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ABSTRACT: Quantitative genetics theory for genomic selection has mainly focused on additive 
effects. This study presents quantitative genetics theory applied to genomic selection aiming to 
prove that prediction of genotypic value based on thousands of single nucleotide polymorphisms 
(SNPs) depends on linkage disequilibrium (LD) between markers and QTLs, assuming dominance 
and epistasis. Based on simulated data, we provided information on dominance and genotypic 
value prediction accuracy, assuming mass selection in an open-pollinated population, all quanti-
tative trait loci (QTLs) of lower effect, and reduced sample size. We show that the predictor of 
dominance value is proportional to the square of the LD value and to the dominance deviation 
for each QTL that is in LD with each marker. The weighted (by the SNP frequencies) dominance 
value predictor has greater accuracy than the unweighted predictor. The linear × linear, linear 
× quadratic, quadratic × linear, and quadratic × quadratic SNP effects are proportional to the 
corresponding linear combinations of epistatic effects for QTLs and the LD values. LD between 
two markers with a common QTL causes a bias in the prediction of epistatic values. Compared 
to phenotypic selection, the efficiency of genomic selection for genotypic value prediction in-
creases as trait heritability decreases. The degree of dominance did not affect the genotypic 
value prediction accuracy and the approach to maximum accuracy is asymptotic with increases 
in SNP density. The decrease in the sample size from 500 to 200 did not markedly reduce the 
genotypic value prediction accuracy.
Keywords: genome-wide selection, dominance value prediction, prediction accuracy
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Introduction

The statistical problem of breeding value prediction 
when there are a very large number of markers and few 
observations has been addressed thorough various genomic 
selection models, most of which provide similar prediction 
accuracy levels (De Los Campos et al., 2013; Daetwyler et 
al., 2013). A current focus of genomic selection research is 
on fitting non-additive effects to predicting genotypic val-
ues (Wang et al., 2010; Zhao et al., 2013). For maize, where 
the main objective in commercial breeding programs is to 
develop hybrids, predicting genotypic value is as important 
as predicting breeding value aimed at exploring heterosis 
(Technow et al., 2012; Massman et al., 2013).

Toro and Varona (2010) analyzed simulated data 
and concluded that the inclusion of dominance effects 
increased the accuracy of breeding value prediction and 
made it possible to obtain an extra response to selection 
using mate allocation techniques. Wittenburg et al. (2011) 
included dominance and epistasis in simulated datasets. 
The analyses showed that only the inclusion of dominance 
effects improved breeding value prediction accuracy. Us-
ing simulated data and assuming one additive and three ad-
ditive-dominance models, Wellmann and Bennewitz (2012) 
analyzed the prediction accuracy of additive, dominance, 
and genotypic values. The inclusion of dominance effects 
increased the accuracy of genotypic value prediction by 
approximately 17 % and the accuracy of breeding value 
prediction by 2 %. Denis and Bouvet (2013) assessed the 
prediction accuracy of additive and genotypic values fitting 

an additive-dominance model. Including the dominance ef-
fect improved the accuracy of genotypic value prediction 
in the clone population but not the accuracy of additive 
value prediction in the breeding population.

Quantitative genetics theory including non-additive 
effects does not seem to have been fully developed in the 
context of genomic prediction (Goddard, 2009; Gianola 
et al., 2009; Vitezica et al., 2013). Furthermore, efficient 
genome-wide prediction of the genotypic value of non-
assessed single-crosses and pure lines, and of vegetative 
propagated plants in a recurrent breeding program, de-
pends on the prediction accuracy of non-additive gene 
effects (ultimately, on the genotypic value prediction ac-
curacy). Thus, we presented quantitative genetics theory 
applied to genomic selection aiming to prove that pre-
diction of genotypic value based on thousands of single 
nucleotide polymorphisms (SNPs) depends on linkage dis-
equilibrium (LD) between markers and quantitative trait 
loci (QTLs), assuming dominance and epistasis. Addition-
ally, we provided information on dominance and geno-
typic values prediction accuracy based on simulated data, 
assuming mass selection in open-pollinated populations, 
QTLs of lower effect, and reduced sample size.

Materials and Methods
Theory

Linkage disequilibrium measure
It was assumed that the population was a Hardy-

Weinberg equilibrium population (generation −1). It 

prediction in open-pollinated populations
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was further assumed that B and b are the alleles of a 
QTL (QTL 1) and that C and c are the alleles of an SNP 
(SNP 1). B is the allele that increases the trait expression 
and let b be the allele that decreases the trait expres-
sion. Assuming linkage, the probabilities of the gametes 
BC, Bc, bC, and bc in the gametic pool produced by the 
population are, respectively:

( 1) ( 1)
BC b c bcP p p− −= + ∆

( 1) ( 1)
Bc b c bcP p q− −= − ∆

( 1) ( 1)
bC b c bcP q p− −= − ∆

( 1) ( 1)
bc b c bcP q q− −= + ∆

where p is the frequency of the major allele 
(B or C), q = 1 – p is the frequency of the minor allele 
(b or c), and ( 1) ( 1) ( 1) ( 1) ( 1)

bc BC bc Bc bCP P P P− − − − −∆ = − is the measure of 
LD (Kempthorne, 1957). The LD measure can also be 
expressed as ( 1) ( 1)

bc bc b b c cr p q p q− −∆ = , where 
( 1)
bcr −

 is the cor-
relation between the values of the alleles at the two 
loci (one for B and C, and zero for b and c) in the 
gametic pool of generation −1 (Hill and Robertson, 
1968).

