
https://doi.org/10.1590/1678-992X-2022-0233

Sci. Agric. v.81, e20220233 , 2024

ISSN 1678-992X

ABSTRACT: present study aimed to determine the effects of different light restriction 
levels (shading levels) on soybean genetic parameters using a Bayesian multi-trait model 
(MTM) and select high-yielding soybean cultivars. Eighteen commercial soybean cultivars 
bred in a soybean breeding program were evaluated over two agricultural seasons. Three 
shading levels were used over two agricultural crop seasons, giving six treatments (light 
restriction × crop season). The experiments were arranged in a randomized complete 
block design with six treatments replicated thrice. The genetic values and parameters 
were estimated using a Monte Carlo Markov Chain algorithm. Broad-sense heritability 
range  from 0.2093 to 0.7153. The lowest genotypic variance estimate was observed at the 
45 % photosynthetically active radiation level in the 2019/2020 crop season year compared 
with that of other shading levels. Furthermore, a 40 % selection intensity had the highest 
soybean yield under different shading levels. The Bayesian MTM combined with the factor 
analysis and genotype-ideotype distance method can be used to evaluate and select 
soybean genotypes considering different shading levels. The soybean cultivars 8579RSF, 
NS8338, NS7901, NS7667, RK8115, and 8473RSF had higher genetic potential than other 
cultivars under different shading levels.
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Introduction

Glycine max (L.) is an important crop worldwide, with 
high grain protein and oil levels, and is extensively used 
in the food processing, animal feed, bioenergy, and 
chemical industries (Gonçalves et al., 2020). Soybean 
can be integrated into crop-livestock-forestry (CLF) 
production systems (Feng et al., 2019; Cristo et al., 2020). 
However, choosing the appropriate crop varieties for the 
CLF production system considering the shading of crops 
by forestry plants is important since shading can induce 
physiological and morpho-agronomic changes, which 
can affect productivity and quality performance owing 
to reduced photosynthetically active radiation (PAR) 
(Werner et al., 2017). The development of high-yielding 
soybean varieties resistant to abiotic and biotic stresses 
and adaptable to the environment through breeding is 
necessary. Besides, there is a need to reveal the interaction 
and correlation between agronomically essential traits, 
which can improve selection accuracy in complex trait 
systems (Yu et al., 2019). 

The prediction of secondary traits using multi-trait 
analyses can improve the prognosis of primary traits, 
particularly when they have low heritability. Although the 
genetic correlation between traits is essential, modeling 
recursive interactions between phenotypes provides 
information to develop breeding strategies that cannot 
be done using conventional multivariate approaches 

(Momen et al., 2019). Bayesian inference helps deal 
with complex models such as multi-trait models (MTMs) 
(Torres et al., 2018; Silva Junior et al., 2022a). The Bayesian 
approach estimates genetic parameters more accurately 
than frequentist approaches (Torres et al., 2018; Volpato 
et al., 2019; Peixoto et al., 2021; van de Schoot et al., 
2021). Bayesian MTMs are suitable for plant genetic 
evaluation (Volpato et al., 2019; Silva Junior et al., 2022a). 
Additionally, Bayesian MTMs enable the estimation of 
variance components and genetic values for individual 
traits (Peixoto et al., 2021) and joint analysis of multiple 
traits. The potential of the Bayesian approach for genetic 
evaluation in plant breeding has been demonstrated in 
several studies, considering multi-environment and -traits 
(Volpato et al., 2019; Silva Junior et al., 2022a). However, 
still needs to be more information on using MTMs in the 
Bayesian approach for soybean cultivated under different 
shading levels. 

Therefore, the present study aimed to determine 
the effects of different shading levels on soybean genetic 
parameters using a Bayesian MTM and select soybean 
cultivars with good genetic potential.

Materials and Methods

Field experiments

The experiments were conducted at the Instituto de 
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Ciências Agrárias da Universidade Federal dos Vales do 
Jequitinhonha e Mucuri (UFVJM), Unaí, Minas Gerais 
State, Brazil (16°26’10.48” S, 46°54’2.28” W, altitude 634 
m) during the rainy season between Nov 2019 and Mar 
2020, and Oct 2021 and Feb 2022, on two crop seasons 
with tree shading levels (PAR environments), totaling 
six treatments (shading level × crop season). Both 
experiments were conducted during the soybean crop 
harvest period in two different years to minimize the 
climate interference on the research data.

