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ABSTRACT: This paper shows how to apply the lattice package of R to create effective 
scientific graphs. The readers will learn basic notions of the package and ways to work with it 
in an easy way. The R code the paper provides will help them create various graphs, including a 
scatter plot, a box plot, a density plot, and a bar plot; with a little work, the code can be changed 
to make other graphs. The paper emphasizes the trellis display, a useful but still undervalued 
technique in scientific visualization. 
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Introduction

Agricultural research calls for a variety of meth-
ods for analyzing various types of data. Analysis is one 
thing, interpretation is another. While most analyti-
cal methods in agriculture use statistics, interpretation 
should not base solely on rigorous statistical analysis. 
Sometimes exploratory tools can help notice interesting 
phenomena in data, which can then be analyzed using 
such rigorous methods. But alone, seldom does statisti-
cal analysis suffice to deeply analyze and interpret agri-
cultural data.

To interpret data efficiently, one can graph them. 
A bunch of graphical methods to visualize scientific data 
is large, and so is their availability—so what can limit 
researchers in using them is skills. So many methods to 
choose from can be dangerous, too: For most data, we 
can choose from among quite a large set of graphs, and 
thus making a good graph requires knowledge and skill. 
This paper, I hope, will help you gain them.

Graphical methods can show much more than raw 
data and their summaries can—but also more than can 
rigorous statistical analysis. This does not mean, how-
ever, that data visualization should replace statistics, but 
rather that these two tools can and should cooperate in 
order to provide as clear a picture of the phenomena 
studied as possible. 

Most statistical methods offer data summaries, 
and although it is true that we scientists usually look for 
trends, trends alone do not suffice. What if something is 
atypical? Summaries not only will not show such anom-
alies in the data, but they also can draw an incomplete 
and untrue picture of the phenomena studied. In practi-
cally every single case, we should check the data, to pro-
tect ourselves from overlooking important phenomena 
in them. Failing to do so, we might, for instance, fit a lin-
ear regression line to analyze a non-linear relationship; 
or, by analyzing means without checking the raw data, 
we might miss an outlier observation—and just one such 
outlier can change the whole ranking of means. That 
graphical methods are better than statistical tests to test 

ANOVA assumptions have already been discussed (e.g., 
Kozak and Piepho, 2018).

Data exploration and interpretation, however, are 
not the only occasions when graphical methods can 
help. Data presentation is another. It is already a cliché 
to say that scientific results are usually best presented 
in a graphical form—but it’s a true cliché. More often 
than not, visualizing data can help understand them by 
those who do not know the data’s details—the readers of 
scientific papers in particular.

It takes some craft to make a good graph, however 
(e.g., Tufte, 1983; Cleveland, 1985 and 1993; Wilkinson, 
2006; Wickham, 2009; Kozak, 2010). Whether exploring 
data or presenting them, we have to do it right. Graph-
ing data in a random way will seldom work—we have 
to know what we want to graph, we have to know how 
we can do it effectively, and we have to do it with skill. 
What also does not have to work is following, without 
careful consideration, some standard practices, such as 
using a pie chart only because we have per cent values 
(do they sum up to 100%?) or using a bar chart for one-
way data (maybe the data represent a time trend, usu-
ally better shown using a line graph?). 

There is one important lesson I learned when 
teaching data visualization to undergraduate and graduate 
students of various disciplines. People, even educated, of-
ten respond negatively to graphs they have not used or at 
least met. Most students I teach are used to pie charts and 
bar plots, and quite a few to line plots. But, however amaz-
ing it can sound, most of them consider simple scatterplots 
difficult. By a simple scatterplot I understand a quantita-
tive variable presented on a vertical axis against another 
quantitative variable presented on a horizontal axis, one 
of the most frequent scientific graph types. In fact, seeing 
such a graph, even with just a handful of points graphed, 
they often attack it as overly difficult to read and interpret. 
From my discussions with them it’s clear that they consid-
er such graphs difficult because they compare them—usu-
ally unconsciously—with pie and bar charts, both of which 
are simpler and present simpler data structures than does 
the scatterplot. So, I have to explain them why and when 
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such a scatterplot can be effective—and that, combined 
with several examples, convinces at least part of them.

If such a simple plot can give educated people the 
willies, what about much more advanced and complex 
graphs presenting much more data in more complex 
structures?

Thus, I do think researchers should spend some 
time learning basics of data visualization. Otherwise, they 
may be reluctant to use even quite simple graphs, only a 
little more advanced than the bar plot.

Graphical data exploration can be a brainstorming 
and iterative process: You graph whatever comes to your 
mind, and you look for anything interesting or peculiar in 
the data; you can try various graphs, looking for the one 
that best shows the picture. That way, you may draw a 
whole world of rich conclusions, which you  might miss 
by graphing only what you think at the outset is worth 
graphing (e.g., in two-way ANOVA, a bar plot of means 
together with an interaction plot).

