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ABSTRACT: Diffuse reflectance spectroscopy (DRS) has the potential to predict soil organic 
carbon (SOC). However, it is still little used as a matter of routine in soil laboratories in Brazil. 
The objective of this study was to make evaluations as to whether SOC predicted by spectral 
techniques can replace measurement by routine chemical methods with no loss in quality and 
be applied in the recommendation of nitrogen fertilizer as well as identifying the best prediction 
strategies to use. A data set containing 2,471 samples from six soil spectral libraries (SSL) 
was used to develop spectroscopic models for SOC content prediction, including consideration 
of sample stratification and preprocessing techniques. The SOC was quantified through the 
analytical-chemical methods of wet combustion with determination by titration, designated as 
the reference method (REM), and colorimeter, designated as the routine method (ROM in an 
independent data set). SOC contents predicted by the spectral analysis method (SAM) were 
compared to the REM and ROM results, converted to soil organic matter (SOM) and used for 
N recommendations. The best estimate for SOM content using the SAM was achieved through 
stratification of the SSL and application of the standard normal variate (SNV) preprocessing. The 
SOC predicted by spectral techniques proved capable of replacing the SOC measured by routine 
chemical methods with no loss of quality and supported by an appropriate nitrogen fertilizer 
recommendation, provided the models met the conditions and possessed the characteristics of 
the samples to be analyzed.
Keywords: soil attributes prediction, soil fertility, proximal soil sensing, chemometric, green 
chemistry
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Introduction

Soil organic carbon (SOC) is fundamental to a 
profitable and sustainable agricultural system as an 
indicator of soil quality (Global Soil Partnership, 2017; 
Bailey et al., 2017). The SOC content, expressed in terms 
of soil organic matter (SOM) content, is also used by 
several fertilizer recommendation systems, in different 
states and zones such as Rio Grande do Sul and Santa 
Catarina (SBCS, 2016), Cerrado (Embrapa, 2004), Paraná 
(SBCS, 2019), São Paulo (IAC, 1996), and Minas Gerais 
(SBCS, 1999), to evaluate soil fertility and as a criterion 
for nitrogen (N) fertilizer recommendation for crops 
designated by these systems. 

Reliable estimates of SOM are important in 
ensuring that N recommendations are adjusted for soil 
nutrient availability and crop demand, notably with the 
intention of avoiding underestimating recommendations 
that can result in yields below the crop potential, 
environmental contamination by N excess, and financial 
waste. Among different chemical analytical methods 
employed by the soil analysis laboratories to determinate 
SOC/SOM, it is very common to use those based on soil 
carbon oxidation by a sulfochromic solution, followed 
by spectrophotometric colorimeter determination 
(Tedesco et al., 1995). This is based on the original 
procedure of Walkley and Black (1934), using hazardous 
chemical reagents, such as the chromium solution, and 

are relatively laborious and time-consuming to execute. 
Therefore, we were looking for an alternative method 
that can be used without these disadvantages, but 
with accuracy in SOC/SOM estimation. Soil spectral 
analysis by the diffuse reflectance spectroscopy (DRS) 
technique associated with mathematical models is an 
alternative for estimating SOC/SOM content with faster 
execution analysis, easier sample preparation, and with 
no chemical extractors (Viscarra Rossel et al., 2016; 
Wijewardane et al., 2016; Dotto et al., 2018). Studies 
have also addressed the DRS technique when estimating 
the nitrogen content (Li et al., 2015; Padmanabhi and 
Deshmukh, 2017; Conforti et al., 2018).

Even with the known potential of spectroscopic 
models to quantify the SOC, there is a lack of information 
about the applicability of models and the comparison 
between SOC obtained by these models and laboratory 
routine chemical methods in Brazil. The key question 
is if the SOM estimated by DRS is equivalent to SOM 
quantified by routine chemical analysis. This information 
is necessary to an evaluation of the accuracy of SOC/
SOM content estimated by DRS to meet the demands for 
N recommendation reports. The objective of this work 
was to assess if SOC predicted by spectral techniques 
can replace SOC measured by routine chemical methods 
with no loss of quality with an appropriate nitrogen 
fertilizer recommendation as well as identify the best 
prediction strategies to accomplish this.
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Materials and Methods 

