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ABSTRACT: Current available soil information allows building baselines to improve research, 
such as sustainable resource management; however, its use requires analysis of accuracy and 
precision that describes specific variables on local and global scales. Therefore, this study 
evaluated differences in the spatial distribution of water retention capacity (WRC) of the soil at a 
depth of 0.3 m, calculated from local general soil surveys and the global gridded soil information 
system (SoilGrids), using detailed or semi-detailed soil surveys as a reference, in two regions 
of Colombia (A and B). The qualitative and statistical analyses evaluated differences in WRC 
surfaces generated by the information sources. Neither information sources described WRC 
accurately, achieving correlations between -0.15 and 0.49 and average absolute errors between 
9.65 and 19.52 mm for zones A and B, respectively. However, studies on the local scale remain 
within the ranges observed in the most detailed local studies. The use of products on the global 
scale is subject to regional analyses; nevertheless, they can be included as a covariate in digital 
soil mapping studies on more detailed scales. 
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Introduction

Soil moisture is a fundamental environmental 
property for physical and biological processes of terrestrial 
systems (Dobriyal et al., 2012; Kearney and Maino, 
2018; Rodríguez-Iturbe, 2000). Due to its importance for 
agricultural systems and their production, information on 
the spatial distribution of the amount of water in the soil 
is an input for modeling ecohydrological processes on the 
landscape scale (Selle et al., 2006). 

The water storage capacity is defined as the water 
layer that the soil can store and that the plants can use and 
it is calculated as the difference between water content at 
field capacity (FC) and the permanent wilting point (PWP) 
(Kirkham, 2014). Moreover, this capacity depends on other 
soil properties, such as texture, bulk density (BD), real 
density (RD), and organic carbon (OC) (Malagón, 2015; 
Mikutta et al., 2006), features that establish soil quality 
and productivity (Burk and Dalgliesh, 2013). However, 
water content at FC and PWP have been poorly mapped 
(Wösten et al., 2001; Wösten et al., 2013) due to intensive 
field and laboratory work that their estimation requires. 

Global initiatives, such as GlobalSoilMap.net 
(Arrouays et al., 2017) and more recently SoilGrids 
(Hengl et al., 2017), have required identification of soil 
characteristics at specific depths. These characteristics 
provide global predictions, with a spatial resolution of 250 
m on a specific number of soil properties (e.g., OC, BD, 
pH, and textural fraction). They are generated through 
remote sensors using assembled machine learning models. 
Both initiatives have stressed the need to develop maps 
based on detailed soil information in order to improve 
environmental and agricultural planning and monitoring 
(Ramos et al., 2017; Sánchez et al., 2009).

In Colombia, soil mapping is conventional, mostly 
products of soil surveys carried out by the Instituto 
Geográfico Agustín Codazzi (IGAC), which show a 
series of delineated polygons based on qualitative soil 
characteristics called cartographic soil units (CSU). 
They portray soil heterogeneity and describe structural 
patterns across the landscape (Lin, 2003). 

This study evaluated differences in the spatial 
distribution of water retention capacity (WRC) of the 
soil at a depth of 0.3 m, calculated based on local 
general (1:100,000 or 100K) soil surveys and the global 
gridded soil information system (SoilGrids), using 
detailed (1:10,000, or 10K) or semi-detailed (1:25,000, 
or 25K) soil surveys as a reference, in two regions of 
Colombia.

Materials and Methods

Study site
Two sites were considered in this study. Area A 

covers 83,596 ha, corresponding to the flat zones of the 
Bogota savanna region (Department of Cundinamarca, 
Colombia), between latitudes 4°38.8’ and 5°8.1’ N 
and longitudes 73°47.1’ and 74°23.8’ W. The average 
altitude of this area is 2,572 m, with an annual rainfall 
that varies between 591 and 1,352 mm, and the 
annual average temperature is between 11.7 °C and 
13.7 °C. Geomorphologically, there is predominance 
of a landscape with plains of lacustrine origin with 
contributions of volcanic ashes of different degrees of 
alteration. There are also reliefs of terraces and small 
valleys, and in lesser proportion there are hills, fans, 
and accumulation glacis that form a hilly landscape 
(IGAC, 2012a) (Figure 1A). 
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Area B covers 45,494 ha that corresponds to 
the irrigation district of the Zulia River (Department 
of Norte de Santander, Colombia), located between 
latitudes 8°4.6’ and 8°23.0’ N and longitudes 72°22.1’ 
and 72°35.5’ W. The area has an average altitude of 78 
m, with annual rainfall between 1,500 and 3,000 mm 
and an average annual temperature between 26.0 °C 
and 28.0 °C. In this site, two landscapes were identified: 
1) rolling hills, whose relief includes hills, soft hills, 
and small valleys, and 2) valleys, including flood plain 
relief (active and inactive), small valleys, and alluvial 
terraces. The parent material comprises fine-to-coarse 
alluvium in the valley landscape and sedimentary rocks 
(sandstone and claystone) in the rolling hills landscape 
(IGAC, 2015) (Figure 1B).