The experiments were arranged in a randomized 
complete block design replicated thrice, with 16 
commercial soybean cultivars (NS 7667 IPRO, NS 7780 
IPRO, NS 7901 RR, RK 8115 IPRO, M7110 IPRO, 8579 
RSF IPRO, RK 6719 IPRO, CD 2728 IPRO, RK 6316 
IPRO, CZ37B43 IPRO, 8473 RSF RR, 74177 RSF IPRO, 
RK 7518 IPRO, M 6210 IPRO, AS 3680 IPRONS 8338 
IPRO). The cultivars used in this study are widely 
used in Cerrado areas, specifically in soybean regions 
303, 304, 401, 403, 404, and 405 of different groups of 
relative maturity. There is still no information about 
these cultivars in shaded areas, as studies on shading 
in soybean crops are scarce. In addition, as these 
cultivars are cultivated in a wide region, the study of 
their shading can provide inferences that still need to 
be evaluated for other crop systems.

Screens with black shade nets allowing 18 
and 35 % light passage were installed in the field 
for the different PAR environments 20 days after 
crop emergence. The shades were installed at 1.6 m 
above ground to not disturb soybean growth and 
development. Photosynthetically active radiation was 
measured every 15 days using a PAR meter (Apogee 
quantum meter, model MQ-200, Apogee Instruments). 
The average PAR reduction values were determined and 
compared with the controls (measurements taken under 
full light conditions). Thus, three different shading 
environments were established. Soybean grown under 
100, 75, and 55 % PAR had 100 (full sun environment), 
18, and 35 % light passage, respectively. In all shading 
environments, the experimental plots had four planting 
lines and a length of lines 6 m. The plant population 
was determined according to the recommendation of 
each cultivar and all agronomic practices were carried 
out according to the recommendation for commercial 
soybean production.

Soybean pods were hand-harvested at the R8 
stage (when more than 95 % of pods turned yellow) 
from the two middle rows (5 m2) of each plot. The 
pods from each plot were threshed using a stationary 
thresher. The grain was weighed and the obtained 
mass was expressed in kg ha−1 and normalized to a 
moisture content of 13.0 %. GY1 (100 % PAR), GY2 
(75 % PAR), and GY3 (55 % PAR) were assigned as 
grain yield for the 2019/2020 crop season, while GY4 
(100 % PAR), GY5 (75 % PAR), and GY6 (55 % PAR) 
were assigned as grain yield for the 2021/2022 crop 
season.

Statistics analysis

Data were analyzed using the MTM through the Monte 
Carlo Markov Chain (MCMC) Bayesian approach. The 
MTM is calculated using: 

y = Xb + Zg + e   (1)

where: y is the vector of phenotypic data, the conditional 
distribution is given by y|b, g, i, G, R ~ N (Xb + Zg, R⊗I). 
Where: G is the genotypic covariance matrix, and R is 
the residual covariance matrix; I is an identity matrix, 
b is a vector of systematic effects (genotype mean and 
replication effects) assumed to be b ~ N (b, Σb⊗I); g is 
the vector of genotype effects assumed to be g|G, ~ N 
(0, G⊗I); e is the vector of residuals assumed to be e |R, 
~ N (0, R⊗I); X and Z are the incidence matrices for 
effects b and g, respectively. The R package MCMCglmm 
(Hadfield, 2010) was used to fit the model.

Furthermore, 1,900,000 samples were obtained. 
A burn-in of 10,000 and a thin of 10 iterations were 
assumed, resulting in 189,000 samples. The MCMC 
convergence was verified according to the criterion 
by Geweke (1992), using the R packages boa (Smith, 
2007) and Convergence Diagnosis and Output Analysis 
(Plummer et al., 2006).

The model was compared using the deviation 
information criterion (DIC) proposed by Spiegelhalter et 
al. (2002):

DIC D pD= +( )θ 2   (2)

where: D( )θ  is a point estimate of the deviance obtained 
by replacing the parameters with their posterior mean 
estimates in the likelihood function and p

D
 is the 

effective number of the model parameters. Models with 
a lower DIC should be preferred more than those with 
a higher DIC.

The higher posterior density (HPD) intervals for 
all traits were estimated using the R package boa (Smith, 
2007). Variance components, broad-sense heritability 
(H2), correlation between H2 estimates for the different 
soybean shading levels, considering the MTM, and 
breeding values were calculated from the posterior 
distribution. Posteriori estimates of H2 for each trait and 
each iteration were calculated from the later samples 
of variance components using the following expression:
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where: σg
i2( )and σr

i2( ) are the genetic and residual variance 
components of each iteration, respectively.

