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ABSTRACT: Genome-wide selection (GWS) is based on a large number of markers widely dis-
tributed throughout the genome. Genome-wide selection provides for the estimation of the ef-
fect of each molecular marker on the phenotype, thereby allowing for the capture of all genes 
affecting the quantitative traits of interest. The main statistical tools applied to GWS are based 
on random regression or dimensionality reduction methods. In this study a new non-parametric 
method, called Delta-p was proposed, which was then compared to the Genomic Best Linear 
Unbiased Predictor (G-BLUP) method. Furthermore, a new selection index combining the genetic 
values obtained by the G-BLUP and Delta-p, named Delta-p/G-BLUP methods, was proposed. 
The efficiency of the proposed methods was evaluated through both simulation and real stud-
ies. The simulated data consisted of eight scenarios comprising a combination of two levels of 
heritability, two genetic architectures and two dominance status (absence and complete domi-
nance). Each scenario was simulated ten times. All methods were applied to a real dataset of 
Asian rice (Oryza sativa) aiming to increase the efficiency of a current breeding program. The 
methods were compared as regards accuracy of prediction (simulation data) or predictive ability 
(real dataset), bias and recovery of the true genomic heritability. The results indicated that the 
proposed Delta-p/G-BLUP index outperformed the other methods in both prediction accuracy 
and predictive ability.
Keywords: genomic prediction, selection index, genetic gain, asian rice 

New insights into genomic selection through population-based non-parametric prediction 

Leísa Pires Lima1 , Camila Ferreira Azevedo1 *, Marcos Deon Vilela de Resende2 , Fabyano Fonseca e Silva3 , Matheus Massariol 
Suela4 , Moysés Nascimento1 , José Marcelo Soriano Viana5

1Universidade Federal de Viçosa – Depto. de Estatística, Av. 
Peter Henry Rolfs, s/n – 36570-900 – Viçosa, MG – Brasil.
2Embrapa Florestas, Estr. da Ribeira, km 111 – 83411-000 
– Colombo, PR – Brasil.
3Universidade Federal de Viçosa – Depto. de Zootecnia.
4Universidade Federal de Viçosa – Depto. Fitotecnia.
5Universidade Federal de Viçosa – Depto. de Biologia Geral.
*Corresponding author <camila.azevedo@ufv.br>

Edited by: Roberto Fritsche Neto

Received October 14, 2017
Accepted April 07, 2018

Introduction

The evolution of sequencing and genotyping tech-
niques has prompted a great advance in molecular ge-
netics becoming a possibility using DNA information 
directly for the selection of genetically superior individ-
uals. This framework is called genome-wide selection 
(GWS), which enables direct early marker-based selec-
tion that generally increases the genetic gain per unit of 
time (Meuwissen et al., 2001). Genome-wide selection 
is based on the estimation of molecular marker effects 
on the phenotypes, thus providing accurate additive and 
dominant genomic value predictions for individuals sub-
ject to selection, even for those without observed pheno-
typic values.

The Genomic Best Linear Unbiased Predictor (G-
BLUP) (Goddard, 2009; Habier et al., 2007; Van Raden, 
2008) has been extensively applied to GWS and recom-
mended for additive and dominant genomic value pre-
dictions (Azevedo et al., 2015; De los Campos et al., 
2013; Gianola, 2013; Gianola et al., 2009). However, 
non-parametric and purely conceptual methods can also 
be used for this purpose. The Delta-p method was theo-
retically proposed by Resende (2015) for application to 
genomic selection, but has not been implemented and 
evaluated so far. The method is based on the genetic dis-
tance between two subpopulations, using the concepts 
of changes in allele frequency due to selection and the 
genetic gain theory. It is also possible to combine the ge-
nomic values from the G-BLUP with the genomic values 

provided by Delta-p under a selection index framework 
called Delta-p/G-BLUP. 

