL CHANGE EVALUATION

ABSTRACT: Environmental changes at the experimental area of the Department of Entomology, University of São Paulo, in Piracicaba, in a period of 25 years, were evaluated using a faunistic insect analysis of samples collected by light traps in 1965/66 and 1990/91. A reduction of 35.1% in the faunistic index between these two periods was recorded. Consequently, the diversity index also decreased by 60.3% due to the low number of insects collected. These indices suggest a considerable environmental change in the experimental area over this 25 years period. Key Words: faunistic indices, light trap, environment

INTRODUÇÃO

O estudo de organismos tem sido uma das técnicas utilizadas para se avaliar mudanças no ambiente. Dentre estes organismos, os insetos têm se mostrado indicadores apropriados para essa finalidade, tendo em vista sua diversidade e capacidade de produzir várias geralmente, em curto espaço de tempo. Os insetos fitófagos, quando específicos para determinadas plantas, são os organismos mais adequados, principalmente os lepidópteros, taxonomicamente bem estudados e podem ser facilmente amostrados através de armadilhas luminosas (HOLLOWAY et al., 1987).

Assim, os estudos faunísticos no Brasil têm sido realizados para melhor conhecimento da entomofauna de um determinado ecossistema (LAROCA & MIELKE, 1975; CARVALHO, 1984; COSTA, 1986; FERREIRA, 1986 e FAZOLIN, 1991).

Como a entomofauna de uma região é dependente do número de hospedeiros ali existentes (MARGALEF, 1951), os insetos podem se tornar indicadores ecológicos para a avaliação do impacto que venha a ocorrer nessa região.

Sendo assim, tomando-se por base o levantamento de insetos realizados com armadilhas luminosas, em Piracicaba-SP, em 1965/66 e 25 anos depois (1990/91), procurou-se avaliar as variações ambientais ocorridas na área de estudo durante este período, empregando-se uma análise faunística conforme a utilizada por ARLEU (1993), em área com aplicação de vinhaça em cana-deaçúcar.

MATERIAL E MÉTODOS

Neste trabalho, foi utilizada armadilha luminosa modelo "Luiz de Queiroz" (SILVEIRA NETO & SILVEIRA, 1969), equipada com lâmpada fluorescente ultra-violeta, modelo

¹Bolsista do CNPq.

F₁₅T₈BL, da GE, instaladas a 1,5 m do solo em área experimental da ESALQ/USP, com coletas semanais de insetos, segundo o calendário de coleta proposto por LEWIS & TAYLOR (1967), perfazendo o total de 52 coletas por ano. Os insetos coletados foram separados, catalogados e identificados por comparação na coleção do Departamento de Entomologia da ESALQ/USP.

Para a medida do impacto ambiental, utilizaram-se os dados de coleta de maio/65 a abril/66 (SILVEIRA NETO, 1972) e os de maio/90 a abril/91, para o mesmo local. A estes aplicou-se a análise faunística descrita em SILVEIRA NETO et al. (1976).

Para isso, as comunidades foram caracterizadas através dos índices de constância, abundância, freqüência e dominância, obtendo-se as espécies predominantes, ou seja, aquelas que se destacaram por obter os maiores índices faunísticos.

Também foram comparadas as duas épocas, com base nas espécies predominantes (indicador ecológico), através dos índices de diversidade, fisiográfico, quociente de similaridade, porcentagem de similaridade e constância simultânea. Para a análise estatística, aplicou-se o teste não paramétrico de Wilcoxon (CAMPOS, 1979).

RESULTADOS E DISCUSSÃO

Para a avaliação do impacto ambiental, compararam-se as coletas efetivadas no mesmo local durante 52 semanas, com uma defasagem de 25 anos (TABELA 1).

Através dos valores dos índices faunísticos de constância, dominância, frequência

e abundância, nas coletas das duas épocas, foi possível selecionar as espécies predominantes, cujas relações acham-se nas Tabelas 2 e 3, onde são apresentados também o número total de indivíduos coletados nessas ocasiões.

