
DOI: http://dx.doi.org/10.1590/1678-992X-2019-0122

Sci. Agric. v.77, n.6, e20190122, 2020

ISSN 1678-992X

ABSTRACT: This paper shows how to apply the lattice package of R to create effective
scientific graphs. The readers will learn basic notions of the package and ways to work with it
in an easy way. The R code the paper provides will help them create various graphs, including a
scatter plot, a box plot, a density plot, and a bar plot; with a little work, the code can be changed
to make other graphs. The paper emphasizes the trellis display, a useful but still undervalued
technique in scientific visualization.
Keywords: visualization, charts, software, statistics

lattice: Easy construction of professional graphs for agricultural research in R

Marcin Kozak*

Warsaw University of Life Sciences – Dept. of Botany,
Nowoursynowska, 159 – 02-766 – Warsaw – Poland.
*Corresponding author <nyggus@gmail.com>

Edited by: Paulo Cesar Sentelhas

Received May 06, 2019
Accepted November 04, 2019

Introduction

Agricultural research calls for a variety of meth-
ods for analyzing various types of data. Analysis is one
thing, interpretation is another. While most analyti-
cal methods in agriculture use statistics, interpretation
should not base solely on rigorous statistical analysis.
Sometimes exploratory tools can help notice interesting
phenomena in data, which can then be analyzed using
such rigorous methods. But alone, seldom does statisti-
cal analysis suffice to deeply analyze and interpret agri-
cultural data.

To interpret data efficiently, one can graph them.
A bunch of graphical methods to visualize scientific data
is large, and so is their availability—so what can limit
researchers in using them is skills. So many methods to
choose from can be dangerous, too: For most data, we
can choose from among quite a large set of graphs, and
thus making a good graph requires knowledge and skill.
This paper, I hope, will help you gain them.

Graphical methods can show much more than raw
data and their summaries can—but also more than can
rigorous statistical analysis. This does not mean, how-
ever, that data visualization should replace statistics, but
rather that these two tools can and should cooperate in
order to provide as clear a picture of the phenomena
studied as possible.

Most statistical methods offer data summaries,
and although it is true that we scientists usually look for
trends, trends alone do not suffice. What if something is
atypical? Summaries not only will not show such anom-
alies in the data, but they also can draw an incomplete
and untrue picture of the phenomena studied. In practi-
cally every single case, we should check the data, to pro-
tect ourselves from overlooking important phenomena
in them. Failing to do so, we might, for instance, fit a lin-
ear regression line to analyze a non-linear relationship;
or, by analyzing means without checking the raw data,
we might miss an outlier observation—and just one such
outlier can change the whole ranking of means. That
graphical methods are better than statistical tests to test

ANOVA assumptions have already been discussed (e.g.,
Kozak and Piepho, 2018).

Data exploration and interpretation, however, are
not the only occasions when graphical methods can
help. Data presentation is another. It is already a cliché
to say that scientific results are usually best presented
in a graphical form—but it’s a true cliché. More often
than not, visualizing data can help understand them by
those who do not know the data’s details—the readers of
scientific papers in particular.

It takes some craft to make a good graph, however
(e.g., Tufte, 1983; Cleveland, 1985 and 1993; Wilkinson,
2006; Wickham, 2009; Kozak, 2010). Whether exploring
data or presenting them, we have to do it right. Graph-
ing data in a random way will seldom work—we have
to know what we want to graph, we have to know how
we can do it effectively, and we have to do it with skill.
What also does not have to work is following, without
careful consideration, some standard practices, such as
using a pie chart only because we have per cent values
(do they sum up to 100%?) or using a bar chart for one-
way data (maybe the data represent a time trend, usu-
ally better shown using a line graph?).