The aim of this study was to propose the Delta-
p and Delta-p/G-BLUP index, and to compare it with 
the traditional G-BLUP method. The efficiency of these 
methods was evaluated through simulation and real 
studies. The simulated dataset consisted of eight sce-
narios comprising the combination of two levels of heri-
tability, two genetic architectures and two dominance 
status (absence and complete dominance). The empirical 
dataset consisted of 370 rice accessions phenotyped for 
seven yield traits, which were genotyped for 44,100 SNP 
markers.

Materials and Methods

Simulated datasets
The data set was simulated using the Real Breed-

ing software program (Viana, 2011), and the generation 
of data has been described by Azevedo et al. (2015). A 
population of 5,000 individuals from 100 families, gen-
erated from the random mating of two linkage equilib-
rium populations, was subjected to five generations of 
random mating without selection, mutation nor migra-
tion. The final population is an advanced generation 
composite in Hardy-Weinberg equilibrium and linkage 
disequilibrium (LD).

The prediction of genomic breeding value based 
on thousands of single nucleotide polymorphisms (SNPs) 
depends on LD between markers and QTL. Thus, the 
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LD value (∆) in a composite population can be calcu-
lated from ∆ =

−





 − −ab

ab
a a b bp p p p

1 2
4

1 2 1 2θ
( )( ) (Kempthorne, 1973; 

Viana, 2004; Viana et al., 2016), where a and b are two 
SNPs, or two QTLs, or one SNP and one QTL, q the 
frequency of recombinant gametes, and p1 and p2 the 
allele frequencies in the parental populations 1 and 2, 
respectively. 

Azevedo et al. (2015) simulated a total of 2,000 
equidistant SNP markers separated by 0.10 centimor-
gans (cM) across the ten equally sized chromosomes. 
One hundred of the simulated markers were QTLs 
randomly distributed in the genome and 95 % of the 
genetic variation was explained by the markers, accord-
ing to the expression proposed by Goddard et al. (2011). 
An amount of 1,000 individuals from 20 full-sib families 
were genotyped and phenotyped. This simulation study 
provides a small effective population size (Ne = 39.22), 
which, according to Resende (2015), is the typical value 
in elite breeding populations of plant species.

The simulated phenotypes considered two types 
of genetic architecture, one with polygenic inheritance, 
wherein the 100 QTLs were assumed with limited addi-
tive effects on the phenotype, and the other with mixed 
inheritance, the 5 QTLs with effects accounting for 50 % 
of the genetic variability and the small additive effects 
were assigned to the remaining 95 QTLs. The genotypic 
values for homozygotes were calculated considering 
Gmax = 100(m + a) as the upper limit and Gmin=100(m 
– a), as the lower limit where m was the mean of geno-
typic values and a the homozygote genotypic value. The 
phenotypic values were computed by adding genotypic 
values to the true population mean, and error effects 
sampled from a normal distribution N e( , )0 2s , where the 
error variance se

2  was computed according to the heri-
tability levels. The additive and dominance effects were 
assumed to be independents and were normally distrib-
uted with zero mean and genetic variance, depending 
on the assumed genetic architecture and the desired 
heritability level. In the simulation study, it was also 
observed that SNPs had minor allele frequency (MAF) 
greater than 5 %.

Scenarios
Eight different scenarios were used in the analy-

ses: two genetic architectures (polygenic and mixed in-
heritance); dominance status (absence and complete), 
two broad-sense heritability levels (around 0.20 and 
0.30) for absence of dominance and two broad-sense 
heritability levels (around 0.30 and 0.50) for complete 
dominance. These values were chosen because, accord-
ing to Azevedo et al. (2015), it was expected in these 
cases, that the genomic selection would be superior to 
phenotypic selection. The description of the scenarios is 
presented in Table 1.

Real datasets
Asian rice (Oryza sativa) is one of the most wide-

ly consumed foods in the world (Subudhi et al., 2006). 

Thus, the high population growth rate has justified the 
interest of researchers in developing high-yielding rice 
varieties. The real/empirical dataset consisted of 370 
rice accessions phenotyped for seven yield traits, which 
were genotyped for 44,100 SNPs markers. The dataset is 
publicly available and is part of two projects, the Ory-
zaSNP Project and the OMAP Project (Ammiraju et al., 
2006; Zhao et al., 2011), and is available at http://ricedi-
versity.org/.