Soil database and data stratification

Database information
A data set containing 2,471 legacy samples from 

six soil spectral libraries (SSL) from Rio Grande do Sul 
(RS) and Santa Catarina (SC), Brazil (Figure 1), was used 
in this study. The samples were taken according to 
different proposals, in layers or horizons by a random, 
intentional, or convenience strategy (Table 1). The 
data set is heterogeneous and it contains samples that 
represent the predominant soil class in the south of 
Brazil: Argissolos (Acrisols and Alisols), Cambissolos 
(Cambisols), Gleissolos (Gleysols), Latossolos 
(Ferralsols), Neossolos (Regosols), Nitossolos (Nitisols), 
Organossolos (Histosols) and Planossolos (Planosols) by 
classification of Brazilian System of Soil Classification 
- SiBCS (Santos et al., 2018) and World Reference 
Base (IUSS/WRB, 2015). They also include areas from 
different land use/land cover including forest, native 
grasslands, and field crops using tillage and no-till 
systems as well as the climate from these states ranging 
from humid subtropical without dry season with hot 
summer (Cfa) to humid subtropical without dry seasons 
with temperate summer (Cfb), according to the Köppen 
classification (Alvares et al., 2013).

The main difference between the various SSL 
is the parent material that they came from. While 
extrusive igneous rocks are predominant in four of the 
six SSLs, the sedimentary rocks are predominant in two 
of them. The SSL that came from extrusive rocks as 

parent material can be acidic or basic, and has a clayey 
texture or finer, and the mineralogy comprises a clay 
fraction composed of kaolinite, hematite and goethite. 
On the other hand, the SSL with sedimentary rocks as 
parent material has a sandy to very clayey soil texture 
and the mineralogy comprises a clay fraction composed 
of different contents of kaolinite, 2:1 minerals with 
hydroxy-Al between layers, hematite and goethite. This 
variation in mineralogical composition between the 
SSLs has a significant effect on their spectral behavior 
(Araújo et al., 2014).

In order to evaluate and compare the performance 
of these methods in predicting SOC/SOM for the 
nitrogen recommendation, an independent validation 
set (IVS) was used as an external validation. The IVS 
was composed of 69 samples distributed throughout 
the city of São Miguel das Missões, RS (Figure 1). This 
data set was selected because it is sourced from a field 
crop, which is the main recipient of nitrogen fertilizer 
application. In addition, it was the only set with routine 
laboratory determined SOC/SOM data readily available.

The SOC content in these SSL was determined 
from air-dried soil samples, ground in a mortar, by 
wet combustion with sulfochromic solution (K

2Cr2O7 
+ H2SO4) in the presence of external heating, and 
determined by titration with Fe(NH4)2(SO4)2.6H2O 
(Yeomans and Bremner, 1988), herein designated the 
reference method (REM). In the IVS, SOC content 
was quantified by REM and also by the method used 
by the Official Network of Soil Analysis Laboratories 
in Rio Grande do Sul and Santa Catarina (SBCS, 2016), 
according to the methodology described in Tedesco 

Figure 1 – Spatial distribution of samples from the six soil spectral libraries (SSL), independent validation set (IVS) and their respective geographic 
location in the States of Rio Grande do Sul and Santa Catarina.
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et al. (1995), herein designated the routine method 
(ROM). The spectral measurement was taken in the 
laboratory by a spectroradiometer, with a spectral range 
from 350 to 2500 nm, spectral resolution from 3 nm (up 
to 700 nm) to 10 nm and sampling interval of 1 nm. 
The spectroradiometer was calibrated every 20 sample 
readings using a white spectralon (barium sulfate) plate 
as a 100 % reflectance reference standard.  

Data stratification
Looking for the best training set to predict SOM for 

nitrogen recommendation the set of six SSL, henceforth 
designated as calibration set one (C1, n = 2,471) was 
stratified into two groups on the basis of their similarity 
in relation to the IVS. This was done because SSL 
composed of heterogeneous samples usually decrease 
the predictive performance of models (Araújo et al., 
2014; Viscarra Rossel et al., 2016; Wijewardane et al., 
2016; Moura-Bueno et al., 2019). Furthermore, according 
to Grunwald et al. (2015) models must include local 
samples representative of the pedological characteristics 
of interest.