There is one important lesson I learned when
teaching data visualization to undergraduate and graduate
students of various disciplines. People, even educated, of-
ten respond negatively to graphs they have not used or at
least met. Most students I teach are used to pie charts and
bar plots, and quite a few to line plots. But, however amaz-
ing it can sound, most of them consider simple scatterplots
difficult. By a simple scatterplot I understand a quantita-
tive variable presented on a vertical axis against another
quantitative variable presented on a horizontal axis, one
of the most frequent scientific graph types. In fact, seeing
such a graph, even with just a handful of points graphed,
they often attack it as overly difficult to read and interpret.
From my discussions with them it’s clear that they consid-
er such graphs difficult because they compare them—usu-
ally unconsciously—with pie and bar charts, both of which
are simpler and present simpler data structures than does
the scatterplot. So, I have to explain them why and when

N
ot

e

Biometry, Modeling and Statistics

environment

https://orcid.org/0000-0001-9653-3108

2

Kozak Data visualization in R’s lattice

Sci. Agric. v.77, n.6, e20190122, 2020

such a scatterplot can be effective—and that, combined
with several examples, convinces at least part of them.

If such a simple plot can give educated people the
willies, what about much more advanced and complex
graphs presenting much more data in more complex
structures?

Thus, I do think researchers should spend some
time learning basics of data visualization. Otherwise, they
may be reluctant to use even quite simple graphs, only a
little more advanced than the bar plot.

Graphical data exploration can be a brainstorming
and iterative process: You graph whatever comes to your
mind, and you look for anything interesting or peculiar in
the data; you can try various graphs, looking for the one
that best shows the picture. That way, you may draw a
whole world of rich conclusions, which you might miss
by graphing only what you think at the outset is worth
graphing (e.g., in two-way ANOVA, a bar plot of means
together with an interaction plot).

Data analysis does not require as fine-tuned graphs
as data presentation does. Usually, when making a graph
to analyze your data, you need not pay attention to some
aspects of the graph, such as axis titles or color—if only
you see what you need to see, that’s fine. But when you
want your graph to be read by others, you should pay at-
tention to every single detail.

This paper offers a simple guide for agricultural
researchers to the lattice package (Sarkar, 2008) of R
(R Core Team, 2019). Focusing on graphs especially valu-
able for agricultural researchers, I will show how to use
this package to make professional—even quite complex—
graphs. After reading the paper and going through the
examples, you should be able to construct such graphs by
your own. I will not focus on the principles of graphing
data, which I did in my earlier paper in this journal (Ko-
zak, 2010)—but we will use them, and we will use here
the same data sets and make similar graphs.

I make two assumptions here. First, I assume you
know these basic principles of graphing data—because
without such knowledge it’s better not to try to make any
graph. That would be like driving a car without even the
basic knowledge of how to do so. Many sources are avail-
able (my favorite are Tufte [1983] and Cleveland [1995,
1996]), including the above-mentioned paper I published
in this journal (Kozak, 2010). I also assume you have a
basic knowledge of R, which will enable you to read data
and use basic operating symbols and functions.

So, I assume we will work together. If you do not
know too much of R, however, don’t give up: Reading the
paper may help you get a general picture of lattice’s
possibilities and of how it works. But to learn using it, you
should switch on your computer, run R (even better, RStu-
dio; http://rstudio.com), load the lattice and latticeEx-
tra packages, and copy the code from the paper into R’s
console. Thus, I will not include in this paper all graphs
we will work on, just those most important ones—but you
can make all of them all simply by copying the code into
the R console.

A short introduction to lattice
The lattice package was developed by Deep-

ayan Sarkar. In 2008, he published a book on this pack-
age (Sarkar, 2008). Although lattice offers a variety of
graphs, its backbone is based on the idea of the trellis
display, developed by Cleveland and colleagues (e.g.,
Cleveland, 1985 and 1993; Becker et al., 1996). A simple
idea, the trellis display is powerful: Thanks to its layout, it
enables showing and interpreting even complex grouped
data on one graph.

Even though lattice graphs look very profession-
al, they are quite easy to make if only one knows how to
do it. Lattice has several built-in functions for standard
types of graphs such as

• a bar plot
• a scatter plot, both 2D and 3D
• a strip plot
• a dot plot (Cleveland, 1983)

You might have noticed that the above list misses pie
charts. Sarkar himself explains this (Sarkar, 2008): “lattice
does not contain a function that produces pie charts. This
is entirely by choice, as pie charts are a highly undesirable
form of graphical representation (see Cleveland (1985) for a
discussion), and their use is strongly discouraged.”