Plantations were supervised throughout the access 
phase, from May to Oct of the years 2006 and 2007. A 
complete block design with two replications was used, 
in which the planting lines had a length equal to 5 m. 
The plants were spaced 25 cm apart and 0.50 m be-
tween rows. Rice accessions were evaluated in the field 
at Stuttgart, Arkansas coordinates, Lat: 034°49.5805’ N; 
Long –091°54.8357’ W, 100 m. Further details can be 
found in Zhao et al. (2011). The quality control proce-
dures were made considering a call rate of 70 % and 
minor allele frequency (MAF) less than 1 %. After the 
quality control of the genomic database the total was 
36,901 SNPs markers.

The seven traits evaluated were: (i) Panicle num-
ber per plant, (ii) Plant height, (iii) Panicle length, (iv) 
Primary panicle branch number, (v) Seed number per 
panicle, (vi) Florets per panicle, (vii) Panicle fertility.

G-BLUP method
The Genomic Best Linear Unbiased Predictor (G-

BLUP) method is based on the following linear mixed 
model:

y = 1µ + Za + Zd + e,

where, y is a vector of phenotypes (N × 1, being N the 
number of genotyped and phenotyped individuals); µ 
the general mean and 1 the vector with dimension (N × 
1); a the vector of additive genomic values (N × 1) with 
incidence matrix Z (N × N), whose assumed distribution 
is a~N(0, G

a
sa

2), where sa
2  is the genetic additive vari-

ance and Ga (N × N) the additive genomic relationship 

Table 1 – Scenarios with the respective true additive heritabilities 
(ha

2), due to dominance ( hd
2 ) and total ( hg

2 ), genetic architectures 
(traits controlled by genes of small effect - polygenic inheritance, 
and traits controlled by genes of small and greater effect - mixed 
inheritance) and dominance status (absence and complete). 

Scenario Genetic Architectures Dominance status ha
2 hd

2 hg
2

Scenario 1 Polygenic inheritance Absence 0.22 - 0.22
Scenario 2 Polygenic inheritance Absence 0.33 - 0.33
Scenario 3 Mixed inheritance Absence 0.20 - 0.20
Scenario 4 Mixed inheritance Absence 0.35 - 0.35
Scenario 5 Polygenic inheritance Complete 0.21 0.10 0.31
Scenario 6 Polygenic inheritance Complete 0.35 0.17 0.52
Scenario 7 Mixed inheritance Complete 0.20 0.13 0.33
Scenario 8 Mixed inheritance Complete 0.33 0.21 0.54
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The am value can be obtained using the theoretical 
expression of genetic gain. For a given locus i in sub-
population one, u1i = (p1i – q1i) ai = (2p1i – 1) ai , where i 
= 1, 2, ..., n; and in subpopulation two, u2i = (p2i – q2i) ai 

= (2p2i – 1) ai. Thus, (u1i – u2i) = (2p1i – 2p2i) ai = 2∆piai. 
Summing all loci, (u1 – u2) = 2Σ(∆piai). The quantity ∆pm 
is defined by Falconer (1989) as: ∆pm = sq(1 – q), where 
s = ak/sP, where s is the selective coefficient of the lo-
cus, assuming an additive-dominance model. Therefore, 
∆pm = akpq/ sP

2
 where k is the standardized selection 

intensity and sP
2  the phenotypic variance. The genetic 

gain is defined as G ks a P= σ σ2 2/ . Thus, k GP s a/ /σ σ2 2= . 
Replacing ∆pm in the expression it is possible to obtain 
∆pm = apqGs/sa

2 .
The genetic gain associated with the first differ-

ential selection is given by Gs1 = ha
2  (u1 – u0), whereas 

the second one is Gs2 = ha
2  (u0 – u2). These gains are 

symmetrical and must be summed to obtain the to-
tal gain 2Gs, given by: 2Gs = Gs1 + Gs2 = ha