Taking this into account, the first stratification 
criterion was parent material. In this case, the SSL 
which came from regions with extrusive volcanic rocks 
as parent material (SSL1, SSL2, SSL5, and SSL6) were 
included in calibration set two (C2, n = 1,887 samples). 
The second stratification criterion took into account 
both the parent material of the rock acidity and the 
climate. In this case, only the SSLs which came from 
regions with extrusive volcanic rocks (basic) as parent 
material and climate Cfa (SSL1 and SSL2), were included 
in calibration set three (C3, n = 1,025 samples). Thereby 
the similarity between the calibration sets and the IVS 
increases at the same time that the sample number 
decreases. To explore the spectral variance of sets C1, 
C2, C3, and similarity with the IVS, principal component 
analysis (PCA) was conducted.

Spectral preprocessing, model fitting and 
validation

For each calibration set, three spectral 
preprocessing techniques were tested: i) smoothing 
using a 9-nm search window (SMO); ii) Savitzky-
Golay 1st derivative, using a 1st order polynomial 
and 9-nm search window (SGD) (Savitzky and 
Golay, 1964) and iii) standard normal variate (SNV), 
making a total of nine models. These preprocessing 
techniques were used in order to reduce noise and 
signals without significance in the spectra, in addition 
to isolating specific absorption features (Rinnan et 
al., 2009). Preprocessing was performed using the 
prospectr package (Stevens and Ramírez-López, 2013) 
implemented by the R software program (R Core 
Team, 2019).

The method of soil spectral analysis (SAM) 
was used to obtain SOC predicted values through 
spectroscopic models. Models were fitted to Ta
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three calibration data sets (C1, C2 and C3), by 
the multivariate method of partial least squares 
regression (PLSR). The PLSR model is widely used in 
spectroscopic modeling (Dotto et al., 2018) and has 
exceptional ability in estimating SOC from subtropical 
soil spectra (Moura-Bueno et al., 2019). The number 
of latent variables used was 25 which was selected 
based on the best parameter of latent variables to get 
a robust estimate so that the cross-validation error 
(RMSE) is minimized. This multivariate model has 
been successfully used in spectroscopic modeling 
to predict SOC (Dotto et al., 2018, Moura-Bueno et 
al., 2019). The modeling was performed using an R 
software program (R Core Team, 2019), with the pls 
package (Mevik et al., 2016).

The models were evaluated through leave-one-
out cross-validation and were also independently 
validated, comparing them to the IVS reference values. 
The statistical parameters of accuracy evaluated in 
cross-validation and independent validation were the 
coefficient of determination (R2) Eq. (1), root mean 
squared error (RMSE) Eq. (2), Bias Eq. (3), and ratio of 
performance to interquartile distance (RPIQ) (Bellon-
Maurel et al., 2010).

y=

=

Σ −
=
Σ −
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2 1
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i ii
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== −∑ 1
1 ˆ( )N

i ii
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N
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RPIQ
Q Q
RMSE

�
�( )3 1

	  (4)

where: ŷ = predicted value; y = mean observed 
value; y = observed values; N = number of samples 
with i = 1, 2,…, n; Q1 = 25 % of samples; Q3 = 75 % 
of samples; Q3 - Q1 = interquartile distance, which 
represents the range containing 50 % of the population 
around the median (Bellon-Maurel et al., 2010).

Comparison of Methods for Quantification of 
SOM and Nitrogen Recommendation

The SOC values from IVS obtained by REM, 
ROM, and SAM were used for soil fertility assessment 
and nitrogen recommendation. The Manual for Liming 
and Fertilization for the states of Rio Grande do Sul 
and Santa Catarina (SBCS, 2016) were used in a field 
crop under simulated conditions. The first step was to 
convert SOC content from the samples of IVS obtained 
by each method (REM, ROM, and SAM) into SOM by 
multiplying the SOC value by 1.724, an adjustment 
known as the Van Bemmelen factor. 

Given the SOM, the second step was the 
assignment of the values of the IVS samples into the 

classes of SOM as defined by the Manual for Liming and 
Fertilization for the states of Rio Grande do Sul and Santa 
Catarina (SBCS, 2016), according to its SOM content: ≤ 
2.5 % (low), 2.6 to 5 % (medium) and > 5 % (high). The 
errors in the assignment of classes were quantified. The 
SOM values obtained by SAM were also compared to the 
reference values obtained by REM and ROM in order to 
compare the methods together with RMSE Eq. (2). 