Software and data
We used software R version 3.3.2 with the 

RStudio© version 1.1.423 interface and QGIS Desktop© 
version 2.18.16. The following digital files were used: 
soil maps on a scale of 1:10,000 of the flat areas of the 
Bogota savanna region in vector format (IGAC, 2012a), 
a soil map on a scale of 1:25,000 of the irrigation district 
of the Zulia River in vector format (IGAC, 2015), two 
soil maps on a scale of 1:100,000 of the departments 
of Cundinamarca and Norte de Santander in vector 
format (IGAC, 2012b), raster layers of FC and PWP at 
a resolution of 250 m (Hengl et al., 2017), and detailed, 

semi-detailed, and general soil profiles in vector format 
(IGAC, 2012a; IGAC, 2012b; IGAC, 2015).

Methods
The WRC calculated on a general scale (100K) 

and SoilGrids were compared with the values generated 
on detailed scales (25K or 10K). For these values, the 
parameterization of spatial and thematic information, 
WRC calculation at a given depth, and model validation 
were employed, as shown below.

A. Parameterization of spatial and thematic 
information

Soil maps in vector format were projected and 
rasterized at a spatial resolution of 50 m, and the grid 
value was adjusted according to the effective mapping 
scale (Hengl, 2006). The raster layers of SoilGrids were 
extracted corresponding to the moisture content in a 
volumetric fraction at field capacity (FC) (–31.6 kPa or pF 
2.5) and permanent wilting point (PWP) (–1,500 kPa or pF 
4.2) at three standard layer: sl2 (0.05 m), sl3 (0.15 m), and 
sl4 (0.30 m). The SoilGrids layers were clipped according 
to the study sites and were projected and resampled to 
obtain the defined spatial resolution.

B. Calculation of the WRC
In the case of the SoilGrids layers, WRC was 

calculated at 0.3 m, applying map algebra operations in 

Figure 1 – Study sites. A) Area A: flat zone Bogotá savanna; B) Area B: irrigation district of the Zulia River.
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QGIS. The calculation consisted of the difference at each 
depth between FC and PWP, all based on the previously 
parameterized layers (Equation 1) (Silva et al., 2014). The 
calculation of FC and PWP via SoilGrids was based on the 
pedotransference function (PTF) developed in tropical soils 
by Hodnett and Tomasella (2002) and Wösten et al. (2013), 
which is based on variables such as the content of sand, 
silt, clay, BD, OC, pH, and cation exchange capacity (CEC).

WRC D D FC PWPsl
N

sl sl sl sl0 30 1 1 1 1− = + + += −( ) −( )∑ 	  (1)

where: N is the number of standard layers, D is the 
standard layer depth, FC is the field capacity in the 
standard layer, and PWP is the permanent wilting point 
in the standard layer.

The modal profile for each CSU was identified from 
vector layers retrieved from the detailed and semi-detailed 
scales, where soil consociations predominated. Once 
the modal profile was defined, the volumetric moisture 
retention capacity at 0.30 m was calculated according to the 
physical properties recorded in the technical reports of the 
soil surveys considered. The calculated WRC value for the 
modal profile was assigned to the entire CSU using QGIS.

For vector layers on a general scale (100K), in which 
associations predominate, calculation of the retention 
capacity was the product of the weighted average of 
modal profiles that represent each CSU. However, as on 
this scale the studies do not record the physical properties 

of all the modal profiles, FC and PWP was calculated 
using the PTF in SoilGrids.