2 (u1 – u2). 
Thus, Gs=

1
2( ) ha

2  (u1 – u2). Replacing Gs into Dpm, Dpm = 
apqGs/sa

2  and Dpm = apq(1/2)ha
2 (u1 – u2)/sa

2 ; where sa
2

=2pqa2. Replacing and dividing by Dpm, we have:

1 = [apq(1/2)ha
2 (u1 – u2)]/(2pqa2 Dpm),

thus, 1 = (1/2)ha
2 (u1 – u2)/(2aDpm). Isolating a from the 

last expression, a = (1/2)ha
2 (u1 – u2)/(2Dpm) for n locus 

and the average a per locus is given by:

am = 0.5ha
2 (u1 – u2)/[nmarkers2Dpm]. 

Therefore, the additive markers effects (a) are 
non-parametrically estimated in the training population 
(individuals with known phenotypes and genotypes). 
Based on these effects, the genetic values (a) are esti-
mated by the following expression: â = Wâ, being W 
the incidence matrix of the additive genetic effects of the 
markers. This approach does not demand an iterative 
computational method and uses only genetic distance 
concepts (magnitude of Dpi) and the genetic gains of two 
subpopulations. Additionally, it also does not use differ-
ential shrinkage based on allele frequencies, which ben-
efits the loci with higher MAFs. In summary, the Delta-p 
method can be implemented by taking the followings 
steps: i) subdivision of the training population into two, 
according to the phenotype adjusted for systematic ef-
fects; ii) calculation of Dpi and Dpm; iii) calculation of am; 
and iv) calculation of ai = (Dpi/ Dpm)am . 

For the dominance effects, the quantity ∆(2pq)i 
(difference between frequencies of heterozygous geno-
types of subpopulations one and two) is used instead 
of Dpi. The better the phenotype and the higher the fre-
quency of heterozygous genotypes in the population, 
the more favorable the value of the genotype corrected 
for the additive genetic effects (i.e., higher the of domi-
nance deviations). In order to infer the effects of domi-
nance, the interest is to find this association (frequency 
of heterozygous and values of phenotypes). For this, the 

matrix; d the vector of dominance genomic values (N 
× 1) with incidence matrix Z (N × N), whose assumed 
distribution is d~N(0, Gd sd

2 ), where sd
2 is the domi-

nance variance and Gd (N × N) the dominance genomic 
relationship matrix; and e the random residual vector, 
assumed as e ~N(0, Ise

2 ), where se
2  is the residual vari-

ance and I an identity matrix.
According to Vitezica et al. (2013), the genomic 

relationship matrices for the additive and dominance ef-
fects, Ga and Gd, are given, respectively, by:

G
WW

p q
and G

SS

p q
a

i ii

n d

i ii

n= =

= =∑ ∑
’

( )

’

( )2 2
1

2
1

  ;

where pi and qi are the allele frequencies of the locus i. 
The elements of W and S are given by:

W

if MM then q

if Mm then q p and S

if mm then p

=
→
→ − =
→






  
    
  

,
,
,

2 2
1
0 2



→
→

→ −


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




if MM then q

if Mm then pq

if mm then p

  0
  

  

,
,

,

2
1 2

0 2

2

2
 

Delta-p method
The Delta-p method uses the concepts of changes 

in allele frequency due to selection and genetic gain 
theory (contrast between the averages of two subpopu-
lations). The training population is initially divided into 
two subpopulations: one with individuals above the gen-
eral mean (subpopulation one, with a higher average ge-
netic value u1) and the other with individuals below the 
general mean (subpopulation two, with lower average 
genetic value u2). The difference between the average 
genetic values of the two subpopulations (u1 – u2) is due 
to the frequency of favorable alleles (p) among the two 
populations. Thus, (u1 – u2) is explained by ∆p = p1 – p2, 
where ∆p is the difference of allelic frequencies between 
the two subpopulations. The ∆p values are calculated for 
each marker i, so that the positive signals are allocated 
as favorable. Thus, the allelic substitution effects (ai) of 
these markers are taken as positive, whereas for those 
with negative signs of ∆p their ai’s are assigned as nega-
tive.