Selection based on the selection index

The multi-trait index based on the factor analysis and 
genotype-ideotype distance (FAI-BLUP) method was 
used to identify superior soybean genotypes under 
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different shading levels (Rocha et al., 2018). The formula 
used is as follows:
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where: P
ij
: the probability that the ith genotype (i = 1, 2, 

..., 16) is similar to the jth ideotype (j = 1, 2, ..., m); d
ij
 

genotype-ideotype distance from the ith genotype to the 
jth ideotype, based on the standardized mean distance. 

Selection gains were estimated from the FAI-BLUP 
by considering five different selection intensities: 20, 30, 
40, 60, and 80 %, as follows:
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where: X
g
 is the mean of the selected genotypes, and X

0
 

is the overall population mean.

Results 

The Geweke criterion revealed convergence for all 
dispersion parameters, generating 1,900,000 MCMC 
iterations, 10,000 samples for burn-in and a sampling 
interval of ten, totaling 189,000 effective samples used 
to estimate the variance components (Figure 1). Using 
this criterion, all chains (components of the [co]variance) 
converged. The variance components had similar posterior 
means, indicating a normal density. The DIC revealed that 
the full model for multi-trait best fits the data, revealing 
the significance of genotypic effects (DIC = 4474.94 and 
4542.29 for the full and restricted models, respectively).

The subsequent mean estimates of variance 
components revealed chi-square density and normal 
distributions (Figure 1). Heritability estimates were 
obtained in the broad sense of soybean grain yield for 
different shading levels and their HPD for the selection 
of genotypes (Figure 2). 

Posterior inferences for the mode, mean, median, 
and HPD of H2 considering MTM, are shown in Table 
1. GY3 and GY6 were weakly heritable with Bayesian 
credibility intervals (95 % probability) with H2 = 5.317e-
08 – 9.7805e-02 and 5.317e-08 – 3.3635e-01, respectively. 
However, the characteristics GY2 and GY5 were highly 
heritable considering the Bayesian credibility interval 
(95 % probability): H2 = 0.0992 – 0.7054 and 0.2093 – 
0.7153, respectively. 

The correlation between the H2 estimates between 
GY6 and GY2, and GY4 was considered intermediate 
(Table 2). Conversely, GY6 negatively correlated with 
GY1 and GY3 with low intensity. However, there was 
no high-intensity correlation for GY1, and GY3 had the 
highest correlation (0.4656). 

There were different posteriori estimates of 
genotypic and residual variances for the MTM between 
the different soybean shading levels (Table 3). The 
GY3 characteristic, which corresponds to 55 % PAR 

in the 2019/2020 crop season, had the lowest estimate 
of genotypic variance compared to those of the other 
shading levels. In the 2021/2022 crop season, at 55 % 
PAR, the genotypic variance estimate was intermediate 
compared with those of other shading levels, indicating 
a more significant influence of the genetic components 
than that of the environmental components on the 
expression of this trait.

The genetic variance (σg
2) posterior density for 

soybean grain yield at different shading levels in the 
2019/2020 and 2021/2022 crop seasons based on the 
MTM is shown in Figure 3. All the mean variance 
estimates exhibited chi-square density and normal 
distributions (Figure 3).

Figure 1 – Convergence for the genotypic variance of the six 
traits analyzed in the multi-trait model. The numbers on the right 
refer to the posterior density of the genetic variance estimates. 
The numbers on the left refer to Markov Chains for the genetic 
variance estimates. Grain yield = GY1 (100 %), GY2 (75 % 
photosynthetically active radiation = PAR), and GY3 (55 % PAR) 
in the 2019/2020 crop season. GY4 (100 % PAR), GY5 (75 % 
PAR), and GY6 (55 % PAR), in the 2021/2022 crop season.
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The FAI-BLUP index exhibited discrepant selection 
gains between different selection intensities for the 
same characteristic based on the average estimates from 
the MTM (Table 4). Selection gains were reduced with 
increasing selection intensity. The highest selection gain 

was estimated for GY5 and GY1 in all the selection 
index scenarios. On the other hand, GY3 had the lowest 
selection gain for all the evaluated traits.

The classification of the 16 cultivars, considering 
the characteristics evaluated based on the FAI-BLUP 

Figure 2 – Posterior density for broad-sense heritability, considering the multi-trait model. Heritability in broad sense of H1_grain yield = GY1 
(100 %), H2_GY2 (75 % PAR), and H3_GY3 (55 % photosynthetically active radiation = PAR) in the 2019/2020 crop season; H4_GY4 
(100 % PAR), H5_GY5 (75 % PAR), and H6_GY6 (55 % PAR), and in the 2021/2022 crop season.