The third step was the simulation of the nitrogen 
recommendation. The class assignment of the best 
model that provided the smallest error and RMSE from 
step two was chosen to represent the recommendation 
by SAM. For each class of REM, ROM, and SAM there 
was a specific N rate recommended, according to crop, 
yield expectations, and previous land use. Considering 
corn production with yield expectation of 7 t ha–1 
(average yield in the state of RS) (CONAB, 2019a) and 
fallow as previous land use the N and urea (45 % N) 
recommendations were calculated. The resulting SOC 
from each method was estimated, considering the price 
for urea in the southern Brazil market (approximately 
350.00 USD t–1, at an exchange rate of 1.00 USD = 
4.00 BRL) (CONAB, 2019b). The flowchart of the 
methodology is presented in Figure 2.

Results and Discussion

Data description
SOC content in C1 varied between 0.20 % and 

15.92 %, with a mean of 2.13 % and standard deviation 
(SD) of 1.65 % (Figure 3A). Most of the samples have 
between 1 and 4 % SOC (Figure 3A), values commonly 
found in subtropical soils in the south of Brazil (Boddey 
et al., 2010) while SOC values above 8 %, characteristic 
of organic soils, are uncommon. C2, containing only soils 
whose parent material are acidic and basic extrusive 
igneous rocks, showed the same SOC amplitude as C1, 
with a mean of 2.30 % and SD of 1.52 % (Figure 3B). 
Both data sets contain soil samples from multiple land 
uses that provide different inputs of plant material to 
the soil, which, added to climatic differences, justify 
the high amplitude in SOC values. This amplitude of 
SOC values in C3 was from 0.24 % to 5.64 % with low 
data dispersion (SD = 0.95 %) (Figure 3C) as expected, 
since the samples were from land use predominantly 
for field crops and under Latossolos (Ferralsols) with 
a mineralogy composed basically of kaolinite and iron 
oxides (hematite).

The IVS presented minimum value of 0.26 % and 
maximum value of 3.85 %, with a mean of 1.03 % and 
SD of 0.69 % (Figure 3D). The mean SOC values of 
the data sets are similar to each other, but higher than 
the IVS. However, the amplitude of SOC data in IVS is 
within the SOC interval of all calibration sets, showing 
measures of central tendency and dispersion closest to 
set C3.

The spectral variation of sets C1, C2, C3, and 
IVS can be observed by the PC1 and PC2 scores shown 
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in Figure 4. The largest dispersion of spectral data is 
observed in the samples of set C1, with high data 
dispersion in the upper and lower right quadrants 
(Figure 4A). The spectral variation in the samples in 
the C2 set (Figure 4B) is smaller compared to the 
C1 set; however, it is greater compared to C3. The 
smallest spectral variation was observed in the C3 
sets (Figure 4C), with most samples concentrated 
near the central axis. The samples from the IVS set 
showed lower spectral variation compared to the 
C3 sets, followed by C1 and C2. This showed that 
the IVS set had samples with more homogeneous 
chemical, physical and mineralogical characteristics. 
In addition, it is noted that the spectral variation of 
the IVS set is close to that observed in most samples 
from sets C1, C2, and C3, indicating that the IVS set 
can be used to validate calibrated models with these 
three sets.

Model Calibration and Validation 

Calibration and Leave-one-out Cross Validation 
Models

Models fitted to the C2 data set had the best 
adjustments, with R2 ranging from 0.79 to 0.83 and RMSE 
values from 0.63 to 0.70 %. The C2-SGD model had better 
performance for calibration, where R2 = 0.83 and RMSE 
= 0.63 % (Figure 5). The smallest errors were observed 
in models fitted to set C3, which had RMSE ranging from 
0.46 to 0.52 %, with emphasis on the C3-SMO model (R2 
= 0.75 and RMSE = 0.46 %) (Figure 5). Corroborating 
our results, Moura-Bueno et al. (2019), using a local SSL in 
southern Brazil, found higher predictive accuracy of SOC 
associated with the PLSR model with SGD preprocessing 
(R2 = 0.74 and RMSE = 0.52 %). Similarly, Knox et al. 
(2015), using soil libraries (n = 1,014) on a regional scale 
in Florida, USA, obtained an R2 of 0.87 and RMSE of 0.40 
(log g kg–1).