We could append the list with less known types of
graphs, such as

• parallel coordinate plot
• scatterplot matrix (SPLOM)

lattice also offers statistical graphs, such as

• histogram
• density plot
• box plot
• violin plot
• quantile-quantile plot

lattice’s formula interface makes it easy to con-
struct these graphs in a trellis display, often with just one
line of code, as I will show later. What’s more, with a
little skill, you can control most graphical parameters of
these graphs. Some of them, however, are more difficult
to control, and it can take considerable skill to adjust a
graph to all your needs.

While many packages offering graphs need to be
used with much care because their default parameters of-
ten can be a bad choice (e.g., Su, 2008; Wnuk and Dębski,
2016), it is not so with lattice (although not everyone
likes the default choice of colors). Its great advantage is
that it is based upon in-depth research on data visual-
ization, thanks to which much of its default parameters
(such as point symbols and their size, line symbols, rota-
tion of tick mark labels on axes, etc.) can be used without
hesitation. This is not to say, however, that when using
lattice, you don’t have to worry about the look of your

3

Kozak Data visualization in R’s lattice

Sci. Agric. v.77, n.6, e20190122, 2020

graphs; you always should. But this is to say that with
lattice, you have hi gh chances of ending up with a
good graph even if you do not change the default param-
eters. In fact, if you feel your knowledge about principles
of graphing data is limited, you might wish to use the
default setting lattice offers. I would not say the same
about many other packages for data visualization.

If you are still wondering why you should choose
lattice over other packages, consider the following points:

• lattice offers simple and advanced graphs, which
can be made with a little programming skill and in a
relatively short time

• once you learn the formula interface, you will have no
problems with working with a variety of graph types
lattice constructs

• more often than not, the default settings of lattice
graphs are good

However useful lattice is, I am not claiming ev-
eryone should use it. There are other options. Outside
of R, the Plotly module of the Python programming lan-
guage offers rich visualization possibilities. R itself offers
other possibilities. You can use R’s graphics package, built-
in into R as its graphical base. You can use R’s ggplot2
(Wickham, 2009). ggplot2 is powerful but less intuitive
for non-specialists. It gives, however, much more flexibil-
ity than does lattice, an important advantage when you
want to construct atypical graphs. This does not mean that
either one is better but that the two packages target slight-
ly different audiences: lattice is for those who seek a
quick and relatively easy way of constructing professional
scientific graphs, but from a limited set of possibilities,
while ggplot2 is for those who are looking for flexibil-
ity, especially when working on complex visualizations.
Note that all graphs you can make in lattice can also be
made with ggplot2, but usually you would need more
skill and time and work. We cannot say the otherwise,
however: Not all graphs constructed with ggplot2 can be
constructed with lattice; or, many of them might be, but
that would require a lot of skill and time and work. Thus,
basically, if you just want to make professional scientific
graphs from among those listed above, you can choose
lattice, and it will repay your relatively little effort.

lattice basics: A scatterplot
lattice comes with the basic R installation, so it

needs not be installed. To use it, you need to load it first:

The basic lattice package offers a lot of visual-
ization possibilities. We can broaden them by installing
latticeExtra, an additional package which adds some
advanced utilities to lattice (Sarkar and Andrews,
2016). We will use it later on, so let’s install and load it.

For simplicity, we will use the same data sets I
used in my previous paper on graphing (Kozak, 2010),
but we will start with one of the most well-known
data sets, the iris data by Anderson (1935). After
Fisher (1936) had used it, the dataset started its jour-
ney towards unintended and quite amazing future: It
became famous among statisticians, machine learn-
ing specialists, and data analysts, who use it to test
their methods and show how they work (Kozak and
Łotocka, 2013). It is also often used in data visualiza-
tion.

In R, this data set is available as dataset iris.
We can glance over its first rows using function head:

So, we have here four quantitative traits (sepal
length, sepal width, petal length, and petal width) for
three iris species (Iris setosa, I. virginica, and I. versi-
color), 50 observations per species.