Data analysis does not require as fine-tuned graphs 
as data presentation does. Usually, when making a graph 
to analyze your data, you need not pay attention to some 
aspects of the graph, such as axis titles or color—if only 
you see what you need to see, that’s fine. But when you 
want your graph to be read by others, you should pay at-
tention to every single detail.

This paper offers a simple guide for agricultural 
researchers to the lattice package (Sarkar, 2008) of R 
(R Core Team, 2019). Focusing on graphs especially valu-
able for agricultural researchers, I will show how to use 
this package to make professional—even quite complex—
graphs. After reading the paper and going through the 
examples, you should be able to construct such graphs by 
your own. I will not focus on the principles of graphing 
data, which I did in my earlier paper in this journal (Ko-
zak, 2010)—but we will use them, and we will use here 
the same data sets and make similar graphs.

I make two assumptions here. First, I assume you 
know these basic principles of graphing data—because 
without such knowledge it’s better not to try to make any 
graph. That would be like driving a car without even the 
basic knowledge of how to do so. Many sources are avail-
able (my favorite are Tufte [1983] and Cleveland [1995, 
1996]), including the above-mentioned paper I published 
in this journal (Kozak, 2010). I also assume you have a 
basic knowledge of R, which will enable you to read data 
and use basic operating symbols and functions. 

So, I assume we will work together. If you do not 
know too much of R, however, don’t give up: Reading the 
paper may help you get a general picture of lattice’s 
possibilities and of how it works. But to learn using it, you 
should switch on your computer, run R (even better, RStu-
dio; http://rstudio.com), load the lattice and latticeEx-
tra packages, and copy the code from the paper into R’s 
console. Thus, I will not include in this paper all graphs 
we will work on, just those most important ones—but you 
can make all of them all simply by copying the code into 
the R console.

A short introduction to lattice
The lattice package was developed by Deep-

ayan Sarkar. In 2008, he published a book on this pack-
age (Sarkar, 2008). Although lattice offers a variety of 
graphs, its backbone is based on the idea of the trellis 
display, developed by Cleveland and colleagues (e.g., 
Cleveland, 1985 and 1993; Becker et al., 1996). A simple 
idea, the trellis display is powerful: Thanks to its layout, it 
enables showing and interpreting even complex grouped 
data on one graph.

Even though lattice graphs look very profession-
al, they are quite easy to make if only one knows how to 
do it. Lattice has several built-in functions for standard 
types of graphs such as

• a bar plot
• a scatter plot, both 2D and 3D
• a strip plot
• a dot plot (Cleveland, 1983)

You might have noticed that the above list misses pie 
charts. Sarkar himself explains this (Sarkar, 2008): “lattice 
does not contain a function that produces pie charts. This 
is entirely by choice, as pie charts are a highly undesirable 
form of graphical representation (see Cleveland (1985) for a 
discussion), and their use is strongly discouraged.”

We could append the list with less known types of 
graphs, such as

• parallel coordinate plot
• scatterplot matrix (SPLOM)

lattice also offers statistical graphs, such as

• histogram
• density plot
• box plot
• violin plot
• quantile-quantile plot

lattice’s formula interface makes it easy to con-
struct these graphs in a trellis display, often with just one 
line of code, as I will show later. What’s more, with a 
little skill, you can control most graphical parameters of 
these graphs. Some of them, however, are more difficult 
to control, and it can take considerable skill to adjust a 
graph to all your needs.

While many packages offering graphs need to be 
used with much care because their default parameters of-
ten can be a bad choice (e.g., Su, 2008; Wnuk and Dębski, 
2016), it is not so with lattice (although not everyone 
likes the default choice of colors). Its great advantage is 
that it is based upon in-depth research on data visual-
ization, thanks to which much of its default parameters 
(such as point symbols and their size, line symbols, rota-
tion of tick mark labels on axes, etc.) can be used without 
hesitation. This is not to say, however, that when using 
lattice, you don’t have to worry about the look of your 
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graphs; you always should. But this is to say that with 
lattice, you have hi gh chances of ending up with a 
good graph even if you do not change the default param-
eters. In fact, if you feel your knowledge about principles 
of graphing data is limited, you might wish to use the 
default setting lattice offers. I would not say the same 
about many other packages for data visualization.