The models adjusted to C1 had the worst 
adjustments, with R2 ranging from 0.67 to 0.72 and RMSE 
from 0.87 to 0.95 %. These R2 values are close to those 
of Pinheiro et al. (2017), in a study with 434 samples in 
the Central Amazon region, Brazil, in which they found R2 
= 0.71. However, the RMSE achieved by the authors was 
0.57 %, which is lower than that observed in the present 
study. Although the prediction amplitude presented by 
the authors (SOC range between 0.01 and 10.56 %) is 
close to that of the present study (Figure 3), the observed 
difference in accuracy is attributed to the pedological 
heterogeneity. Even considering a lower predictive interval 
in C3, the RMSE ranged from 0.46 to 0.52 %, presenting 
lower accuracy than that observed by Terra et al. (2015), 
who found RMSE values = 0.16 % using a spectral library 
with 1,259 samples of tropical soils from Brazil, with a 
prediction interval between 0.2 and 7.0 % of SOC.

As spectral models usually assume patterns of 
spectral variation associated with changes in the SOC 
content of samples, heterogeneous samples in terms 
of mineralogical composition imply greater spectral 
variation that is not associated with SOC (Araújo et al., 
2014; Moura-Bueno et al., 2019; Viscarra Rossel and 
Behrens, 2010). As regards the preprocessing techniques 
tested, in general, the accuracy of the model increased as 
the techniques became more complex. SGD showed the 
best performance, with R2 ranging between 0.72 and 0.83 
and RMSE between 0.48 and 0.87 %. This preprocessing 
removes unimportant reference signals from samples 
through the derivative of the measured responses relative 
to the wavelength number and promotes better pattern 
recognition. SNV preprocessing had R2 ranging from 
0.70 to 0.79 and RMSE from 0.52 to 0.91 % (Figure 5). 
The SMO preprocessing showed the worst adjustments, 
with R2 ranging from 0.67 to 0.77 and RMSE from 0.46 to 
0.95 % (Figure 5). However, the C2-SMO model performed 
better than C2-SNV. The C3-SMO model, on the other 
hand, performed better than C3-SNV and C3-SGD models. 
Although the literature suggests the use of spectral 

Figure 2 – Flowchart of the methodology. In which: SSL = soil 
spectral library; C1 = calibration set 1; C2 = calibration set 2; 
C3 = calibration set 3; IVS = independent validation set; SOC = 
soil organic carbon; SOM = soil organic matter; REM = reference 
method; ROM = routine method; SAM = spectral analysis method; 
SMO = smoothing; SGD = Savitzky-Golay derivative; SNV = 
standard normal variate; PLSR = partial least squares regression; 
N = nitrogen.



6

Rosin et al. Estimating SOM by spectroscopy

Sci. Agric. v.78, n.5, e20190246, 2021

preprocessing techniques (Vasques et al., 2008; Dotto et 
al., 2018; Moura-Bueno et al., 2019), which, however, 
do not always improve the predictions (Kooistra et 
al., 2001). Because of this uncertainty of outcomes, 
there is no spectral technique that can be considered 
as universally better. Preliminary tests are therefore 

essential to matching preprocessing techniques to each 
data set of characteristics, especially for clayey to very 
clayey soils with high iron oxide content (Moura-Bueno 
et al., 2019).

Despite the significant reduction in the number 
of samples between sets, from 2,471 in C1 to 1,025 in 

Figure 3 – Histograms and descriptive statistics of SOC data. In which: C1 = calibration set 1; C2 = calibration set 2; C3 = calibration set 3; 
IVS = independent validation set; SOC = soil organic carbon; n = number of samples; min = minimum value; max = maximum value; sd = 
standard deviation.

Figure 4 – PC1 and PC2 scores derived from PCA of spectral data identifying data set C1, C2, C3 and IVS. In which: C1 = calibration set 1; C2 
= calibration set 2; C3 = calibration set 3; IVS = independent validation set; PC1 = principal components 1; PC2 = principal components 2.
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C3, the predictive performance of the models did not 
depend only on the number of samples in the spectral 
library. More homogeneous sets in relation to sample 
characteristics may present more explicit numerical 
relationships and thus calibrate more accurate spectral 
models (Araújo et al., 2014; Viscarra Rossel et al., 2016; 
Wijewardane et al., 2016; Moura-Bueno et al., 2019).