Genetic model
It was assumed that E and e are the alleles of a 

second QTL (QTL 2), where E and e increase and de-
crease the trait expression, respectively. The genotypic 
value of an individual for the two QTLs can be defined 
as (Kempthorne, 1954):

( ) ( ) ( )
( ) ( )

1 2 1 2 (12) (12) (12) (12)

      

      

ijmn i j m n ij mn i m i n j m j n

i mn j mn ij m ij n ij mn

G M

M A A D D AA AD DA DD

= + α + α + α + α + δ + δ + α α + α α + α α + α α

+ α δ + α δ + δ α + δ α + δ δ

= + + + + + + + +

where i and j are the alleles for the first QTL, m and n 
are the alleles for the second QTL, M is the population 
mean, α is the average effect of a gene (for brevity we 
are dropping subscripts in the definition of effects), δ is 
the dominance genetic value, αα is the additive × addi-
tive epistatic effect (due to a pair of non-allelic genes), 
αδ is the additive × dominance epistatic effect (due to 
a gene of a locus and the alleles of a second locus), δα 
is the dominance × additive epistatic effect, δδ is the 
epistatic effect of the type dominance × dominance (due 
to two pair of allelic genes), A is the additive genetic 
value, D is the dominance genetic value, AA is the ad-
ditive × additive epistatic genetic value, AD is the addi-
tive × dominance epistatic value, DA is the dominance 
× additive epistatic value, and DD is the dominance × 
dominance epistatic value.

Assuming biallelic QTLs, αB = qbαb, αb = –pbαb, 
αE = qeαe, and αe = –peαe, where αb = αB– αb= ab+(qb–pb)
db and αe = αE– αe= ae+(qe–pe)de are the average effects of 
gene substitution. The parameter a is the deviation be-

tween the genotypic value of the homozygote of higher 
expression and the mean of the genotypic values of the 
homozygotes (m), and the parameter d is the deviation 
between the genotypic value of the heterozygote and m 
(dominance deviation).

The parametric values of the regression coefficients 
in a whole-genome analysis

F and f are the alleles of a second SNP (SNP 2), 
which is in LD with QTL 2. Finally, assume (for simplic-
ity) that QTL 1 and SNP 1 are in linkage equilibrium 
relative to QTL 2 and SNP 2. The parametric values of 
the regression coefficients in a whole-genome analysis 
are derived by regression analysis that relates the geno-
typic value (G) conditional on the SNP genotype to the 
number of copies of one allele of each SNP. The additive-
dominance with epistasis model is:

1

2 2 2 2 2 2
0 1 1 2 3 2 4 2 5 1 2 6 1 2 7 1 2 8 1 2G x x x x x x x x x x x x error= β + β + β + β + β + β + β + β + β +

where x1 and x2 are the numbers of copies of an SNP al-
lele (2, 1, or 0).

The model can be expressed as y (81 × 1) = X (81 
× 9).β (9 × 1) + error vector (81 × 1), where y is the 
vector of genotypic values conditional on the SNP geno-
types, X is the incidence matrix, and β is the parameter 
vector. Notice that assuming biallelic QTLs, there are 
3 × 3 × 3 × 3 = 81 genotypes for QTLs and markers 
(for example, BbCCeeFf). Because the genotypes have 
different probabilities, we defined the matrix of geno-
type probabilities as P (81 × 81) = diagonal { }'.ij klf f , 
where fij is the probability of the individual with i and j 
copies of allele B of the QTL 1 and allele C of the SNP 1, 
and '

klf  is the probability of the individual with k and l 
copies of allele E of the QTL 2 and allele F of the SNP 2 
(i, j, k, l = 2, 1, or 0).

The genotype probabilities relative to QTL 1 and 
SNP 1 in generation 0 are (for simplicity, the superscript 
(0) – for generation 0 – was omitted in all parameters 
that depend on the LD measure of generation −1):

22 2 ( 1) ( 1)
22 2b c b c bc bcf p p p p − − = + ∆ + ∆ 

( )
22 ( 1) ( 1)

21 2 2 2b c c b c c bc bcf p p q p q p − − = + − ∆ − ∆ 
22 2 ( 1) ( 1)

20 2b c b c bc bcf p q p q − − = − ∆ + ∆ 

( )
22 ( 1) ( 1)

12 2 2 2b b b b b c bc bcf p q p q p p − − = + − ∆ − ∆ 

( )( )
2( 1) ( 1)

11 11 11 4 2 4g n b b c c b b c c bc bcf f f p q p q q p q p − − = + = + − − ∆ + ∆ 

( )
22 ( 1) ( 1)

10 2 2 2b b c b b c bc bcf p q q q p q − − = − − ∆ − ∆ 
22 2 ( 1) ( 1)

02 2b c b c bc bcf q p q p − − = − ∆ + ∆ 

( )
22 ( 1) ( 1)

01 2 2 2b c c b c c bc bcf q p q q q p − − = − − ∆ − ∆ 

22 2 ( 1) ( 1)
00 2b c b c bc bcf q q q q − − = + ∆ + ∆ 
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The alternative model below has been fitted for 
genomic prediction including dominance and epistatic 
effects:

0 1 1 2 2 3 3 4 4 5 1 3 6 1 4 7 2 3 8 2 4G x x x x x x x x x x x x error= β + β + β + β + β + β + β + β + β +

where x1, x3 = 1, 0, or −1 if the individual is homozy-
gous for an SNP allele (C or F), heterozygous, or homozy-
gous for the other SNP allele (c or f), respectively, and x2, 
x4 = 0 or 1 if the individual is homozygous or heterozy-
gous, respectively. Using the same procedure described, 
it can be demonstrated that the only differences rela-
tive to the previous model is that β2 = dSNP1, β4 = dSNP2, 
β6 = –(αδ)SNP1,SNP2, and β7 = –(δα)SNP1,SNP2. Thus, both mod-
els are equivalent. Notice that for this second model, the 
individual SNP genotypic values are defined as GCC = mc 
+ ac, GCc = mc + dc, and Gcc =mc – ac, where the SNP 
parameters are mc = M + (qc – pc) αSNP – (1 –2pc qc)dSNP, 
ac = αSNP – (qc – pc)dSNP and dc = dSNP.

We should also highlight the fact that extension 
of the Kempthorne's model for SNP effects (Mao et al., 
2006) is a third alternative model for genomic prediction. 
However, compared to previous models, Kempthorne's 
model is much less parsimonious. Including first degree 
epistasis for the SNPs (involving pairs of SNPs) increases 
the number of effects to be predicted by four times (9 
versus 36 effects, including the population mean).