Let’s start our lattice adventure by making
a simple scatterplot of petal length versus its width
(Figure 1):

Figure 1 – The simplest version of the scatterplot showing petal
length versus petal width. For the moment, the information about
the three species is ignored.

4

Kozak Data visualization in R’s lattice

Sci. Agric. v.77, n.6, e20190122, 2020

As simple as that. Pay attention to the formula,
here Petal.Length ~ Petal.Width. It’s the essence of
any call to lattice’s graphical functions. What goes be-
fore the tilde is the dependent variable; here it’s a vari-
able to be represented by the y axis. After the tilde goes
a variable to be represented by the x axis. Later we will
use more complex formulas, which will help us to add
more layers to the graph.

As already mentioned, lattice’s important advan-
tage is its default settings (for the numerous aspects of the
graph, such as point symbol and size, color, axes, etc.).
Usually using them is a good idea. But what one must
always think about is the graph’s layout: Which type of
graph should I use? Is color better than other tools (such
as different symbols)? What should be on the y and x
axes? Do I have a grouping variable I should include? If
so, how should I do it? What scale should I use (maybe
logarithmic)? Do I have problems with overlapping data
points? And so on.

What we should change most of the times is axis
titles (usually called axis labels), which by default are the
same as variable names (here, Petal.Length and Petal.
Width). We can do it using xlab and ylab arguments:

Let us now think about the data. The data set has
150 rows, so Figure 1 should show 150 data points. Does
it? It’s difficult to say from just looking at the graph, and
we will not count them one by one—but the graph might
suggest we do not see all the 150 points. Such a phenom-
enon can happen when some points overlap (so some
petals have exactly the same lengths and widths). We
can check that by counting the number of unique rows
(considering only petal length and width, so the third and
fourth columns of the iris data frame):

Since there are 102 unique rows, the graph does not
show all the points—only 68% of them. While coping with
this problem does not have to be easy with other software,
it is easy in R. Suffice to use the function jitter, which
adds so-called jitter, a small amount of random noise add-
ed to a quantitative variable (Chambers et al., 1983):

And now, all—or at least most of—the points can
be seen.

Note that above we have ignored quite an impor-
tant piece of information about the data, that is, the spe-
cies. The data has three Iris species, which we can see
in R by typing unique(iris$Species), so we should
show them on the graph:

In lattice, if we use color for graphs, groups are
differentiated using different colors. When we use black
and white graphs, they are differentiated using differ-
ent graphical symbols. When working in R console, the
color version is default. Since we will be working with
graphs in shades of grey, you should initialize the corre-
sponding so-called theme:

Later on, however, try the very same graphs in the
default (color) theme. To do so, open a new R session and
omit this theme change.

Let’s move on, but this time we will work on sever-
al things at the same time (Figure 2):

Figure 2 – Petal length versus petal width for three Iris species.
Jitter was added to both variables. Different symbols represent the
groups, and different lines represent group-wise linear relationships
between petal length and width. Isometric scales are used so that
1 cm has the same physical distance at both axes.

5

Kozak Data visualization in R’s lattice

Sci. Agric. v.77, n.6, e20190122, 2020

Actually, this time we have made quite a big step.
In addition to what we already had, we have

• changed the species names in the legend, by adding
“I.” before them, and used italic type face; the easiest
way to do so is by changing the data (as we did above),
not the plot itself

• made the graph an object called plot1; we can use this
object later, for example when saving it to a disk or
even to adjust some of its elements (those not related
to the data)

• used points (type = “p”) for points and added regres-
sion lines (type = “r”); when two types of points
are used, a vector is used to pass this information:
type = c(“p”, “r”)

• used an isometric property (aspect = “iso”) for the
graph, thanks to which 1 cm has the same physical
distance at both axes, making them directly compa-
rable (Cleveland et al. 1988); here it makes sense be-
cause the two variables—petal length and width—are
comparable, which is a key condition for using the
isometric property