Independent Validation Models
The independent validation was performed taking 

into consideration the prediction of SOC content for IVS 
samples (n = 69) and the accuracy values were calculated 
based on the predicted value for each spectroscopic 
model fitted (Figure 6). 

The most complex preprocessing does not 
necessarily lead to increased accuracy in the independent 

validation. The best results as regards accuracy were 
verified in SGD preprocessing with R2 ranging from 
0.21 to 0.71 and RMSE from 0.39 to 0.77 %, followed by 
SMO, with R2 ranging from 0.24 to 0.65 and RMSE from 
0.59 to 0.80 % and SNV, with R2 ranging from 0.14 to 
0.78 and RMSE from 0.38 to 0.90 %.

C1 models presented the lowest degrees of accuracy 
in independent validation, with R2 ranging from 0.14 to 
0.21 and RMSE ranging from 0.77 to 0.90 % (Figure 6). 
Set C2 presented intermediate degrees of accuracy, with 
R2 ranging from 0.41 to 0.62 and RMSE ranging from 
0.50 to 0.89 %. The best results were found in set C3, 
which had R2 ranging from 0.65 to 0.78, and the lowest 
RMSE, ranging from 0.38 to 0.39 %, highlighting the C3-
SNV model (R2 = 0.78, RMSE = 0.38 %) obtained the 
highest degree of prediction accuracy. Lucà et al. (2017) 

Figure 5 – Adjustment of the leave-one-out cross-validation for models. In which: C1 = calibration set 1; C2 = calibration set 2; C3 = calibration 
set 3; SOC = soil organic carbon; SMO = smoothing; SGD = Savitzky-Golay derivative; SNV = standard normal variate; R2 = coefficient of 
determination; RMSE = root mean squared error; RPIQ = ratio of performance to interquartile distance.
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found that, in homogeneous samples of Italian soils, 
the predictive capacity of PLSR models increases with 
increases in the sample set.

However, under the conditions of the present 
study, the increase in the number of samples (from C3 
to C2, for example) resulted in prediction losses due to 
the inclusion of samples with pedological differences 
compared to the IVS in the calibration of models (Figure 
3), which resulted in an increase in spectral variance as 
presented in Figure 4. This behavior was expected since 
C3 models were calibrated exclusively with samples 
with origin and characteristics similar to the IVS. Lucà 
et al. (2017) also found that, in homogeneous samples 
of Italian soils in which the predictive capacity of PLSR 
models increases with increases in the sample set. This 
confirms the importance of representativeness of the 
samples in the calibration database and suggests that 
spectroscopic models should consider local samples for 

calibration in order to achieve greater accuracy in SOC 
prediction (Grunwald et al., 2015). 

The best adjustments and, consequently, the 
smallest prediction errors in the validation, occurred 
as a result of the smaller amplitude of the calibration 
set SOC data and pedological similarities between the 
calibration set samples and the IVS. It is fair to state that 
the main factor related to the accuracy of spectroscopic 
models is the amplitude of SOC content in the dataset, 
associated with pedological variation, thereby agreeing 
with Viscarra Rossel and Behrens (2010), Zeng et al. 
(2016) and Moura-Bueno et al. (2019).

Comparison of methods for quantification of SOM 
and nitrogen recommendation

Comparison of methods for quantification of SOM
The IVS SOM content quantified by REM had a 

Figure 6 – Adjustment of the independent validation for models. In which: C1 = calibration set 1; C2 = calibration set 2; C3 = calibration 
set 3; SOC = soil organic carbon; SMO = smoothing; SGD = Savitzky-Golay derivative; SNV = standard normal variate; R2 = coefficient of 
determination; RMSE = root mean squared error; RPIQ = ratio of performance to interquartile distance.
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Table 2 – Statistics of the applicability test for data from routine method (ROM) and predicted by spectral analysis method (SAM).