SNP effects and variances
The parameters M, αSNP and dSNP are the popula-

tion mean, the average effect of a SNP substitution, and 
the dominance deviation at a SNP locus, respectively. 
The other parameters are the epistatic effects for the 
SNPs. Notice the relationship between marker effect and 
marker frequency, LD value, and average effect of QTL 
substitution, QTL dominance deviation, or QTL epistatic 
effects. As highlighted by Cockerham (1954), unless all 
linear combinations of epistatic effects (aa, ad, da, and 
dd) are zero, there is epistasis between the QTLs. Impor-
tantly, these linear combinations of epistatic effects are 
equivalent to the linear combinations of genotypic val-
ues presented by Cockerham (1954) and Viana (2004b).

Thus, a whole-genome analysis provides the pop-
ulation mean, the average effects of SNP substitution, 
the SNP dominance deviations, and the SNP epistatic 
effects. The SNP additive, dominance, and epistatic vari-
ances are the sums of squares of the linear, quadratic, 
linear × linear, linear × quadratic, quadratic × linear, 
and quadratic × quadratic effects, respectively, as dem-
onstrated below:

( ) 2 2
1 0 1 ( 1)2 c c SNP A SNPR p qβ β = α = σ

( ) 2 2 2 2
2 0 1 1 ( 1), 4 c c SNP D SNPR p q dβ β β = = σ

( ) 2 2
3 0 1 2 2 ( 2), , 2 f f SNP A SNPR p qβ β β β = α = σ

( ) 2 2 2 2
4 0 1 2 3 2 ( 2), , , 4 f f SNP D SNPR p q dβ β β β β = = σ

where the indices g and n identify the double heterozy-
gotes in coupling and repulsion phases.

Thus, for the complete model or a reduced model, 
β = (X'PX)–1(X´Py) and R(.) = β'(X'Py), where R(.) is the 
reduction in the total sum of squares due to fitting the 
model. Finally, after fitting the complete model and eight 
reduced models, and assuming the same restrictions of 
Kempthorne (1954), it can be demonstrated that:

β0 = M (fitting G = β0 + ε, the reduced model 1)
( 1)

1 1
bc

b bc b SNP
c cp q

− ∆
β = α = κ α = α 

 
 (fitting G = β0 + β1x1 + ε, the 

reduced model 2) 

2
2 1bc b SNPd dβ = −κ = − (fitting 2

0 1 1 2 1G x x= β + β + β + ε , the 
reduced model 3)

( 1)

3 2
ef

e ef e SNP
f fp q

− ∆
β = α = κ α = α 

  
(fitting 2

0 1 1 2 1 3 2G x x x= β + β + β + β + ε , the reduced model 4)

2
4 2ef e SNPd dβ = −κ = −  

(fitting 2 2
0 1 1 2 1 3 2 4 2G x x x x= β + β + β + β + β + ε , the reduced 

model 5)

5 1, 2( ) ( )bc ef be SNP SNPaaβ = κ κ = αα
(fitting 0 5 1 2G x x= β + + β + ε , the reduced model 6) 

( ) 2
6 1, 21 / 2 ( ) ( )bc ef be SNP SNPadβ = κ κ = αδ

(fitting 2
0 6 1 2G x x= β + + β + ε , the reduced model 7)

( ) 2
7 1, 21 / 2 ( ) ( )bc ef be SNP SNPdaβ = κ κ = δα

(fitting 2
0 7 1 2G x x= β + + β + ε , the reduced model 8)

( ) 2 2
8 1, 21 / 4 ( ) ( )bc ef be SNP SNPddβ = κ κ = δδ  (fitting the complete 

model)

where: ( ) B E B e b E b ebe
aa = α α − α α − α α + α α

( ) 2 2B EE B Ee B ee b EE b Ee b eebe
ad = α δ − α δ + α δ − α δ + α δ − α δ

( ) 2 2BB E Bb E bb E BB e Bb e bb ebe
da = δ α − δ α + δ α − δ α + δ α − δ α

( ) 2 2 4 2

         2
BB EE BB Ee BB ee Bb EE Bb Ee Bb eebe

bb EE bb Ee bb ee

dd = δ δ − δ δ + δ δ − δ δ + δ δ − δ δ +

δ δ − δ δ + δ δ

where, for example, αBαE is the additive × additive epi-
static effect between the allele B of QTL 1 and the allele 
E of QTL 2. The eight reduced models are associated with 
the following null hypotheses: (1) H0: no QTL in LD with 
the markers; (2) H0: no QTL in LD with SNP 2 and no 
dominance for QTL 1; (3) H0: no QTL in LD with SNP 2; 
(4) H0: no dominance for QTL 2; (5) no epistasis; (6) H0: 
only additive × additive epistatic effects; (7) H0: only ad-
ditive × additive and additive × dominance epistatic ef-
fects; (8) H0: no dominance × dominance epistatic effect.
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( ) 2 2 2 2
5 0 1 2 3 4 ( 1, 2), , , , 4 ( )c c f f bc ef be AA SNP SNPR p q p q aaβ β β β β β = κ κ = σ

( ) 2 2 2 4 2 2
6 0 1 2 3 4 5 ( 1, 2), , , , , 2 ( )c c f f bc ef be AD SNP SNPR p q p q adβ β β β β β β = κ κ = σ

( ) 2 2 4 2 2 2
7 0 1 2 3 4 5 6 ( 1, 2), , , , , , 2 ( )c c f f bc ef be DA SNP SNPR p q p q daβ β β β β β β β = κ κ = σ

( ) 2 2 2 2 4 4 2 2
8 0 1 2 3 4 5 6 7 ( 1, 2), , , , , , , ( )c c f f bc ef be DD SNP SNPR p q p q ddβ β β β β β β β β = κ κ = σ

where R(.|.) is a difference between two nested R(.) 
terms with the additional effect stated before the vertical 
bar and the effect(s) common to both models after the 
bar, 2

( )A SNPσ  is the SNP additive variance, 2
( )D SNPσ  is the 

SNP dominance variance, and 2
( 1, 2)AA SNP SNPσ , 2

( 1, 2)AD SNP SNPσ , 
2

( 1, 2)DA SNP SNPσ  and 2
( 1, 2)DD SNP SNPσ  are the epistatic variances 

for the SNPs.