C. Validation of methods
Statistical functions and the goodness of fit of 

graphs between the observed (obtained in the soil studies 
on detailed and semi-detailed scales) and the predicted 
values (obtained in studies on a general scale and by 
SoilGrids) were used to evaluate WRC values obtained. 

For the quantitative statistics, we used the mean 
error (ME), absolute mean error (AME), and mean square 
error (MSE), whose optimal values are 0; furthermore, the 
optimal values for the root-mean-square error (RMSE) or 
its normalized value (NRMSE) are the standard deviation 
and 0 %, respectively (Brus et al., 2011; Yapo et al., 1996). 
Additionally, the Levene test was carried out with Ho 
assuming equal variances and Student t-tests with Ho 
assuming equal means. On the other hand, at the spatial 
level, the error percentage of each of the methods was 
incorporated, based on the percentage difference between 
the observed and predicted values.

Results and Discussion

A. WRC behavior in both study sites
The WRC for the first 30 cm of soil depth in the sites 

evaluated can be seen in Figures 2A-F. In area A, WRC 
values ranged from 23 to 172 mm. The lowest values 

Figure 2 – WRC at 0.30 m of soil depth obtained from: A) Detailed study area A; B) General study area A; C) SoilGrids area A; D) Semi-detailed 
study area B; E) General study area B; and F) SoilGrids area B.
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corresponded to Inceptisols (Soil Survey Staff, 2014) of 
a fine family under intensive livestock use. The zones 
with higher WRC values corresponded to Andisols of a 
fine family, where the allophane material presence favors 
moisture retention due to the formation of organo-mineral 
complexes (Mikutta et al., 2006), which give a porous soil 
structure (Chevallier et al., 2010). In area B, the zones with 
the lowest WRC values were sandy- to coarse-textured 
soils, which did not exhibit high moisture retention, due 
to their high number of pores and low content of organic 
matter  (Malagón et al., 2015). In contrast, the soils that 
exhibited the highest WRC corresponded to Inceptisols 
and Entisols of the clay family, with higher OM content, 
but with a degradation process of their soil structure due 
to the mechanization work carried out in intensive rice 
cultivation fields under irrigation.

B. Comparison of surfaces
In area A, correlations of -0.007 and -0.149 were 

obtained for the general scale of 100K and SoilGrids, 
respectively (Table 1), which indicate a low-to-null 
correlation with the general study and an inverse 
correlation with SoilGrids. In the case of the semi-
detailed study of area B, correlations of 0.489 and 0.242 
were determined for 100K and SoilGrids, respectively. 
The study of soils in area B, with a scale of 1:25,000, is 
a greater generalization of soils compared to the study 

at a scale of 1:10,000 in area A. Fewer correlations for 
area A were expected, according to Zhang et al. (2016), 
who maintained that any soil property has a higher 
probability of error as the study scale decreases.

In the two study sites considered, SoilGrids 
surfaces exhibited a lower correlation compared to 
100K. This is due to the spatial resolution and the 
uncertainty increase of WRC surface of SoilGrids, 
which was not measured directly but calculated using 
the PTF proposed by Hodnett and Tormasella (2002), 
incorporating the contents of sand, silt, clay, OC, BD, 
CEC, and pH as independent variables (Leenaars et al., 
2018). Further, Hengl et al. (2017) described coefficients 
of determination between 64.5 and 83.4.

Figures 3A and 3B show a conditional quantile 
analysis for each of the methods used. The blue line 
indicates a perfect model, where the observed values 
are equal to predicted values. In area A, WRC values 
higher than 150 mm were recorded; however, when 
observing the quantiles and percentiles of the predicted 
values, both 100K and SoilGrids were never greater than 
80 mm. These results indicate that outputs of 100K and 
SoilGrids underestimate WRC values in the detailed 
study. In contrast, in area B, predicted values for WRC 
of both 100K and SoilGrids were within the range of the 
observed values.

The histograms of original and predicted variables 
are shown in Figures 3A and 3B, where estimated WRC 
for both 100K and SoilGrids were different from the 
original variable in the two study areas. These results 
were corroborated by performing a Levene test, where 
equal variances were assumed, obtaining a p-value lower 
than 2.2 e–16 and a Student t-test assuming equal means 
with a p value also lower than 2.2 e–16. For site A, the WRC 
estimate was generalized and concentrated around 60 to 
70 mm in the case of 100K and between 40 and 50 mm for 
SoilGrids, indicating that the latter was the method that 
would most underestimate WRC in site A (ME 5.829 mm). 
This is expected if we consider that within site A, there are 
soils of the Andisol order with allophane materials that 
favor WRC, and although SoilGrids uses the soil orders 

Table 1 – The goodness-of-fit parameters for both study areas.