• added the legend, located right to the plot:
	 auto.key = list(space = “right”)
• used a function print to print the plot; we have to

do it to print a graph when we assign it to an object
• added italics to the legend, using the font argument

to the scales list

That we made the plot an object (which we
called plot1) gives us some possibilities to adjust it
without rewriting the whole function call once more.
Instead, we can easily update some of the graph’s el-
ements—those unrelated to the data. For instance, we
can change the linear regression lines to local regres-
sion lines:

The only thing that was changed to plot1 was
the type argument. After updating a lattice object
(here, plot2 is an updated object of object plot1), we
need to use the print function to re-print it. To prac-
tice, you can play a little bit with updating lattice ob-
jects and, at the same time, with the aspect argument,
for instance,

For Figure 2, however, I prefer the isometric prop-
erty, for the reason given above. Note that in the three
lines of code above we neither created new objects (as
we did to create plot2) nor overwrote the existing one
(plot1)—we simply printed the updated plots.

lattice basics: Other types of graph
Above we used a scatterplot, one of the most of-

ten used graph in science. We will now consider some
other graph types lattice enables us to create.

A dotplot is a good start. Proposed by Cleveland
(1993), it serves a similar purpose as a bar plot but does
not share its disadvantages. In a dot plot, a quantitative
variable is plotted against a qualitative variable. Notice
the similarities between this graph type (or any other
we’re going to use) and more typical ones, such as a
scatterplot. Their differences, on the other hand, are
not that big: While a scatterplot shows a quantitative
variable against another quantitative variable, a dot
plot shows a qualitative variable against a quantitative
variable.

We will work with the same haynes dataset of
the agricolae package (de Mendiburu, 2019) as I did
in Kozak (2010). If you do not have the package in-
stalled, do it with command install.packages(“ag-
ricolae”). The data represent mean area under the
disease progress curve (AUDPC) for 16 potato clones
from eight sites across the USA in 1996. Since we are
going to use only the data set, we need not load the
whole package, just the data:

This is what the data look like:

Let’s make the graph, but for the moment for
just one site (“FL”):

First, note that the dotplot function uses a for-
mula qualitative variable ~ quantitative
variable and puts the qualitative one at the y axis.
We can change that, here by setting FL ~ clone, but
it seldom would be a good idea (you can check it your-
self why).

Note how I decreased the font of the x axis label.
In a similar way, we could change the font of other el-
ements. For instance, to change the font of tick mark
labels of y axis (so, of the clone names), use the scales
argument (which is a list as well):

6

Kozak Data visualization in R’s lattice

Sci. Agric. v.77, n.6, e20190122, 2020

We could—and in fact should—consider order-
ing the clones by AUDBC, which we can do using the
reorder function, as follows:

In the next section, we will return to this example
and work with the other sites. Now, we will create a
graph that shows group means with their standard er-
rors. For this, we will use dataset InsectSprays, which
gives counts of insects in agricultural experimental units
treated with different insecticides. Since we are dealing
with counts, we will use a generalized linear model with
a Poisson error structure and a (default) log link. Here’s
how we can derive the standard errors of the estimates:

Note that we used quasi-estimation, which worked
here better than the original Poisson distribution. If you
type plot(mod), you will learn the model looks cor-
rect. The dataset results contains the transformed
data (means and their standard errors), so we need to
back-transform them. From among various ways of do-
ing so, let us use function mutate from the dplyr pack-
age (remember to install it if you haven’t done that yet):

We are ready to create a bar plot that shows the
means with their standard errors (Figure 3):

Here, we

• ordered the sprays by their respective means
• used a transparent border for grey bars
• used the expression function, to write the “±” symbol
• had to “tell” the function how to plot the bars. For

this, we used a subscript option that lattice uses
in such instances. We also used panel functions: the
panel.barchart function (a default panel function
for barchart) and the panel.arrors function (to
draw the error bars)

To learn more about these functions, type
?expression, ?panel.barchart, or ?panel.arrows.