Extension for two QTLs in LD with a SNP
Assume now one SNP (SNP 1; alleles C/c) in LD 

with two QTLs (QTL 1 and QTL 2; alleles B/b and E/e), 
a second SNP (SNP 2; alleles F/f) in LD with a third QTL 
(QTL 3; alleles H/h), and (for simplicity) that SNP 1 and 
QTLs 1 and 2 are in linkage equilibrium in relation to 
SNP 2 and QTL 3. Using the same procedure previously 
described, it can demonstrated that:

0 Mβ =
( 1) ( 1)

1 1
bc ce

b e bc b ce e SNP
c c c cp q p q

− −   ∆ ∆
β = α + α = κ α + κ α = α   

   
( )2 2

2 1bc b ce e SNPd d dβ = − κ + κ = −
( 1)

3 2
fh

h fh h SNP
f fp q

− ∆
β = α = κ α = α 

  
2

4 2fh h SNPd dβ = −κ = −

5 1, 2( ) ( ) ( )bc fh bh ce fh eh SNP SNPaa aaβ = κ κ + κ κ = αα

( ) ( )2 2
6 1, 21 / 2 ( ) 1 / 2 ( ) ( )bc fh bh ce fh eh SNP SNPad adβ = κ κ + κ κ = αδ

( ) ( )2 2
7 1, 21 / 2 ( ) 1 / 2 ( ) ( )bc fh bh ce fh eh SNP SNPda daβ = κ κ + κ κ = δα

( ) ( )2 2 2 2
8 1, 21 / 4 ( ) 1 / 4 ( ) ( )bc fh bh ce fh eh SNP SNPdd ddβ = κ κ + κ κ = δδ

Relationship between SNP dominance value and 
QTL dominance value

Assuming a SNP and a QTL in LD, the dominance 
values relative to the SNP are proportional to the domi-
nance values relative to the QTL, as shown below for 
SNP 1 and QTL 1:

( ) ( ) ( )2 22 2 2 2/ / /CC c b bc BB c b b bc Bd c b bc bbD q q D q p q D q p D= κ = − κ = κ

( ) ( ) ( )2 2 2 2 2/ / /Cc c c b bc BB c c b b bc Bb c c b bc bbD p q q D p q p q D p q p D= − κ = κ = − κ

( ) ( ) ( )2 22 2 2 2/ / /cc c b bc BB c b b bc Bd c b bc bbD p q D p p q D p p D= κ = − κ = κ

where the SNP dominance values are 2
12CC c SNPD q d= − , 

12Cc c c SNPD p q d= , and 2
12bb c SNPD p d= − , and the QTL dom-

inance values are 22BB b bD q d= − , 2Bb b b bD p q d= , and 

22bb b bD p d= − . Notice the relationship between the SNP 
dominance value and marker and QTL frequency, LD 
value and dominance genetic value. 

Accuracy of dominance value prediction
Based on the previous results, a predictor of the 

QTL dominance value is the SNP dominance value, 
i.e., 1

1QTL SNP SNPD D u d= =  (equation 3), where 2
1 2 cu q= −  

for SNP genotype CC, 1 2 c cu p q=  for Cc, or 2
1 2 cu p= −  

for cc. However, the predictor that has been used 
in most of the whole-genome analysis of field and 
simulated data for predicting genotypic value is 

2
2QTL SNPD u d= , where 2 0u =  for SNP genotype CC, 

2 1u =  for Cc, or 2 0u =  for cc. These predictors have 
the same covariance with the dominance value for 
the QTL, given by:

( ) ( )( ) ( )( )

( )( )
( )

1 2 2
22 1 11 1

2 2 2 2 2 2
00 1 1 ( 1)

2
,

, 2 2 2 2

        2 2 0.0 4

        

QTL QTL b b c SNP b b b c c SNP

b b c SNP c c SNP D SNP

QTL QTL

Cov D D f q d q d f p q d p q d

f p d p d p q d

Cov D D

= − − + +

+ + − − − = = σ

=









However, the two predictors have different vari-
ances given by:

( ) ( ) ( ) ( )2 221 2 2 2
.2 1 .1 1 .0 1

2
( 1)

2 2 2 0

               

QTL c SNP c c SNP c SNP

D SNP

Var D f q d f p q d f p d= − + + − −

= σ



( ) ( ) ( ) ( ) ( )2 2 2 22
.2 .1 1 .0 1

2
( 1)

0 0 2

1
               1

2

QTL SNP c c SNP

D SNP
c c

Var D f f d f p q d

p q

= + + −

 
= − σ 

 



Thus, the predictor of greater accuracy (lower vari-
ance) is 1

QTLD . The predictors 1
QTLD  and 2

QTLD  have the 
same accuracy when the SNP allelic frequencies are 
equal (because ( )1 / 2 1 1b bp q − = ). The accuracy (correla-
tion between the dominance value for the QTL and the 
value predicted by the SNP) of predictor 1 is: 

1

2
( 1)

, 2 2
( 1) ( 1)

QTL QTL

D SNP

D D
D QTL D SNP

σ
ρ =

σ σ


where 2 2 2 2
( 1) 4D QTL b b bp q dσ =  is the QTL 1 dominance vari-

ance. 