 
Parameter

Area A Area B
100 K SoilGrids 100 K SoilGrids

COR –0.007 –0.149 0.489 0.242
ME –5.627 5.829 –7.539 –19.522
AME 19.239 17.108 9.647 19.526
MSE 556.364 472.947 172.750 451.271
RMSE 23.5873 21.747 13.143 21.243
NRMSE 209.600 507.800 109.800 595.400
COR = Correlation; ME = Mean error; AME = Absolute mean error; MSE = 
Mean square error; RMSE = Root-mean-square-error; NRMSE = Normalized 
RMSE value.

Figure 3 – Conditional quantile analyses for each dataset assessed for A) area A and B) area B.
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coverage where general aspects such as crops, forests, and 
pastures, among others, are reported (Hengl et al., 2017).

Figures 4A and 4B show the areas that exhibited a 
greater error in the estimation of WRC for area A using 
100K and SoilGrids. They were located to the southwest 
of the evaluated area, where WRC was low and the 
result of a soil compaction phase due to its intensive use 
in livestock systems. The areas mentioned above were 
reported and mapped on a 1:10,000 scale but not on a 
100K scale, due to their generality. In the case of SoilGrids, 
a covariate that indicates soil compaction phase was not 
included. Additionally, SoilGrids surfaces show a greater 
area with underestimated values using 100K. Ramos et 
al. (2017) found similar results, indicating differences 
between 55 % and 75 % of the study site when comparing 
properties, such as CEC and OC, respectively.

according to FAO as one of its covariables (Hengl et al., 
2017), the resolution and the discontinuity of these soils 
do not facilitate their mapping on a global scale.

For area B, using both 100K and SoilGrids, some 
estimated WRC values were outside the range of the 
original variable. This condition was more pronounced 
in the estimation with SoilGrids, where the values were 
concentrated around 60 mm, that is, this corresponds 
to an extreme, indicating that for this study area, WRC 
with SoilGrids was overestimated (ME -19.522 and AME 
of 19.526). These results are attributed to the specific 
process and local continuous degradation scale of 
the soil structure in the site, due to intensive irrigated 
rice cultivation activities. Further, this activity was not 
analyzed on a global scale and with the resolution of 
the covariates used by SoilGrids, because it uses surface 

Figure 5 – Representation of the percentage error in the study area B for A) General study and B) SoilGrids.

Figure 4 – Representation of the percentage error in the study area A for A) General study and B) SoilGrids.
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For study area B, the zones that exhibited the 
most significant error can be observed in Figures 5A and 
5B. In the case of SoilGrids, the areas with the highest 
error correspond to soils with sandy, loamy sands and 
sandy loam textures, which are characterized by having 
low water retention (Malagón et al., 2015). These areas 
represent a minor zone and specific conditions within 
the study site, since they correspond to soils formed in 
a hilly relief from coarse-grained sedimentary rocks. In 
the case of 100K, these same sites exhibited an error 
between 0 % and 50 %, a product of the soil study scale 
used, where a landscape with rolling hills was identified, 
mapped, and characterized in the study.

Conclusions

The comparison of two WRC surfaces generated 
from general soil surveys and digital soil mapping dates 
shows that the best approximations use the most similar 
origin scales. The results showed better goodness of fit 
of parameters between a semi-detailed (area B) and a 
general study than those shown between a detailed 
(area A) and a general study. Although SoilGrids data 
do not have a similar scale, input data and covariates 
employed allow inferring that its surfaces are situated 
between an exploratory and a general study, that is, 
different from those generated by a detailed or a semi-
detailed study.

The surfaces obtained with the two methods in 
the areas evaluated differ from the original variable, 
with the results of SoilGrids tending to underestimate 
(area A) or overestimate (area B) WRC. In contrast, the 
results obtained with 100K exhibit much better data 
distribution. Although the results indicate that SoilGrids 
are not adequate for describing WRC in specific areas 
and should be used for larger areas, it is recommended 
as a data supplement (or a covariate) of obtained from 
more detailed studies to create spatial prediction models.
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