If you are still wondering why you should choose 
lattice over other packages, consider the following points:

• lattice offers simple and advanced graphs, which 
can be made with a little programming skill and in a 
relatively short time

• once you learn the formula interface, you will have no 
problems with working with a variety of graph types 
lattice constructs

• more often than not, the default settings of lattice 
graphs are good

However useful lattice is, I am not claiming ev-
eryone should use it. There are other options. Outside 
of R, the Plotly module of the Python programming lan-
guage offers rich visualization possibilities. R itself offers 
other possibilities. You can use R’s graphics package, built-
in into R as its graphical base. You can use R’s ggplot2 
(Wickham, 2009). ggplot2 is powerful but less intuitive 
for non-specialists. It gives, however, much more flexibil-
ity than does lattice, an important advantage when you 
want to construct atypical graphs. This does not mean that 
either one is better but that the two packages target slight-
ly different audiences: lattice is for those who seek a 
quick and relatively easy way of constructing professional 
scientific graphs, but from a limited set of possibilities, 
while ggplot2 is for those who are looking for flexibil-
ity, especially when working on complex visualizations. 
Note that all graphs you can make in lattice can also be 
made with ggplot2, but usually you would need more 
skill and time and work. We cannot say the otherwise, 
however: Not all graphs constructed with ggplot2 can be 
constructed with lattice; or, many of them might be, but 
that would require a lot of skill and time and work. Thus, 
basically, if you just want to make professional scientific 
graphs from among those listed above, you can choose 
lattice, and it will repay your relatively little effort.

lattice basics: A scatterplot
lattice comes with the basic R installation, so it 

needs not be installed. To use it, you need to load it first:

The basic lattice package offers a lot of visual-
ization possibilities. We can broaden them by installing 
latticeExtra, an additional package which adds some 
advanced utilities to lattice (Sarkar and Andrews, 
2016). We will use it later on, so let’s install and load it.

For simplicity, we will use the same data sets I 
used in my previous paper on graphing (Kozak, 2010), 
but we will start with one of the most well-known 
data sets, the iris data by Anderson (1935). After 
Fisher (1936) had used it, the dataset started its jour-
ney towards unintended and quite amazing future: It 
became famous among statisticians, machine learn-
ing specialists, and data analysts, who use it to test 
their methods and show how they work (Kozak and 
Łotocka, 2013). It is also often used in data visualiza-
tion.

In R, this data set is available as dataset iris. 
We can glance over its first rows using function head:

So, we have here four quantitative traits (sepal 
length, sepal width, petal length, and petal width) for 
three iris species (Iris setosa, I. virginica, and I. versi-
color), 50 observations per species.

Let’s start our lattice adventure by making 
a simple scatterplot of petal length versus its width 
(Figure 1):

Figure 1 – The simplest version of the scatterplot showing petal 
length versus petal width. For the moment, the information about 
the three species is ignored.
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As simple as that. Pay attention to the formula, 
here Petal.Length ~ Petal.Width. It’s the essence of 
any call to lattice’s graphical functions. What goes be-
fore the tilde is the dependent variable; here it’s a vari-
able to be represented by the y axis. After the tilde goes 
a variable to be represented by the x axis. Later we will 
use more complex formulas, which will help us to add 
more layers to the graph.

As already mentioned, lattice’s important advan-
tage is its default settings (for the numerous aspects of the 
graph, such as point symbol and size, color, axes, etc.). 
Usually using them is a good idea. But what one must 
always think about is the graph’s layout: Which type of 
graph should I use? Is color better than other tools (such 
as different symbols)? What should be on the y and x 
axes? Do I have a grouping variable I should include? If 
so, how should I do it? What scale should I use (maybe 
logarithmic)? Do I have problems with overlapping data 
points? And so on. 

What we should change most of the times is axis 
titles (usually called axis labels), which by default are the 
same as variable names (here, Petal.Length and Petal.
Width). We can do it using xlab and ylab arguments:

Let us now think about the data. The data set has 
150 rows, so Figure 1 should show 150 data points. Does 
it? It’s difficult to say from just looking at the graph, and 
we will not count them one by one—but the graph might 
suggest we do not see all the 150 points. Such a phenom-
enon can happen when some points overlap (so some 
petals have exactly the same lengths and widths). We 
can check that by counting the number of unique rows 
(considering only petal length and width, so the third and 
fourth columns of the iris data frame):

Since there are 102 unique rows, the graph does not 
show all the points—only 68% of them. While coping with 
this problem does not have to be easy with other software, 
it is easy in R. Suffice to use the function jitter, which 
adds so-called jitter, a small amount of random noise add-
ed to a quantitative variable (Chambers et al., 1983):

And now, all—or at least most of—the points can 
be seen. 

Note that above we have ignored quite an impor-
tant piece of information about the data, that is, the spe-
cies. The data has three Iris species, which we can see 
in R by typing unique(iris$Species), so we should 
show them on the graph:

In lattice, if we use color for graphs, groups are 
differentiated using different colors. When we use black 
and white graphs, they are differentiated using differ-
ent graphical symbols. When working in R console, the 
color version is default. Since we will be working with 
graphs in shades of grey, you should initialize the corre-
sponding so-called theme:

Later on, however, try the very same graphs in the 
default (color) theme. To do so, open a new R session and 
omit this theme change.