Dominance value predictor
Generalizing, the dominance genetic value relative 

to k QTLs predicted by s SNPs is 1
1( ) ( )

1

s

r SNP r
r

D u d
=

= ∑ . The 
accuracy of predictor 1 is:

1
2 2 2

, ( ( )) ( )
1

/
QTL QTL

s

D SNP r D D SNPD D
r=

ρ = σ σ σ∑

where: 2 2 2 2
( ( )) ( )4D SNP r r r SNP rp q dσ = is the dominance variance 

for the SNP r,
2( 1)

2
( )

1 1

k k
ri

SNP r i ri i
i ir r

d d d
p q

−′ ′

= =

 ∆
= = κ 

 
∑ ∑
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is the SNP dominance deviation (k' is the number of 
QTLs in LD with the SNP r),

21
2 2 2 2 ( 1)

1 1 2

4 8
k k k

D i i i ij i j
i i j

p q d d d
−

−

= = < =

 σ = + ∆ ∑ ∑∑
(Viana, 2004a) is the dominance variance, and

21
2 2 2 2 ( 1)

( ) ( ) ( ) ( )
1 1 2

4 8
s s s

D SNP r r SNP r rt SNP r SNP t
r r t

p q d d d
−

−

= = < =

 σ = + ∆ ∑ ∑ ∑

(Viana, 2004a) is the variance of the dominance value 
predictor (dominance genomic value variance).

The best genotypic value predictor is 
1ˆG M A D= + +    (assuming absence of epistasis), where 

M̂  is the estimator of the population mean and A  is the 
predictor of the breeding value.

Prediction of epistatic values
Based on the previous simplified additive-domi-

nance with epistasis model (QTL 1 and SNP 1 in LD, 
QTL 2 and SNP 2 in LD, and QTL 1 and SNP 1 in linkage 
equilibrium relative to QTL 2 and SNP 2), we assessed 
the prediction accuracy of the additive × additive epi-
static value for a predictor based on Kempthorne (1954), 
given by:

rstu r t r u s t s uAA AA= = α α + α α + α α + α α


where AA


 is the additive × additive genetic value pre-
dictor of the individual with SNP genotype rstu, r and s 
are the alleles for the first SNP, t and u are the alleles for 
the second SNP, and Arstu is the additive × additive value 
for the SNPs. The SNP additive × additive effect is:

. . .. . ....r t r t r tG G G Gα α = − − +


where . .r tG is the mean of the individuals with alleles r 
and t, ...rG  the mean of the individuals with allele r, .. .tG  
the mean of the individuals with allele t, and ....G  is the 
population mean.

Assuming distance SNP 1 - QTL 1 = 0.0002 cM, 
distance SNP 2 - QTL 2 = 0.0002 cM, pb = 0.4662, 
pc 

= 0.6241, pe 
= 0.4914, pf 

= 0.4460, ab 
= 0.6672, 

ae 
= 0.6435, degree of dominance = 1.0000, and du-

plicate recessive epistasis (complementary gene ac-
tion), we have that ∆bc = 0.1154, ∆ef = 0.1273, αSNP1 
= 0.3502, αSNP2 = 0.3374, dSNP1 = 0.1613, dSNP2 = 
0.1709, (αα)SNP1,SNP2 = 0.1238, (αδ)SNP1,SNP2 = −0.0627, 
(δα)SNP1,SNP2 = −0.0570, and (δδ)SNP1,SNP2 = 0.0289. The 
accuracy of the additive × additive genetic value was 
0.2232. This accuracy corresponds to the correlation 
between the SNP additive × additive values (nine val-
ues, computed based on Kempthorne (1954)) and the 
QTL additive × additive values (nine parametric val-
ues, computed from Kempthorne (1954)). Thus, we 
correlated 81 values, weighted by the genotype prob-
abilities.

The predictors of the additive × dominance, dom-
inance × additive, and dominance × dominance epi-

static values can also be defined based on Kempthorne 
(1954). Thus,

rstu r tu s tuAD AD= = α δ + α δ


rstu rs tuDD DD= = δ δ


where:

. .. . ... . . .. .. ....r tu r tu r t u r t r u tuG G G G G G G Gα δ = + + + − − − −


( ) ( )
( ) ( ) ( )

.

       
rs tu rstu r s t u rs tu

r t r u s t s u r tu s tu rs t rs u

G Gδ δ = − − α + α − α + α − δ − δ

− α α + α α + α α + α α − α δ + α δ − δ α + δ α


... .r rG Gα = −


.. . .. .rs rs r sG G G Gδ = − − +
 

Based on the estimated prediction accuracies of 
additive, dominance, and epistatic values on this sim-
plified scenario, we can state that genomic prediction 
of epistatic values should be less accurate than genomic 
prediction of dominance and additive values. However, 
because the prediction accuracies of dominance and 
epistatic values are positive, inclusion of non-additive 
effects should increase the prediction accuracy of geno-
typic value in an inbred population (because the genetic 
values are not independent).

Bias in the prediction of epistatic values 
The additive-dominance with epistasis model for 

genomic selection has a limitation for predicting epistatic 
values based on markers, owing to LD being between a 
QTL and two or more markers. That is, the linear × lin-
ear, linear × quadratic, quadratic × linear; and quadratic 
× quadratic effects and variances are not necessarily nil 
in the absence of epistasis. Assuming a QTL (alleles B/b) 
in LD with two SNPs (alleles C/c and E/e), distance SNP 
1 - QTL = 0.0002 cM, distance QTL - SNP 2 = 0.0003 
cM, complete interference, pc = 0.4073, pb 

= 0.4960, 
pe = 0.4115, ab = 4.5 and degree of dominance = −0.9958, 
we have that ∆bc = −0.0495, ∆be = −0.0801, ∆ce = −0.0786, 
αSNP1 = −0.9153, αSNP2 = −1.4764, dSNP1 = −0.1884, 
dSNP2 = −0.4902, and (αα)SNP1,SNP2 = 0.5155.