Easy to notice, we have entered the area of
more complex functionalities of lattice. The length
of this paper makes it impossible for me to explain
all the details of using panel functions. To use them
at the basic level, however, it is enough to follow the
pattern (from the above command). While explaining
how they work is quite difficult, using them by imi-
tation is not that difficult. But remember to define
the values the function is to use—L and U, for the
lower and upper limits—and to use them in the panel
function. To be able to use all the possibilities the
panel functions offer, however, an interested read-
er should use advanced sources on lattice (e.g.,
Sarkar, 2008).

Knowing the general functioning of lattice func-
tions, we can create other plots to present the same data.
Here is an example:

Figure 3 – Mean number of insects for six sprays. Error bars
represent the standard errors of the means. Data source: Beall
(1942), through the InsectSprays data set in R.

7

Kozak Data visualization in R’s lattice

Sci. Agric. v.77, n.6, e20190122, 2020

Although we have created quite a different graph,
note how similar the function calls are, the panel func-
tions in particular. I hope this has convinced you that
what I wrote above about imitating the use of panel
functions is true.

Now that we are familiar with the main rules gov-
erning creating graphs with lattice, we can easily ap-
ply the other graphing functions lattice offers. Below,
we will analyze the distributions of variables using two
types of graphs: the box plot and the density plot.

Both require more data points than just a few, but
the iris data set offers samples of sufficient size. As-
suming we are making the graphs to analyze the data
and not to present the graphs in a publication, we need
not worry about all aspects of the graphs’ look.

Here’s a box plot for petal length:

and here’s a density plot:

For the first time, we have used the legend, which
we done using the auto.key argument. Doing so is sim-
ple—suffice to add the argument auto.key = TRUE. To
customize a legend, we can use a list of the elements we
want to change, like here:

or

Although the argument auto.key offers quite rich
functionalities, it is just a simplified version of the argu-
ment key, which offers even more.

The essence of lattice: Trellis display
It’s time to make a bigger step. We are now moving

to the essence of lattice: the trellis display (Cleveland,
1985, 1993; Becker et al., 1996). The simplest version of
the trellis display for the iris data would be as follows:

Note how easy making a trellis display is—we
just added one element to the formula: | Species. To
improve the graph, we will use what we have learned
above (Figure 4):

Figure 4 – The trellis display for the iris data: petal length versus
petal width for the three Iris species. Data source: Anderson
(1935), available through the iris dataset in R.

Note that

• the formula has a new element, | Spieces, which is
interpreted as “make separate plots for each Species”;
these plots are called “panels”

• we have added the “g” type, which is responsible for
adding the grid lines to the panels

• to add italics to the species names, we have changed the
strip font type, with the help of the strip.custom func-
tion

Trellis displays (Cleveland, 1993) have a number
of advantages, the main one being that they make it easy
to compare data group-by-group. Each group is present-
ed in a separate panel, but—which is crucial—the panels
are formatted in the same way, so we can easily compare

8

Kozak Data visualization in R’s lattice

Sci. Agric. v.77, n.6, e20190122, 2020

the data they show. Here, this means that each panel has
the same limits of the x and y axes.

In Figure 4, we made a trellis display of scatter-
plots, but we can work with most other types of plots. We
will now make a dot plot for the haynes data set, but this
time each site will have its own panel (Figure 5). First, we
need to transform the data into a long format, with the
help of the melt function from the reshape2 package (re-
member to install and load it before using the function):

Figure 5 – Mean AUDPC of 16 clones in eight locations. The panels’ order matches the increasing mean AUDPC value, and so does the clones’
order. Data source: Haynes et al. (1998) through the haynes dataset in the agricolae package of R.

9

Kozak Data visualization in R’s lattice

Sci. Agric. v.77, n.6, e20190122, 2020

We used the function reorder two times:
reorder(clone, AUDBC) orders clones on the y axis by
the mean AUDBC for the clones across all the sites; and
reorder(site, AUDBC) orders sites on the panels by the
mean AUDBC for the sites across all the clones. Thus, the
clone at the bottom of the y axis has the lowest while the
clone at the top of the y axis has the greatest mean value
of AUDBC across the sites; and the site in the left bottom
panel has the lowest while that in the right top panel has
the highest mean AUDBC across the clones.