A partir desses dados, calculou-se o quociente de similaridade, cujo valor foi:

$$QS = 45,3\%$$

Para medir o índice fisiográfico, analisaram-se os mapas dos locais de coleta nas duas épocas (Figuras 1 e 2), com os respectivos cálculos dos índices fisiográficos.

Na TABELA 4, estão relacionadas as espécies predominantes para as duas épocas simultaneamente, cujos dados permitem o cálculo dos índices de porcentagem de similaridade e constância simultânea.

Pelos dados obtidos da comparação das coletas de 1965/66 com as de 1990/91, para o mesmo local e condições de captura, observou-se que realmente houve uma sensível modificação nesta comunidade.

Assim, essas alterações podem ser notadas pelos índices faunísticos de diversidade e fisiográfico, que estão intimamente relacionados segundo a equação de regressão linear ($\alpha = a + b \phi$).

Dessa forma, verificou-se uma redução de 35,1% entre 1965/66 e 1990/91. Como conseqüência, o índice de diversidade também sofreu uma redução em 60,3% para este mesmo período, em decorrência da menor coleta de indivíduos, espécies, famílias e ordens de insetos, caracterizando, portanto, um grande impacto ambiental na área.

TABELA 1 - Totais de insetos coletados e índices faunísticos para as duas épocas de levantamento no Departamento de Entomologia da ESALQ/USP, Piracicaba, SP.

Anos de coleta	Nº de ordens	Nº de famílias	Nº de espécies	Nº de indivíduos	Índice de diversidade (α)	Índice fisiográfico (φ)
65/66	13	109	632	18222	64,3	210,5
90/91	10	42	198	2231	25,5	136,5



Figura 1. Mapa do local de instalação da armadilha luminosa e índice fisiográfico (Departamento de Entomologia-ESALQ/USP), 1965/66.

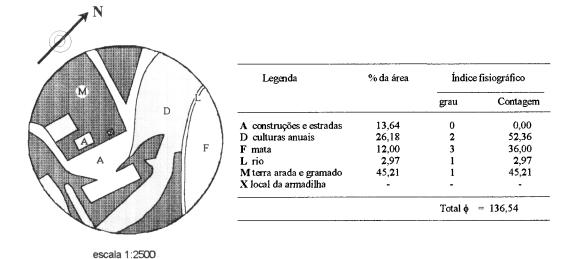


Figura 2. Mapa do local de instalação da armadilha luminosa e índice fisiográfico (Departamento de Entomologia-ESALQ/USP), 1990/91.

Sci. agric., Piracicaba, 52(1):9-15, jan./abr. 1995

TABELA 2 - Espécies e número de insetos predominantes coletados em armadilha luminosa. Departamento de Entomologia-ESALQ/USP, Piracicaba, SP 1965/66 (SILVEIRA NETO, 1972).

ESPÉCIES	ORDENS/FAMÍLIAS	TOTAL INI	OIVÍDUOS
		65/66	90/91
Costalimaita ferruginea	Col., Chrysomelidae	121	5
Euetheola humilis	Col., Scarabaeidae	292	1
Dichotomius anaglypticus	Col., Scarabaeidae	213	12
Doru lineare	Derm., Forficulidae	140	0
Cyrtomenus mirabilis	Hem., Cydnidae	104	53
Loxa flavicollis	Hem., Pentatomidae	182	4
Apis mellifera	Hym., Apidae	295	44
Apoica pallens	Hym., Vespidae	494	1
Diatraea saccharalis	Lep., Pyralidae	229	0
Cosmosoma teuthras	Lep., Amatidae	227	2
Dycladia lucetius	Lep., Amatidae	355	20
Philorus rubriceps	Lep., Amatidae	504	1
Hylesia sp.	Lep., Saturniidae	165	0
Anicla infecta	Lep., Noctuidae	127	25
Bleptina confusalis	Lep., Noctuidae	104	19
Leucania humidicola	Lep., Noctuidae	272	20
Cirphis latiuscula	Lep., Noctuidae	216	31
Eriopyga infirma	Lep., Noctuidae	109	3
Perigea apameoides	Lep., Noctuidae	313	1
Perigea concisa	Lep., Noctuidae	415	11
Spodoptera frugiperda	Lep., Noctuidae	112	66
Hedylepta indicata	Lep., Pyralidae	172	18
Herpetogramma sp.	Lep., Pyralidae	781	45
Maruca testulalis	Lep., Pyralidae	1748	48
Nomophila noctuella	Lep., Pyralidae	121	27
Stomoxys calcitrans	Dip., Muscidae	109	0
Isia alcumena	Lep., Arctiidae	124	0
Hortensia similis	Hem., Cicadellidae	544	7
TOTAL 28		8588	464
MÉDIA		306,7	16,6
TESTE DE WILCOXON		$Z = 6,42^{**}$	