Figure 3 – Posterior density for genetic variance () for soybean grain yield at different shading levels, considering the multi-trait model. 
Vg_grain yield = GY1 (100 %), Vg_GY2 (75 % photosynthetically active radiation = PAR) and Vg_GY3 (55 % PAR), in the 2019/2020 crop 
season; Vg_grain yield (GY4) (100 % PAR), Vg_GY5 (75 % PAR), and Vg_GY6 (55 % PAR), and in the 2021/2022 crop season.

Table 1 – Posterior inferences for mode, mean, median, and 
posterior density range (HPD) of broad sense heritability, 
considering the multi-trait model.

Trait Mean Median Mode
HPD 95 %

Lower Bound Upper Bound 
GY1 0.3225 0.3124 0.2885 0.1232 0.5367
GY2 0.3702 0.3476 0.3031 0.0992 0.7054
GY3 0.0260 0.0117 0.0008 5.317e-08 0.0978
GY4 0.1912 0.1555 0.1011 0.0091 0.4777
GY5 0.4549 0.4501 0.4435 0.2093 0.7153
GY6 0.0816 0.0454 0.0324 5.9295e-08 0.3363
Grain yield = GY1 (100 % PAR), GY2 (75 % photosynthetically active 
radiation = PAR), and GY3 (55 % PAR), in the 2019/2020 crop season; 
GY4 (100 % PAR), GY5 (75 % PAR), and GY6 (55 % PAR), in the 
2021/2022 crop season.

Table 2 – Correlation between estimates of broad-sense 
heritability for the different soybean shading levels, considering 
the multi-trait model.

Trait GY1 GY2 GY3 GY4 GY5 GY6
GY1 1
GY2 0.1829 1
GY3 0.4656 0.0872 1
GY4 0.0279 0.7264 – 0.0869 1
GY5 0.3589 0.4164 – 0.0722 0.5787 1
GY6 – 0.1037 0.5723 – 0.1672 0.6584 0.5782 1
Grain yield = GY1 (100 % PAR), GY2 (75 % photosynthetically active 
radiation = PAR), and GY3 (55 % PAR), in the 2019/2020 crop season; 
GY4 (100 % PAR), GY5 (75 % PAR), and GY6 (55 % PAR), in the 
2021/2022 crop season.
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index, is shown in Figure 4. Under 40 % selection 
intensity 8579RSF, NS8338, NS7901, NS7667, RK8115, 
and 8473RSF cultivars had the highest genetic potential 
under the different shading levels.

Discussion

The success of the evaluation of the improvement program 
was correlated with the accurate prediction of genotypic 
values due to the use of appropriate models. In the 
present study, we used an MTM to estimate the variance 
components and select soybean cultivars with higher 
genetic potential at different shading levels. Soybean 
shading can induce physiological and morphoagronomic 
changes, influencing yield and quality performance due 
to PAR reduction (Werner et al., 2017).

The posterior distribution of the parameters to 
be estimated was used in Bayesian inferences, enabling 
the establishment of precise credibility intervals for 
estimates of random variables and variance components 
(Resende et al., 2001). The posterior distribution of the 
parameters was used to estimate the genetic parameters 
for nitrogen (N) uptake and use efficacy under varying 
soil N levels using models, such as the MTM (Torres et 
al., 2018). The Bayesian models are based on estimating 
the genetic parameters to select segregated soybean 
progenies using MTM (Volpato et al., 2019). Additionally, 
flood-irrigated rice used a model to estimate genetic 
parameters (Silva Junior et al., 2022a, b). 

Values of approximately 95 % distribution 
credibility for the H2 parameter were found in the present 
study (Table 2). In flood-irrigated rice, the H2 estimate 
was > 80 % (Silva Junior et al., 2022b). In corn lines, the 
heritability for N use efficacy was 50 %, considered highly 
heritable (Torres et al., 2018), indicating that the MTM 
estimates H2 more accurately than the individual models. 
Eucalyptus globulus clones were evaluated and found to 
have moderate to high H2 values (ranging from 12 to 41 % 
[mode value of the posterior distribution of heritability]) 
for the tree height trait (Mora et al., 2019). In addition 
to the statistical model, the H2 of a trait also improves 
predictions (Lorenz et al., 2011; Gill et al., 2021). Low 
H2 estimates reduce accuracy in predicting individual 
traits (Heffner et al., 2009). The application of MTM can 
improve the prediction of poorly heritable characters 
using information from correlated characters with high 
H2 (Jia and Jannink, 2012; Jiang et al., 2015; Lado et al., 
2018; Bhatta et al., 2020; Gill et al., 2021). Furthermore, 
when there is a moderate genetic correlation between 
traits, MTM is more effective (Jia and Jannink, 2012).