In this context, the incidence matrix W for the 
vector of additive effects of markers is reparametrized, 
making the markers genotypes as 0 (bb), 1 (Bb) and 2 
(BB). Here, the B allele is the favorable allele, and the 
BB or bb allocation is dictated by the ai signal. Thus, the 
correct allocation in BB or bb is probabilistic. In general, 
it is expected that the highest number of allocation er-
rors will occur in loci with very minor effects.

The Delta-p method requires the estimation of the 
ai effects, and later the prediction of the genomic values 
(a). Taking ∆pi as an indicator of the relative magnitude 
of ai (the higher the ∆pi, the higher the chance of the 
ai being higher), it is possible to define the proportion 
∆pi/∆pm (with their respective positive or negative sig-
nals); where ∆pm is the average delta-p computed using 
the absolute value of ∆pi multiplied by the average a (am), 
which results in the ai effects. Thus, ai = (∆pi/∆pm) am.
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phenotype must be returned as the frequency of het-
erozygous, corrected for additive effects. The incidence 
matrix S is inherent to the frequency of heterozygous 
among the three genotype classes. Then, gm is defined 
as the genotype value of the heterozygous, which is cor-
rected for the additive effect (ai). It gives the dominance 
deviation of the locus i (di), and the genomic dominance 
value (vector d) is defined as ˆ ˆd S= δ , where S is the pre-
viously mentioned incidence matrix.

Delta-p/G-BLUP Index method
Based on the principle of combined selection (Lush, 

1947; Falconer, 1989), the G-BLUP can be jointly used 
with the Delta-p method. A selection index of the form 
I = b1â1 + b2â2 is defined based on information from pre-
dicted additive genomic values from G-BLUP (â1) and 
Delta-p (â2), weighted by b1 and b2 coefficients, respec-
tively. The index can be also represented by I = b1f (y, 
W) + b2f ((u1 – u2), Dp); where y is the vector of individual 
phenotypic data, W the centralized allelic dosage matrix, 
(u1 – u2) the contrast of averages from subpopulations and 
Dp the differential frequency between subpopulations. 
The weights of the index are given by b = P–1C as follows:

C
r

r

a a a

a a a

=














σ

σ
1 1

2 2 2

2 2

2 2

ˆ

ˆ

,P
r cov a a r r

cov a

a a a a a a a
=

                  σ
1 1 1 2

2 2
1 2

2 2

1

ˆ ˆ ˆ( , )

( ,, ) ˆ ˆ ˆ

ˆ

a r r r

r

a a a a a a a

a a a

2
2 2 2 2

2 2

1 2 2 2

1 1

          

  

σ

σ














=

       

      

σ

σ σ

∆






2 2 2

2 2 2 2 2
1 2

2 1 2 2 2

r r

r r r

a a a a

a a a a a a a a

ˆ ˆ

ˆ ˆ ˆ








where C is a matrix of variance and reliability (r2) of 
estimated genomic values through Delta-p and G-BLUP, 
P a covariance matrix between the estimated genomic 
values through Delta-p and G-BLUP and a the true addi-
tive genetic value of individuals.

Dividing P and C by sa1

2 , and considering 
∆ =2 2 2

2 1
σ σa a/  it is possible to obtain:

C
r

r

a a

a a

=
∆













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  ˆ

ˆ

1

2 2

2

2 2
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r r r

r r r

a a a a a a

a a a a a a

=
∆

∆ ∆




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ˆ ˆ ˆ

1 1 2

1 2 2

2 2 2 2

2 2 2 2 2
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








 .

The weights (b1 and b2) and accuracy (rIa) between 
the index and the true additive genetic value a are given 
respectively by:

b
r

r r
a a

a a a a
1

2 2

2 2 2

1

1
2

1 2

=
− ∆
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ˆ

ˆ ˆ
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r

r r
a a

a a a a
2
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2 2 2

1

1
1

1 2
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−
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ˆ

ˆ ˆ
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r
r r r r
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						       .