Other examples
In this section, I will show you several additional

examples representing the rich possibilities of lattice.
The examples will be simple in terms of the code, but
this simplicity will not be reflected in the simplicity of
the resulting graphs.

The below code creates a strip plot, showing petal
lengths of all 150 individuals, 50 per iris species (Figure
6):

Now a density plot:

In plot.points = F, F stands for FALSE; this set-
ting means that we do not want the graph to include
points (which would be plotted along the x axis), just the
lines representing the density functions.

Figure 6 – Petal lengths of the three Iris species (n = 50 per
species). Data source: Anderson (1935), available through the
iris dataset in R.

We can use the useOuterStrips function of the
latticeExtra package to make the graph look a little
better:

And here are two other versions of the graph:

Here are two versions of a trellis box plot:

Another useful plot is a matrix of scatter plots,
easily available via lattice’s splom function (two ver-
sions again):

Saving graphs in various file formats
These days, journals expect their authors to sub-

mit graphs in various file types. For vector graphs, most
common are PDF and EPS (encapsulated postscript), and
for raster images, TIFF and JPEG. lattice makes it pos-
sible to construct such files in quite an easy way, with
the function trellis.device. It applies other functions
built into R. Beginning users seldom need to know more
than how to use these functions with their several main
arguments.

For example, let us create the following graph:

To make a PDF file, you can use the following
code:

Remember about closing the connection by
dev.off(). Failing to do so, you will fail to make the
graph: R will be still waiting for you to either change the

10

Kozak Data visualization in R’s lattice

Sci. Agric. v.77, n.6, e20190122, 2020

graph or close the file. The dot in the path represents
the working directory, but you can of course use any
path and any valid file name (remembering about the
.pdf extension). This call will construct a PDF file with
the default settings. We can change them, for instance,
using arguments

• width and length (both having default values of 7
inches) to specify the graph’s size

• paper (e.g., paper = “a4”) to specify the sheet’s for-
mat from among several standards

• colormodel (“srgb”, “gray” and “cmyk”) to specify
the color model

See ?pdf for more such arguments and more in-
formation about them. Note that when you choose col-
ormodel = “gray”, the graph will be made in shades of
grey, so you need not worry about changing the graph’s
setting: lattice will do that for you!

As already mentioned, R enables us to create EPS
files, often required by scientific journals for vector
graphs. Here is an example:

In both pdf and postscript devices, we use inch-
es to set up the device’s parameters. In other devices,
like tiff, we can use also other units:

Note the double use of update: since it does not
enable one to change the existing legend, the first in-
stance removes the legend while the second adds its
new version.

Conclusions

We have discussed simple and more advanced
data visualization with the lattice package of R. To
create simple graphs is easy, and to create more complex
ones does not have to be overly difficult, either. It may
happen, however, that controlling some of the graph ele-
ments may require skills and knowledge—though simi-
lar graphs might be much more difficult to create with
other software.

I do not claim that lattice or even R is the only
sensible option. It depends on various factors, such as
whether you already know other software that enables
creating professional graphs, your abilities to learn basic
programming, and so on. But if you are starting your
adventure with creating professional graphs, you don’t
know any other professional software, and you are not
afraid of spending some time on learning how to write
code to create graphs—then R might be a good choice.
Its popularity among researchers has been continuously
increasing, not only for data visualization, but mainly for
data analysis. Thus, R might occur helpful in a variety of
research situations. For those who know at least some R,
lattice should not pose too many problems: Its basic
syntax should be quite straightforward for those who
are familiar with the syntax for creating formulas (for
example, in linear models).

I do not want to repeat the arguments I used in
the introduction to this paper, so let me just stress that
lattice enables one to create even advanced graphs
with quite simple syntax. The package’s default options
are usually quite well-chosen, so beginning users do not
have to worry about changing various aspects of their
graphs.

As I mentioned, ggplot2 is another option in R,
and it can even give you more opportunities to control
graphs and create atypical, complex ones. It is, however,
more difficult than lattice, so it might require more
knowledge and experience. For those who do not wish
to spend too much time on learning data visualization
but need to create professional graphs, lattice seems
a good option.