Table 3 – Genetic and residual variance for grain yield traits in 
soybean for the different soybean shading levels using multi-
trait models.

 σg
2

Trait Mean Median Mode Lower Bound Upper Bound 
GY1 150841.4 133903.6 104117.6 40149.17 300739.82
GY2 97732.55 84919.37 66368.58 18077.21 208234.07
GY3 6189.821 2744.083 136.5372 1.3384e-02 2.3231e+04
GY4 114207.4 83501.43 52450.06 3537.28 317216.25
GY5 239602.8 319862.2 288478.4 87637.76 618401.39
GY6 34313.19 19599.69 13995.39 2.7537e-02 1.3190e+05

σr
2

Trait Mean Median Mode Lower Bound Upper Bound 
GY1 303453.1 133903.6 272873.8 181577.1 442285.1
GY2 160923.9 157602.5 152930.6 59132.35 260771.36
GY3 235850.6 229051.9 218696.5 146078.5 339536.6
GY4 459050.1 445756 417098.6 3537.28 317216.25
GY5 351619.2 365365.5 327419.4 87637.76 618401.39
GY6 398516.2 406545.8 383794.2 2.7537e-02 1.3190e+05
Grain yield = GY1 (100 % PAR), GY2 (75 % photosynthetically active 
radiation = PAR), and GY3 (55 % PAR), in the 2019/2020 crop season; 
GY4 (100 % PAR), GY5 (75 % PAR), and GY6 (55 % PAR), in the 
2021/2022 crop season; σg

2  and σr
2  are the genetic and residual variance 

components.

Table 4 – Percentage of selection gains, factor number, and 
commonalities obtained using the factor analysis and the 
genotype-ideotype distance index considering five different 
selection intensities: 20, 30, 40, 60, and 80 %.

Trait 20 30 40 60 80
-------------------------------------- % --------------------------------------

GY1 9.2363 8.4181 7.8296 6.1782 4.3127
GY2 8.1788 8.0278 7.4699 5.9759 4.0168
GY3 1.9302 1.8650 1.7875 1.4222 0.9762
GY4 6.6346 5.5763 5.0089 3.8766 2.8135
GY5 12.8031 10.6549 9.7170 7.5327 5.5046
GY6 4.5238 3.2083 2.8302 2.1138 1.7019
Grain yield = GY1 (100 % PAR), GY2 (75 % photosynthetically active 
radiation = PAR), and GY3 (55 % PAR) in the 2019/2020 crop season; 
GY4 (100 % PAR), GY5 (75 % PAR), and GY6 (55 % PAR) in the 
2021/2022 crop season.

Figure 4 – Selection considering 40 % of the selection intensity 
(selection of six cultivars). The line indicates the soybean 
genotypes for the different shading levels. The cultivars selected 
by the FAI-BLUP index correspond to the red dots outside the 
red line.
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The multi-trait analysis is effective and provides 
more accurate estimates than the single-trait analysis 
because it considers the underlying correlation structure 
found in a multi-trait dataset. However, the Bayesian 
and non-Bayesian inferences from the MTM analysis are 
complex and computationally demanding. The shading 
level influenced grain yield between cultivars and 
between environments for the same cultivar. This effect 
was evidenced in the results presented throughout the 
article, reflecting mainly in the selection gain indices.

Accurate estimates of genetic parameters provide 
new perspectives on the use of the Bayesian methods 
to model soybean genetic improvement under different 
shading levels. The results of the present study revealed 
that the MTM effectively estimates the soybean genetic 
parameters under different shading levels. Soybean 
breeding programs require accurate results rapidly; 
therefore, the model choice and the selection index 
(selection pressure) should be used as breeding strategies. 
Using FAI-BLUP index to select genotypes was based on 
the possibility of using the classification of genotypes 
based on the multi-trait free of multicollinearity by this 
index (Rocha et al., 2018). Therefore, the soybean cultivar 
8579RSF was selected. NS8338, NS7901, NS7667, RK8115, 
and 8473RSF cultivars had higher genetic potential than 
other soybean cultivars under different shading levels. 
Thus, based on the results of the FAI-BLUP index, these 
cultivars can be grown under different shading levels.

The Bayesian MTM combined with the FAI-BLUP 
method could be used to evaluate and select soybean 
genotypes considering different shading levels. 
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