[&]quot;Significativo ao nível de 0,01%.

Por estes dados, observa-se que a similaridade entre as duas épocas de coleta ficou em apenas 45,3% e, considerando-se apenas espécies predominantes nas duas épocas, elevou-se para 60,2%. Entretanto, os períodos de coleta das principais espécies não foram alterados de acordo com os valores de constância simultânea (TABELA 4),

o que indica a manutenção do período de vegetação dos respectivos hospedeiros desses insetos.

Também a análise estatística (Wilcoxon) das espécies predominantes indica que a coleta de 1965/66 é significativamente superior à de 1990/91 em qualquer circunstância, comprovando-se que houve alteração no local.

TABELA 3 - Espécies e número de insetos predominantes coletados em armadilha luminosa, Departamento de Entomologia, ESALQ/USP, Piracicaba, SP, 1990/91

ESPÉCIES	ORDENS/FAMÍLIAS	TOTAL INDIVÍDUOS			
		90/91	65/66		
Apis mellifera	Hym., Apidae	44	295		
Eciton sp.	Hym., Formicidae	155	0		
Pelidnota sordida	Col., Scarabacidae	51	65		
Geniates barbatus	Col., Scarabaeidae	23	0		
Astaena sp.	Col., Scarabaeidae	32	0		
Anomala testaceipennis	Col., Scarabaeidae	56	0		
Selenophorus sp.	Col., Carabidae	618	0		
<i>Polpochila</i> sp.	Col., Carabidae	44	26		
Cyrtomenus mirabilis	Hem., Cydnidae	53	104		
Allommatus brasilianus	Hem., Miridae	42	0		
Pseudaletia sequax	Lep., Noctuidae	29	76		
Bagisara subusta	Lep., Noctuidae	26	0		
Bleptina confusalis	Lep., Noctuidae	19	104		
Spodoptera frugiperda	Lep., Noctuidae	66	112		
Anicla infecta	Lep., Noctuidae	25	127		
Cirphis latiuscula	Lep., Noctuidae	31	216		
Monodes deltoides	Lep., Noctuidae	37	84		
Leucania humidicola	Lep., Noctuidae	20	272		
Herpetogramma sp.	Lep., Pyralidae	45	781		
Nomophila noctuella	Lep., Pyralidae	27	121		
Maruca testulalis	Lep., Pyralidae	48	1748		
Samea traducalis	Lep., Pyralidae	33	91		
Hedylepta indicata	Lep., Pyralidae	18	172		
Dycladia lucetius	Lep., Amatidae	20	355		
Semiothisa sp.	Lep., Geometridae	29	0		
TOTAL 25		1591	4749		
MÉDIA		63,6	189,9		
TESTE DE WILCOXON		$Z = 1,36^{\circ}$			

^{*} Significativo ao nível de 8,6%

TABELA 4 - Espécies predominantes simultaneamente em	1965/66 e	1990/91 e	respectivos	valores de
porcentagem de similaridade e constância sum	ultânea.			