Preprocessing SMO SNV SGD

Data set RMSE Errors Bias RMSE Errors Bias RMSE Errors Bias
% % % % % %

C1 0.89 19 0.41 1.36 10 –0.50 1.16 17 0.05
C2 0.92 13 0.34 1.34 30 0.93 0.75 6 –0.08
C3 0.65 15 0.38 0.58 6 0.24 0.59 7 0.09
Data set RMSE Errors Bias

% %
Routine SOM 0.54 7 –0.22
In which: C1 = calibration set 1; C2 = calibration set 2; C3 = calibration set 3; SOM = soil organic matter; SMO = smoothing; SGD = Savitzky-Golay derivative; SNV 
= standard normal variate; RMSE = root mean squared error.

minimum value of 0.39 %, a maximum value of 5.83 % 
and an average of 1.57 %, while the SOM quantified 
by ROM presented a minimum value of 0.37 %, a 
maximum value of 4.90 % and average of 1.35 % (Figure 
7). Overall, the ROM underestimated SOM values (Bias 
= – 0.22) (Table 2) and showed the largest deviations 
from the REM in the samples with the highest SOM 
content. Errors (samples: 35, 37 and 69) were found 
(Figure 8), which could not be checked because of the 
absence of repetitions in the routine laboratory. The 
RMSE verified between REM and ROM was 0.54 % and 
there were seven different (errors) recommendation 
classes for N (Table 2).

It is common to get errors in the determination of 
SOC by wet combustion, especially underestimation of 
high values since carbon oxidation is not complete and 
average correction factors become necessary (Nelson 
and Sommers, 1975). Due to a linear relationship 
with the dry combustion method, the Walkley-Black 
method can be reliably used within the range of 
0.42 % to 8 % SOC (De Vos et al., 2007). Although 
the routine method is related to the Walkley-Black 
method, the sensitivity of the colorimetric method 
is very dependent on the amplitude of the samples 
in the calibration between the sulfochromic solution 

absorbance and the actual soil SOM values (Tedesco 
et al., 1995), which may increase the inaccuracy in 
quantifying SOM. The differences observed in the 
deviations of SOM estimates between ROM and SAM 
methods (Figure 8) showed that the spectroscopic 
models present greater accuracy. This result was 
also observed in a study by Souza et al. (2016), who 
subjected the wet combustion method employed 
in routine Brazilian laboratories to an accuracy and 
precision test and found lower accuracy than that 
obtained by spectroscopic models.

The highest degree of accuracy of the SAM was 
found in the C3-SNV model, with 0.58 % RMSE and six 
class placement errors (Figure 8). Overall, SAM models 
overestimated SOM content (Table 2). The smallest 
amount of errors in placing the SOM content in the 
recommendation classes were verified for set C3, which 
ranged from 6 to 15 errors. Followed by C2, ranging 
from 6 to 30 errors, and set C1, which ranged from 10 
to 19 errors. The C3-SNV and C2-SGD models had the 
smallest number of errors, both with 6 errors (Figure 
8). As regards the spectral preprocessing, the smallest 
errors were achieved by SGD, which ranges from 6 to 
17 errors, followed by SNV, which ranges from 6 to 30 
errors, and SMO, which ranges from 10 to 19 errors 

Figure 7 – Histograms and descriptive statistics of SOM data. In which: IVS = independent validation set; SOM = soil organic matter; n = number 
of samples; min = minimum value; max = maximum value; sd = standard deviation; REM = reference method; ROM = routine method.
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Figure 8 – Deviations verified between SOM analyzed by Walkley-Black method (reference), colorimetric method (in routine laboratory) and 
predicted by the best models of each sample set for each IVS sample. In which: C1 = calibration set 1; C2 = calibration set 2; C3 = calibration 
set 3; SOM = soil organic matter; SGD = Savitzky-Golay derivative; SNV = standard normal variate; REM = reference method; ROM = routine 
method; SAM = spectral analysis method.

(Figure 8). However, considering the RMSE of each 
preprocessing, SMO stood out, ranging from 0.65% to 
0.89 %, followed by SGD, ranging from 0.59 % to 1.16 % 
and SNV, ranging from 0.58 % to 1.36 % (Table 2). The 
more complex preprocessing resulted in fewer placement 
errors; however, they increased the SOM RMSE. Thus, 
it can only be inferred that the best preprocessing is the 
one that best fits the data. It is thus recommended to 
perform preliminary tests for each data set.