Simulation
The data set was simulated using the REALbreed-

ing program (available on request), which is under 
development by the first author using the REALbasic 
software. A total of 5000 SNPs and 100 QTLs were 
distributed on 10 chromosomes with 500 SNPs and 
10 QTLs per chromosome, covering 50 cM on aver-
age (density of one SNP each 0.1 cM on average). The 
QTLs were distributed in the regions covered by mark-
ers. Next, the software simulated a Hardy-Weinberg 
equilibrium population with LD. This population was 
a composite, generated by crossing two populations in 
linkage equilibrium followed by a generation of ran-
dom crosses. The number of plants was 500 (effective 
population size of 1000).
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Finally, based on user input, the software com-
puted all genetic parameters and LD values between 
QTLs. The input information includes minimum and 
maximum genotypic values for homozygotes (allowing 
for computation of the parameter a for each QTL), de-
gree of dominance (d/a), direction of dominance, and the 
broad sense heritability. The REALbreeding program 
saves two main files, one with the marker genotypes and 
the other with the additive, dominance, and phenotypic 
values (the current version does not compute epistatic 
values). The true additive and dominance genetic values 
and variances are computed from the population gene 
frequencies (random values), LD values, average effects 
of gene substitution, and dominance deviations. The 
phenotypic values are computed from the true popula-
tion mean, additive and dominance values, and from 
error effects sampled from a normal distribution. The 
error variance is computed from the broad sense herita-
bility. The LD in a composite is

 ( )( )( 1) 1 2 1 21 2
4

ab
ab a a b bp p p p− − θ ∆ = − − 

 
, 

where abθ  is the frequency of recombinant gametes and 
the indices 1 and 2 refer to the gene frequencies (p) in 
the parental populations.

We considered two popcorn traits, three SNP densi-
ties, two heritabilities, two sample sizes, and two popula-
tions showing LD, totaling 48 scenarios. For each scenario, 
50 simulations were carried out. The minimum and maxi-
mum genotypic values of homozygotes for grain yield and 
expansion volume were 20 and 200 g per plant, and 5 
and 50 mL g−1. Positive unidirectional dominance (0 < 
(d/a)i ≤ 1.2) was assumed for grain yield and bidirectional 
dominance (−1.2 ≤ (d/a)i ≤ 1.2) was assumed for expansion 
volume (i = 1, 2, ..., 100). The other SNP densities, one 
marker every cM and one marker every10 cM on average, 
were obtained by random choices of 51 and 6 SNPs by 
chromosome, respectively, also using the REALbreeding 
software. The broad sense heritabilities were 0.3 and 0.7. 
Thus, the accuracies of the phenotypic values were 0.548 
and 0.837. The sample size was 500 or 200 individuals 
genotyped and phenotyped. The second population with 
LD was obtained from the composite (generation 0) after 
five generations of random crosses (generation 5).

Regarding the SNPs, the averages of the absolute 
LD values (the difference between gametic frequencies 
observed and expected under linkage equilibrium) in 
the LD blocks in generation 0, were 0.0978, 0.1073, and 
0.1413 for the densities 10, 1, and 0.1 cM, respectively. 
The values for generation 5 were 0.0581, 0.0565, and 
0.0901, respectively. The LD blocks were defined based 
on an LOD (logarithm [base 10] of odds) score of 3 (to 
declare LD for two linked SNPs), also using the REAL-
breeding software. The corresponding r2 (the square of 
the correlation coefficient between the alleles of two 
loci) values were 0.1785, 0.2089, and 0.4079 for genera-
tion 0, and 0.0843, 0.0829, and 0.2420 for generation 5. 
All data used in this paper are accessible on request.

Statistical analysis of the simulated data
The method used for genomic selection was RR-

BLUP (ridge regression best linear unbiased prediction). 
For the analyses we used the rrBLUP (Endelman, 2011). 
The accuracies of dominance and genotypic value pre-
diction were obtained by the correlation between the 
true values computed by REALbreeding and the values 
predicted by RR-BLUP.

Results

Theoretical results
We show that the predictor of dominance value is 

proportional to the square of the LD value and to the 
dominance deviation for each QTL that is in LD with 
each marker (see 1D  and dSNP(r)). The dominance value 
predictor of greater accuracy (lower variance) is that 
weighted by the SNP frequencies (compare the vari-
ances of 1D  and 2D ). The linear × linear, linear × 
quadratic, quadratic × linear, and quadratic × quadrat-
ic SNP effects are proportional to the corresponding 
linear combinations of epistatic effects for QTLs and 
the LD values between SNPs and QTLs (see regression 
coefficients β5 to β8). Linkage disequilibrium between 
two SNPs with a common QTL results in a bias in the 
prediction of epistatic values. The SNP epistatic values 
are proportional to the corresponding epistatic genetic 
values.

Simulation results
Regardless of generation, sample size, SNP densi-

ty, and heritability, the prediction accuracy of the domi-
nance genetic value was, with one exception, higher 
for grain yield, indicating that the prediction is less ac-
curate when dominance is bidirectional (Table 1). The 
ratio between the accuracies of grain yield and expan-
sion volume ranged from 1.0 to 3.1, with the ratio being 
inversely proportional to heritability. Regardless of the 
other factors, the accuracy of dominance value predic-
tion was proportional to the SNP density. On average, 
the increase from 1 SNP every 10 cM to 1 SNP every 
cM and from 1 SNP every cM to 1 SNP every 0.1 cM 
determined increments in the accuracy of 114 and 46 %, 
respectively. The increments were higher for grain yield 
under high heritability. The decrease in sample size from 
500 to 200 caused a decrease in dominance value predic-
tion accuracy, regardless of the other factors, although 
the decreases were of reduced magnitude. The average 
decreases ranged from 1 to 12 % and were also inverse-
ly proportional to the heritability. The decrease in LD 
with five generations of random mating also caused a 
decrease, generally of low magnitude, in dominance val-
ue prediction accuracy that is inversely proportional to 
the SNP density and heritability. The average decreases 
ranged from 0 to 51 %. For the two traits and regardless 
of the other factors, increasing heritability led to an in-
crease in dominance value prediction accuracy, ranging 
from 16 to 100 %.
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The degree of dominance did not affect genotypic 
value prediction accuracy and the approach to maxi-
mum accuracy is asymptotic with the increase in SNP 
density (Table 2). The ratio between the accuracies of the 
traits ranged from 1.0 to 1.1 and, in general, an increase 
of relevant magnitude occurred only in genotypic value 
prediction accuracy when increasing the density from 1 
SNP every 10 cM to 1 SNP every cM (49 % on average). 
The average increase in accuracy when increasing the 
density from 1 SNP every cM to 1 SNP every 0.1 cM was 
9 % (maximum of 16 %). Reducing the sample size from 
500 to 200 did not affect the magnitude of the accuracy 
of genotypic value prediction, with a maximum decrease 
in magnitude of 4 %. Also the decrease in LD after 5 gen-
erations of random mating also did not considerably de-
crease genotypic value prediction accuracy, regardless of 
the other factors. The decreases ranged from 0 to 26 %. 
Also, regardless of generation, sample size, SNP density, 
and trait, the accuracy of genotypic value prediction was 