Under this approach, the reliabilities of â1( ra a1̂

2 , ob-
tained by G-BLUP) and â2 ( ra aˆ2

2  obtained by Delta-p) and 

the proportion of variances of â2 and â1 are required. 
If ∆ =2 2 2

2 1
σ σa a/  provides a value higher than one, then 

D2 must be at least 1 . Another option is to calculate 
cov(a1, a2) directly through cov(â1, â2). Considering that 
the dominance effects of the methods are analogous to 
that described above only the genomic value due to the 
dominance should be used ( d̂ ) instead of the additive 
genomic value (â) in derived equations.

Computer resources
All computational implementations of the pro-

posed methods were performed using the R software 
program (version 3.3.1). The G-BLUP was performed in 
the rrBLUP package through the mixed.solve function. 
The algorithm used for the development of the Delta-p 
method is available in http://www.novoscursos.ufv.br/
departamentos/ufv/det/www/?page_id=1374.

Comparisons of the proposed methods
Simulated dataset

Each type of population was simulated 10 times 
under the same parameter settings, which preserved the 
same features and provided samples that were effective-
ly from the same conceptual population. Nine replicates 
were used as training populations, and one replicate was 
used as a validation population. The estimations based on 
each of the nine replicates were validated by obtaining esti-
mates of the efficiency measures. The efficiency measures 
of genomic prediction were given by the accuracies (râa and 
rddˆ ), bias (b e bya ydˆ ˆ  ), recovered additive and dominance ge-
nomic heritabilities (h e ha d

2 2  ) and relative efficiency (RE).
The accuracy is defined as the correlation between 

the predicted values and the parametric genetic values; 
and the prediction bias is defined as the regression co-
efficient associated with this correlation. For regression 
coefficients below one (< 1) it is understood that pre-
dicted values had been overestimated, whereas for coef-
ficients above one (> 1), it was concluded that predicted 
values had been underestimated. The recovered additive 
genomic heritability is given by

ha
a

a d e

2
2

2 2 2 =
+ +

σ

σ σ σ
, 

where σa i i ii

n
p q m2 2

1
2 =

=∑  is the additive genomic vari-
ance, mi

2  the square of the ith marker effect with allelic 
frequencies equal to pi and qi. The genomic heritability 
due to dominance is given by

hd
d

a d e

2
2

2 2 2 =
σ

σ σ σ+ +
,

where σd i i ii

n
p q d2 2

1
2 =

=∑ ( )  and di is the genotypic val-
ue of the heterozygous. The relative efficiency is given 
by the ratio between the accuracies from the compared 
methods. All these measures were obtained for each 
replicate in each scenario and the general results were 
reported as average values.
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Real dataset
We obtained the measures of efficiency using five-

fold cross validation (k = 5), in which in each fold the 
training population consisted of 296 individuals (80 % 
of total) and the validation population consisted of 74 
individuals (20 % of total). The efficiency measures used 
were the predictive ability (rây), which consisted of the 
correlation between the estimated additive genomic val-
ues and the phenotypic values of the validation popula-
tion, and prediction bias.

Results and Discussion

The average and the respective estimated stan-
dard deviations for the accuracy, bias, heritabilities and 
relative efficiency were obtained by both Delta-p and 
G-BLUP and are shown in Table 2. We note an increase 
in accuracy with the use of the G-BLUP. The correlation 
between the genomic values predicted by the Delta-p 
and the G-BLUP method was high (râpâg

), ranging from 
0.80 to 0.88. Although the G-BLUP is widely applied to 
GWS and recommended for the prediction of additive 
and dominant genomic values (Azevedo et al., 2015; De 
los Campos et al., 2013; Gianola, 2013; Gianola et al., 
2009), this study proposed combining the values derived 
from the Delta-p and G-BLUP methods to construct an 
index giving different weights to each of them which 
can be seen as an improvement in the G-BLUP addi-
tive and dominant genomic predictions. For the additive 
model, the increase in accuracy using the Delta-p/G-
BLUP index (0.80 to 0.87) was 0.03 units on average 
compared to the accuracy of the G-BLUP method (0.77 
to 0.85). For the additive-dominant model, this increase 
was more evident, being 0.08 units. The Delta-p/G-
BLUP index, considering the additive model, provided 
a relative average efficiency of 103 % to 105 %, while 
in the additive-dominant model this efficiency increased 
to 109 % to 116 %. It is noted that the Delta-p/G-BLUP 
index improved the prediction of additive and dominant 
genomic values through G-BLUP, since the index pro-
vided greater accuracy. It is important to report that this 
advantage in terms of extra percentage points has no ad-
ditional computational costs.