Overall, SAM spectroscopic models overestimated 
the SOM content (Table 2). However; there are cases of 
underestimation, which, although not predominant, are 
not isolated and were found in practically all the models. 
This was more frequently observed in sets C1 and C2 
and with a very low frequency in the best model with 
the best independent validation (C3-SNV). Prediction of 
negative values were found mainly in sets C1 and C2 and 
for samples with very low SOM content. This may be 
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an effect of the SOC range from the calibration sets C1 
and C2 that have a higher mean than the IVS. However, 
a constant calibration and quality control of spectral 
models are necessary in order to ensure the reliability 
and applicability of SAM predicted SOC values.

Nitrogen Recommendation Simulation
Considering the IVS SOM data obtained by 

the REM, ROM and SAM methods, we obtained 
different amounts of recommended N. According to 
the SOM values obtained by the REM, the average 
recommendation was 102 kg N ha–1. For ROM, the 
estimated average recommendation was 104 kg N ha–1 
with RMSE of 6.34 kg N ha–1. For SAM, using the most 
accurate spectroscopic model (C3-SNV), 102 kg N ha–1 
with RMSE of 5.90 kg N ha–1 was recommended. The 
ROM provided a higher total N recommendation than 
the other methods due to systematic underestimation of 
SOM content, while the SAM presented a total N similar 
to the REM (Figure 9A).

As regards the urea (45 % N) recommendation, the 
amount was 227 kg ha–1 for the REM, 231 kg ha–1 for 
the ROM (RMSE of 14.15 kg ha–1), and 227 kg ha–1 for 
SAM (RMSE of 13.11 kg ha–1) (Figure 9B). It means a 
cost of 79.33 USD ha–1 for REM, 80.88 USD ha-–1 (RMSE 
of 4.95 USD ha–1) for ROM, and 79.33 USD ha–1 (RMSE 
of 4.58 USD ha–1) for SAM, (Figure 9C). The SAM had 
satisfactory results for the N recommendation, with 
errors lower than the ROM, currently used to evaluate 
the SOM content for N recommendation for crops. 
The SAM, in addition to providing an improvement in 
the accuracy of the recommendation, compared to the 
ROM, would significantly reduce the SOC with chemical 
soil analysis (Viscarra Rossel and McBratney, 2008) as 
well as being 90 % more economical than the Walkley-
Black method in the determination of SOC (O’Rourke 
and Holden, 2011). Therefore, there is room for its use 
in routine laboratories, considering it is a faster method, 
with lower final SOC and proven effectiveness, provided 

that calibrated models that contemplate the conditions 
and characteristics of the samples to be analyzed are 
used.

The SAM had satisfactory results for the N 
recommendation, with errors lower than the ROM, 
and is currently used to evaluate the SOM content for 
N fertilizer recommendation for crops. The SAM, in 
addition to providing an improvement in the accuracy 
of the recommendation, compared to the ROM, 
significantly reduced the SOC with chemical soil 
analysis (Viscarra Rossel and McBratney, 2008) as well 
as being 90 % more economical than the Walkley-Black 
method in the determination of SOC (O’Rourke and 
Holden, 2011). Therefore, there is room for its use in 
routine laboratories, considering it is a faster method, 
with lower final SOC and proven effectiveness, provided 
that calibrated models meet the conditions and possess 
the characteristics of the samples to be analyzed are 
used.

Conclusions

The SOC predicted by spectral techniques proved 
to be able to replace the measured by routine chemical 
methods without loss quality on the recommendation 
of nitrogen fertilizer, provide the models meet the 
conditions and possess the characteristics of the samples 
to be analyzed are used.

The sample set composed only by samples with 
pedological similarities with the independent validation 
set showed higher accuracy for calibration and 
validation. We recommend adjusting local models and 
calibrating them with samples similar to the ones that 
are going to be predicted.

Preprocessing techniques more complex resulted 
in better assignments into the classes for assessment 
of SOM content for N recommendation. However, we 
suggest performing preliminary tests and using spectral 
preprocessing techniques adapted to each data set.

Figure 9 – N recommendation (A); urea recommendation (B) and respective cost in urea (C) in the independent validation set (IVS) simulating the 
representation of one (1) ha; SOM = soil organic matter; REM = soil organic matter content obtained from soil organic carbon determined by 
the reference method; ROM = soil organic matter content obtained by the routine analysis method; SAM = soil organic matter content obtained 
by the prediction model using diffuse reflectance spectroscopy.
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