proportional to heritability. The increases ranged from 
11 to 44 %.

Assuming absence of epistasis, the accuracy of 
breeding value prediction by fitting the additive, addi-
tive-dominance and additive-dominance with additive 
× additive epistasis models were equivalent, regardless 
of heritability and SNP density (Table 3). The same was 
found for the accuracy of dominance value prediction by 
fitting the additive-dominance and additive-dominance 
with additive × additive epistasis models.

Discussion

The prediction of breeding values based on 
markers is relevant to both animal and plant popula-
tion improvement. The selection of couples in animal 
breeding (Toro and Varona, 2010), of clones in forestry 
breeding (Denis and Bouvet, 2013), and of hybrids in 
annual crop breeding (Zhao et al., 2013) are examples 

Table 1 − Prediction accuracy of dominance value and its standard deviation, for expansion volume and grain yield, regarding two accuracy levels 
of the phenotypic value, three SNP (single nucleotide polymorphisms) densities, two sample sizes, and two generations.

Gen. Sample SNP density (cM)
Accuracy of the phenotypic value

0.548 0.837
Expansion volume Grain yield Expansion volume Grain yield

0 200 10 0.082 ± 0.10 0.204 ± 0.10 0.146 ± 0.08 0.280 ± 0.09
1 0.144 ± 0.11 0.423 ± 0.10 0.288 ± 0.07 0.602 ± 0.07

0.1 0.210 ± 0.11 0.557 ± 0.08 0.401 ± 0.07 0.726 ± 0.04
500 10 0.095 ± 0.07 0.238 ± 0.07 0.139 ± 0.06 0.335 ± 0.06

1 0.168 ± 0.08 0.525 ± 0.07 0.301 ± 0.06 0.663 ± 0.03
0.1 0.256 ± 0.09 0.661 ± 0.05 0.437 ± 0.05 0.764 ± 0.02

5 200 10 0.085 ± 0.07 0.093 ± 0.11 0.125 ± 0.09 0.144 ± 0.10
1 0.165 ± 0.08 0.200 ± 0.09 0.288 ± 0.08 0.358 ± 0.08

0.1 0.220 ± 0.09 0.341 ± 0.09 0.400 ± 0.08 0.539 ± 0.07
500 10 0.089 ± 0.05 0.088 ± 0.07 0.125 ± 0.05 0.136 ± 0.06

1 0.150 ± 0.06 0.226 ± 0.07 0.265 ± 0.05 0.387 ± 0.05
0.1 0.242 ± 0.07 0.417 ± 0.07 0.440 ± 0.05 0.605 ± 0.04

Table 2 − Prediction accuracy of genotypic value and its standard deviation, for expansion volume and grain yield, regarding two accuracy levels 
of the phenotypic value, three SNP (single nucleotide polymorphisms) densities, two sample sizes, and two generations.

Gen. Sample SNP density (cM)
Accuracy of the phenotypic value

0.548 0.837
Expansion volume Grain yield Expansion volume Grain yield

0 200 10 0.443 ± 0.05 0.469 ± 0.06 0.574 ± 0.04 0.574 ± 0.04
1 0.598 ± 0.06 0.643 ± 0.06 0.778 ± 0.03 0.793 ± 0.02

0.1 0.639 ± 0.06 0.681 ± 0.05 0.826 ± 0.02 0.815 ± 0.03
500 10 0.453 ± 0.04 0.452 ± 0.07 0.532 ± 0.03 0.546 ± 0.03

1 0.618 ± 0.03 0.661 ± 0.04 0.735 ± 0.02 0.745 ± 0.02
0.1 0.663 ± 0.03 0.697 ± 0.03 0.804 ± 0.02 0.771 ± 0.02

5 200 10 0.343 ± 0.07 0.340 ± 0.07 0.484 ± 0.05 0.491 ± 0.06
1 0.536 ± 0.07 0.536 ± 0.07 0.759 ± 0.04 0.759 ± 0.04

0.1 0.580 ± 0.07 0.595 ± 0.07 0.820 ± 0.03 0.822 ± 0.03
500 10 0.337 ± 0.05 0.330 ± 0.09 0.426 ± 0.04 0.447 ± 0.04

1 0.551 ± 0.04 0.564 ± 0.04 0.707 ± 0.02 0.722 ± 0.02
0.1 0.621 ± 0.04 0.653 ± 0.04 0.816 ± 0.02 0.808 ± 0.02
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of the relevance of predicting genotypic value based on 
markers in animal and plant breeding. Zeng et al. (2013) 
concluded that genomic selection based on the domi-
nance model maximized the cumulative response to se-
lection of purebred animals for crossbred performance. 
Comparing genomic selection and pedigree-based BLUP 
by assuming dominance gene action, Denis and Bouvet 
(2013) observed that genomic selection provided higher 
gain per unit time for a clone population, mainly in the 
first selection cycle. Massman et al. (2013) also com-
pared genomic selection and pedigree-based BLUP for 
prediction of maize single-cross performance for grain 
yield and other traits. They observed high accuracy in 
the genome-wide predictions, but the accuracy was infe-
rior to those obtained with pedigree-based BLUP.