As already mentioned, the Delta-p/G-BLUP index 
method is based on the combined selection index. Ac-
cording to Lush (1947) and Falconer (1989), this process 
outperformed other selection methods, for example, in-
dividual or among or within family selection. Similarly, 
in the present study, the Delta-p/G-BLUP index method, 
which is based on the combined selection index, outper-
formed the G-BLUP and Delta-p methods. Gains of 5 % 
in accuracy are already significant in genetic improve-
ment, often equivalent to the gain that is obtained in a 
complete cycle of improvement (Resende et al., 2015). 

The differences between allele frequencies were 
effective in estimating the marker effects. This result 
corroborates the principle of the Delta-p method. Weller 
et al. (2014) and Weller (2016) reported that marker se- Ta
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lection based on differences between allelic frequencies 
between groups of young and older bulls, i.e. between 
two contrasting subpopulations, can be effective in ge-
nomic selection in dairy cattle.

Considering the additive model, it was observed 
that for all scenarios, the G-BLUP method was the one 
that presented an estimated additive heritability close to 
the parametric value (Table 2). Considering the additive-
dominant model, it was observed that for the scenarios 
whose traits are controlled by genes of small effects 
(scenarios 5 and 6), the Delta-p method presented the 
additive heritability estimates closest to the parametric 
values. On the other hand, for the scenarios whose traits 
are controlled by genes of both small and sizeable effects 
(scenarios 7 and 8), the G-BLUP method presented bet-
ter performance.

Considering the additive model, the G-BLUP and 
Delta-p methods had non-biased predicted additive ge-
nomic values (Table 2), except for the Delta-p method 
in scenarios 1 and 3, where the method underestimated 
these values (byâ > 1). Considering the additive-dominant 
model, the G-BLUP method provided non-biased additive 
genomic values, except for scenario 8, where the method 
overestimated these values (byâ < 1). In contrast, the Del-
ta-p method presented predicted additive genomic values 
which were overestimated for scenarios 5, 6 and 8; and 
underestimated for scenario 7. Already, the Delta-p/G-
BLUP index overestimated the predicted additive genomic 
values for all scenarios considered (byIa < 1). However, the 
index had biases considerably closer to one in the additive 
model than in the additive-dominant model (Table 2).

Table 3 shows the average results obtained through 
a simulated dataset, the methods for the genomic values 
due to dominance considering the additive-dominant 
model and also the weights, accuracy and efficiency ob-
tained through the Delta-p/G-BLUP index. In this case, 
the improvement in the prediction of genomic values 
with the use of the index (Table 3) was less evident. Only 
0.01 units improved in prediction accuracy compared 
to the accuracy of G-BLUP. Bennewitz and Meuwissen 
(2010), Hill et al. (2008), and Wellmann and Bennewitz 
(2012) discuss the relevance of the inclusion of domi-
nance in Quantitative Genomics. However, according to 
the results reported by Azevedo et al. (2015), genomic 
values due to dominance are difficult to predict and are 
consequently associated with low accuracy values and 
higher bias. This corroborates the low accuracy level 
recorded for the Delta-p/G-BLUP index and G-BLUP 
when considering only dominance genomic values. 