Even though data visualization’s is clearly impor-
tant in science publishing, such tools as R’s lattice
and ggplot2 or Python’s Plotly are still seldom chosen.
Researchers seem to prefer simpler tools (such as Mi-
crosoft Excel). I have noticed, however, among agricul-
tural graduate students and young researchers a trend
towards R: More and more of them have heard of it,
learn it, and consider it a valuable tool for data analysis.
It is also high time that also we, agricultural researchers,
start considering R a valuable tool for data visualization,
a tool that helps create professional scientific graphs
with little effort and skill. And lattice seems to be one
of several good choices for this.

References

Anderson, E. 1935. The irises of the Gaspe Peninsula. Bulletin of
the American Iris Society 59: 2-5.

Beall, G. 1942. The transformation of data from entomological
field experiments. Biometrika 29: 243–262.

Becker, R.A.; Cleveland, W.S.; Shyu, M.J. 1996. The visual design
and control of trellis display. Journal of Computational and
Graphical Statistics 5: 123-155.

Chambers, J.M.; Cleveland, W.S.; Kleiner, B.; Tukey, P.A. 1983.
Graphical Methods for Data Analysis. Wadsworth, Monterey,
CA, USA.

11

Kozak Data visualization in R’s lattice

Sci. Agric. v.77, n.6, e20190122, 2020

Cleveland, W.S. 1985. The Elements of Graphing Data.
Wadsworth, Monterey, CA, USA.

Cleveland, W.S. 1993. Visualizing Data. Hobart Press, Summit,
NJ, USA.

Cleveland, W.S.; McGill, M.E.; McGill, R. 1988. The shape
parameter of a two-variable graph. Journal of the American
Statistical Association 83: 289–300.

Fisher, R.A. 1936. The use of multiple measurements in taxonomic
problems. Annals of Eugenics 7: 179-188.

Haynes, K.G.; Lambert, D.H.; Christ, B.J.; Weingartner, D.P.;
Douches, D.S.; Backlund, J.E.; Fry, W.; Stevenson, W. 1998.
Phenotypic stability of resistance to late blight in potato clones
evaluated at eight sites in the United States. American Journal
of Potato Research 75: 211-217.

Kozak, M. 2010. Basic principles of graphing data. Scientia
Agricola 67: 483-494.

Kozak, M.; Łotocka, B. 2013. What should we know about the
famous Iris data? Current Science 104: 579-580.

Kozak, M.; Piepho, H.P. 2018. What’s normal anyway? Residual
plots are more telling than significance tests when checking
ANOVA assumptions. Journal of Agronomy and Crop Science
204: 86-98.

Mendiburu, F. 2017. agricolae: Statistical Procedures for
Agricultural Research. R package version 1.2-8. Available at:
https://CRAN.R-project.org/package=agricolae [Accessed May
6, 2019]

Mendiburu, F. 2019. agricolae: Statistical Procedures for
Agricultural Research. R package version 1.3-1. Available at:
https://CRAN.R-project.org/package=agricolae [Accessed May
6, 2019]

R Core Team. 2019. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria. Available at: https://www.R-project.org/ [Accessed
May 6, 2019]

Sarkar, D. 2008. Lattice: Multivariate Data Visualization with R.
Springer, New York, NY, USA. Sarkar, D.; Andrews, F. 2016.
latticeExtra: Extra Graphical Utilities Based on Lattice. R
package version 0.6-28. Available at: https://CRAN.R-project.
org/package=latticeExtra [Accessed May 6, 2019]

Su, J.S. 2008. It’s easy to produce chartjunk using Microsoft®
Excel 2007 but hard to make good graphs. Computational
Statistics and Data Analysis 52: 4594-4601.

Tufte, E.R. 1983. The Visual Display of Quantitative Information.
Graphics Press, Cheshire, CT, USA.

Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis.
Springer, New York, NY, USA.

Wilkinson, L. 2006. The Grammar of Graphics. Springer Science
& Business Media, Berlin, Germany.

Wnuk, A.; Dębski, K.J. 2016. Should we trust graphs’ default
settings in the R packages? Communications in Biometry &
Crop Science 11: 114-126.