Although our simulation study revealed lower ac-
curacy of dominance value prediction with bidirectional 
dominance, relative to unidirectional dominance, geno-
typic value prediction follows the same rules governing 
the breeding value prediction. Under high SNP density 
(at least 1 SNP every cM), the accuracy of additive and 
genotypic value predictions are equivalent, regardless of 
the degree of dominance. As already established for ge-
nomic selection based on breeding value prediction, in 
relation to phenotypic selection, the efficiency of genom-
ic selection based on genotypic value prediction is in-
versely proportional to heritability. Assuming high SNP 
density and low heritability, genomic selection is at least 
as efficient as phenotypic selection. Maximum efficiency 
can reach 27 %. With regard to traits with high herita-
bility, the efficiency of genomic selection is also high, 
reaching at least 90 % of phenotypic selection efficiency.

Our results showed as expected because the popu-
lation analyzed was not inbred (i.e., additive, dominant 
and epistatic genetic values are independent), that the ac-
curacy of breeding value prediction is equivalent when 
fitting the additive, additive-dominance, and additive-
dominance with epistasis models. It is noteworthy that 
in our study, in the absence of epistasis and under high 
SNP density, fitting additive × additive epistatic effects 
in relation to SNPs led to an increase in the accuracy 
of genotypic value prediction. Concerning the fitting of 

the additive-dominance with the epistasis model, several 
results evidenced an increase in breeding value predic-
tion accuracy with the inclusion of the dominance (Well-
mann and Bennewitz, 2012; Technow et al., 2012) and 
epistatic (Dudley and Johnson, 2009; Long et al., 2010; 
Wittenburg et al., 2011; Hu et al., 2011; Wang et al., 
2012; Su et al., 2012) effects. Carlborg and Haley (2004) 
emphasized the importance of fitting epistatic effects in 
complex trait studies. In some genome-wide analyses the 
proportion of the phenotypic variance explained by epi-
static effects ranged from 6 to 83 % (Xu, 2007; Wang et 
al., 2010, 2012). Interestingly, Xu and Jia (2007) found 
that whether two markers interact does not depend on 
whether the loci have individual main effects.

A criticism of the RR-BLUP method is one vari-
ance for the additive, dominance and epistatic effects 
for the SNPs. However the accuracy of additive and 
genotypic value prediction with the use of the RR-
BLUP method based on the likelihood approach is in 
fully agreement with the accuracy obtained with pe-
nalized regression and Bayesian methods. Thus, our 
results showed that RR-BLUP is a suitable method for 
genomic selection because it provides at least the same 
accuracy level of phenotypic selection for traits of low 
heritability, or at least a slightly lower accuracy level 
than that of phenotypic selection for traits of high heri-
tability. Using simulated and empirical datasets, Sun et 
al. (2012) compared the non-parametric methods RKHS 
(reproducing kernel Hilbert spaces) and pRKHS (which 
combine supervised principal component analysis and 
RKHS regression), with RR-BLUP, BayesA and BayesB. 
Assuming no, low and high epistasis, the non-para-
metric methods were superior to the other methods 
in terms of accuracy of additive and genotypic values 
prediction. Zhao et al. (2013) used RR-BLUP, BayesA, 
BayesB, BayesC, and BayesCp to analyze wheat and 
simulated data assuming the additive with dominance 
model. The cross validation approach showed slight 
superiority of RR-BLUP and BayesB regarding the ac-
curacy of predicting the hybrid performance. Interest-
ingly, ignoring dominance effects resulted in equal or 
even higher prediction accuracies.

Table 3 − Accuracy of additive (A), dominance (D), and genotypic (G) values by fitting the additive-dominance (AD) model and the additive-
dominance with additive × additive epistasis (ADE) model, assuming no epistasis, generation 0, two accuracy levels of the phenotypic value, 
two SNP (single nucleotide polymorphisms) densities, and 500 individuals.

Model Value SNP density (cM)
Accuracy of the phenotypic value

0.548 0.837
Expansion volume Grain yield Expansion volume Grain yield

AD A 10 0.598 ± 0.03 0.586 ± 0.04 0.649 ± 0.02 0.626 ± 0.03
1 0.693 ± 0.03 0.685 ± 0.04 0.769 ± 0.02 0.751 ± 0.02

ADE A 10 0.599 ± 0.03 0.581 ± 0.05 0.640 ± 0.02 0.627 ± 0.03
1 0.696 ± 0.03 0.693 ± 0.04 0.773 ± 0.02 0.776 ± 0.02

D 10 0.089 ± 0.06 0.207 ± 0.07 0.114 ± 0.05 0.266 ± 0.06
1 0.175 ± 0.08 0.548 ± 0.07 0.320 ± 0.06 0.686 ± 0.03

G 10 0.446 ± 0.04 0.421 ± 0.04 0.522 ± 0.03 0.503 ± 0.03
1 0.676 ± 0.03 0.666 ± 0.04 0.799 ± 0.02 0.809 ± 0.02
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As final comments, it is important to highlight 
the contribution of the theory presented and the rel-
evance of the assessment of genomic prediction of 
dominance and genotypic values in breeding popu-
lations of open-pollinated crops. Since the advent of 
genomic selection (Meuwissen et al., 2001) some theo-
retical aspects have been presented (Goddard, 2009; 
Gianola et al., 2009; Vitezica et al., 2013). However, 
the theory presented in this paper gives proofs of ge-
nomic selection efficacy that have not been fully pre-
sented in the previously mentioned relevant papers. 
Furthermore, based on a simplified scenario including 
digenic epistasis and in simulated data, we can state 
that although prediction accuracy of additive value 
has greater magnitude than the prediction accuracy 
of dominance and epistatic values, breeders should 
expect that genome-wide prediction of genotypic val-
ue would be as successful as genomic prediction of 
breeding value, conditional on the choice of adequate 
SNP density, sample size, and genomic model. Finally, 
we demonstrated that genomic selection can be suc-
cessfully applied in recurrent breeding programs for 
open-pollinated crops, without training population 
and validation process.
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