Although the dominance genomic values, consider-
ing the additive-dominant model, were inaccurately esti-
mated, it can be seen that the index and the G-BLUP ac-
curacy were similar. This result agrees with Azevedo et al. 
(2015), which used several methods applied to GWS and 
obtained results of similar dominance accuracy. Thus, it 
should be noted that the main criteria for the comparison 
of methods in these scenarios is the recovered heritabili-
ties, due to dominance and prediction bias. Ta
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When analyzing the heritabilities due to domi-
nance, it was observed that for the four scenarios, the 
closest estimates were provided by the G-BLUP method. 
However, in scenarios 5 and 8, the heritabilities, due to 
dominance, were slightly underestimated and in scenar-
io 7 the heritabilities, due to dominance, were slightly 
overestimated. The Delta-p method underestimated 
the genomic values due to dominance in the scenarios 
whose traits were controlled by genes with small ef-
fects (scenarios 5 and 6) and overestimated the scenarios 
whose traits were controlled by genes with both small 
and sizeable effects. The G-BLUP overestimated the val-
ues in all scenarios, with bias being considerably lower 
in relation to the Delta-p method. In addition, the Delta-
p/G-BLUP index also overestimated the genomic values 
due to dominance for all scenarios considered (byIa < 1) 
(Table 3). 

Although we have previously analyzed the additive 
genomic values and because of the dominance, consider-
ing the additive-dominant model, it is also important to 
present the results referring to the total genomic value 
(a + d), since this is related to individual performance 
(Table 4). Analogous to Tables 2 and 3, the G-BLUP pre-
sented higher accuracy in the prediction of total genomic 
values, when compared to the Delta-p method. The in-
crease in accuracy using the Delta-p/G-BLUP index (0.65 
to 0.71) was 0.07 units, on average, compared to the accu-
racy of the G-BLUP method (0.56 to 0.65), showing again 
the efficiency of the index. The Delta-p/G-BLUP index 
provided a relevant relative average efficiency that was 
108 % to 114 % (Table 4). It was observed that, under 
the four scenarios considered, the G-BLUP had a better 
performance in recovering the total genomic heritability 
than the Delta-p. However, these were still underesti-
mated (Table 4). In addition, the three methods produced 
predicted total genomic values that were overestimated 
(byĝ < 1). Although the Delta-p/G-BLUP index presented 
biased total genomic values, this method has the great 
advantage of obtaining greater accuracy when compared 
to the G-BLUP method.

To elucidate the importance of the Delta-p/G-
BLUP index for predicting genomic selection, the re-
sults for an applied breeding program of Asian rice 
are presented in Table 5. Analogous to previous results 
considering additive model (Table 2), G-BLUP showed 
more accurate genomic values than Delta-p. The Delta-
p method presented values showing overestimated ad-
ditive genomic values (byâ < 1), except for the Panicle 
number per plant, while the G-BLUP presented values 
that were less biased. The Delta-p/G-BLUP index, con-
sidering the real dataset, provided a relative average ef-
ficiency of 101 % to 116 %, being on average 8 % more 
efficient than the G-BLUP. Eight % is highly expressive 
and under genomic selection performed annually, such 
as in rice cultivation, these gains are cumulative and 
grow rapidly (Resende et al., 2015). Thus, the index pro-
posed in this study can be satisfactorily implemented in 
rice breeding programs. Ta
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Thus, the Delta-p/G-BLUP index is defined based 
on information from predicted genomic values from G-
BLUP and Delta-p. This approach is rarely applied in the 
context of GWS. This method, as much for the simulated 
data as for the rice data, showed itself to be superior 
to the G-BLUP method. In addition, it led to genomic, 
additive and dominance values that are more accurate 
than the traditional G-BLUP and required reduced com-
putational time. It can also be easily implemented in the 
context of GWS.

Conclusions

The proposed method, the Delta-p/G-BLUP index, 
is easy to implement in the context of genomic selection. 
It demands reduced computational cost and leads to ge-
nomic, additive, dominance and total values that are 
more accurate than the G-BLUP method. On the other 
hand, the Delta-p method provided lower values of ac-
curacy and dominance bias estimates than the G-BLUP 
method. However, for additive effects, under almost all 
scenarios evaluated, the estimates were more biased for 
the Delta-p model than for the G-BLUP. For the traits 
evaluated in rice it was concluded that the Delta-p/G-
BLUP index was superior to the G-BLUP method, and 
increased predictive ability.
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