	1965/66	·	1990/91	<u> </u>				
ESPÉCIES	TOTAL DE INDIVÍDUOS		% TOTAL I INDIVÍD		Constância simultânea n _A n _B J I _{AB}			
Apis mellifera	295	6,7	44	10,6	12	11	11	0,95
Cyrtomenus mirabilis	104	2,3	53	12,7	8	7	6	0,80
Bleptina confusalis	104	2,3	19	4,6	11	6	6	0,70
Spodoptera frugiperda	112	2,6	66	15,9	11	12	11	0,95
Anicla infecta	127	2,9	25	6,0	12	11	11	0,95
Cirphis latiuscula	216	4,9	31	7,5	12	7	7	0,74
Leucania humidicola	272	6,2	20	4,8	12	7	7	0,74
Nomophila noctuella	121	2,7	27	6,5	12	7	7	0,74
Maruca testulalis	1748	39,7	48	11,5	11	6	6	0,70
Hedylepta indicata	172	3,9	18	4,3	10	6	6	0,75
Dycladia lucetius	355	8,0	20	4,8	12	10	10	0,91
Herpetogramma sp.	781	17,7	45	10,8	12	7	7	0,74
TOTAL 12	4407	100	416	100				_
MÉDIA	367,2		34,7					
TESTE DE WILCOXON	Z = 4,16 **							
PORCENTAGEM DE %S = 60,2% SIMILARIDADE		50,2%						

[&]quot;Significativo ao nível de 0,1%

CONCLUSÕES

- Há interferência na fauna entomológica da comunidade analisada, devido às mudanças e destruição da vegetação.
- A análise faunística permite a avaliação do impacto ambiental, tendo por base espécies de insetos como indicadores ecológicos.

REFERÊNCIAS BIBLIOGRÁFICAS

- ARLEU, R.J. Impacto ambiental da vinhaça sobre a entomofauna associada à cultura da cana-de-açúcar. Piracicaba, 1993. 95p. Tese (Doutorado) Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo.
- CAMPOS, H. de. Estatística experimental não paramétrica. 3.ed. Piracicaba: ESALQ, 1979, 343p.

- CARVALHO, A.D.R. Análise faunística de coleópteros coletados em plantas de Eucalyptus urophylla e Eucalyptus saligna. Piracicaba, 1984. 105p. Dissertação (Mestrado) Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo.
- COSTA, E.C. Artrópodes associados à bracatinga (Mimosa scabrella). Curitiba, 1986. 271p. Tese (Doutorado) Universidade Federal do Paraná.
- FAZOLIN, M. Análise faunística de insetos coletados com armadilha luminosa em seringueira no Acre.

 Piracicaba, 1991. 236p. Tese (Doutorado)- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo.
- FERREIRA, M.F.B. Análise faunística de Formicidae (Insecta, Hymenoptera) em ecossitemas naturais e agro-ecossistemas na região de Botucatu-SP. Botucatu, 1986. 73p. Dissertação (Mestrado) Universidade Estadual Paulista.

- HOLLOWAY, J.D.; BRADLEY, J.D.; CARTER, J.D. CIE guides to insects of importance to man. Lepidoptera, 1. C.A.B. International, Wallinford, 1987. 262p.
- LAROCA, S.; MIELKE, O.H.H. Ensaio sobre ecologia de comunidade em Sphingidae na Serra do Mar, Paraná-BR, (Lepidoptera). Revista Brasileira de Biologia, Rio de Janeiro, v.35, n.1, p.1-19, 1975.
- LEWIS, M.A.; TAYLOR, R. Introduction to experimental ecology. New York: Academic Press, 1967. 401p.
- MARGALEF, R. Diversidad de especies en las comunidades naturales. Publicaciones del Instituto de Biologia Aplicada e Barcelona, Barcelona, v.6, p.59-72. 1951.

- SILVEIRA NETO, S. Levantamento de insetos e flutuação da população de pragas da ordem Lepidoptera, com o uso de armadilhas luminosas em diversas regiões do Estado de S. Paulo. Piracicaba, 1972. 183p. Tese (Livre-Docência) Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo.
- SILVEIRA NETO, S.; SILVEIRA, A.C. Armadilha luminosa, modelo "Luiz de Queiroz". O Solo, Piracicaba, v.61, n.2, p.19-21, 1969.
- SILVEIRA NETO, S., NAKANO, O.; BARBIN, D.; VILLA NOVA, N.A. Manual de ecologia dos insetos. Piracicaba: Ceres, 1976. 419p.

Entregue para publicação em 16.06.93 Aceito para publicação em 20.02.95