Let’s move on, but this time we will work on sever-
al things at the same time (Figure 2):

Figure 2 – Petal length versus petal width for three Iris species. 
Jitter was added to both variables. Different symbols represent the 
groups, and different lines represent group-wise linear relationships 
between petal length and width. Isometric scales are used so that 
1 cm has the same physical distance at both axes.
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Actually, this time we have made quite a big step. 
In addition to what we already had, we have

• changed the species names in the legend, by adding 
“I.” before them, and used italic type face; the easiest 
way to do so is by changing the data (as we did above), 
not the plot itself

• made the graph an object called plot1; we can use this 
object later, for example when saving it to a disk or 
even to adjust some of its elements (those not related 
to the data)

• used points (type = “p”) for points and added regres-
sion lines (type = “r”); when two types of points 
are used, a vector is used to pass this information: 
type = c(“p”, “r”)

• used an isometric property (aspect = “iso”) for the 
graph, thanks to which 1 cm has the same physical 
distance at both axes, making them directly compa-
rable (Cleveland et al. 1988); here it makes sense be-
cause the two variables—petal length and width—are 
comparable, which is a key condition for using the 
isometric property 

• added the legend, located right to the plot: 
	 auto.key = list(space = “right”)
•  used a function print to print the plot; we have to 

do it to print a graph when we assign it to an object
• added italics to the legend, using the font argument 

to the scales list

That we made the plot an object (which we 
called plot1) gives us some possibilities to adjust it 
without rewriting the whole function call once more. 
Instead, we can easily update some of the graph’s el-
ements—those unrelated to the data. For instance, we 
can change the linear regression lines to local regres-
sion lines:

 

The only thing that was changed to plot1 was 
the type argument. After updating a lattice object 
(here, plot2 is an updated object of object plot1), we 
need to use the print function to re-print it. To prac-
tice, you can play a little bit with updating lattice ob-
jects and, at the same time, with the aspect argument, 
for instance,

For Figure 2, however, I prefer the isometric prop-
erty, for the reason given above. Note that in the three 
lines of code above we neither created new objects (as 
we did to create plot2) nor overwrote the existing one 
(plot1)—we simply printed the updated plots. 

lattice basics: Other types of graph
Above we used a scatterplot, one of the most of-

ten used graph in science. We will now consider some 
other graph types lattice enables us to create.

A dotplot is a good start. Proposed by Cleveland 
(1993), it serves a similar purpose as a bar plot but does 
not share its disadvantages. In a dot plot, a quantitative 
variable is plotted against a qualitative variable. Notice 
the similarities between this graph type (or any other 
we’re going to use) and more typical ones, such as a 
scatterplot. Their differences, on the other hand, are 
not that big: While a scatterplot shows a quantitative 
variable against another quantitative variable, a dot 
plot shows a qualitative variable against a quantitative 
variable. 

We will work with the same haynes dataset of 
the agricolae package (de Mendiburu, 2019) as I did 
in Kozak (2010). If you do not have the package in-
stalled, do it with command install.packages(“ag-
ricolae”). The data represent mean area under the 
disease progress curve (AUDPC) for 16 potato clones 
from eight sites across the USA in 1996. Since we are 
going to use only the data set, we need not load the 
whole package, just the data:

This is what the data look like:

Let’s make the graph, but for the moment for 
just one site (“FL”):

First, note that the dotplot function uses a for-
mula qualitative variable ~ quantitative 
variable and puts the qualitative one at the y axis. 
We can change that, here by setting FL ~ clone, but 
it seldom would be a good idea (you can check it your-
self why).

Note how I decreased the font of the x axis label. 
In a similar way, we could change the font of other el-
ements. For instance, to change the font of tick mark 
labels of y axis (so, of the clone names), use the scales 
argument (which is a list as well):
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We could—and in fact should—consider order-
ing the clones by AUDBC, which we can do using the 
reorder function, as follows:

In the next section, we will return to this example 
and work with the other sites. Now, we will create a 
graph that shows group means with their standard er-
rors. For this, we will use dataset InsectSprays, which 
gives counts of insects in agricultural experimental units 
treated with different insecticides. Since we are dealing 
with counts, we will use a generalized linear model with 
a Poisson error structure and a (default) log link. Here’s 
how we can derive the standard errors of the estimates:

Note that we used quasi-estimation, which worked 
here better than the original Poisson distribution. If you 
type plot(mod), you will learn the model looks cor-
rect. The dataset results contains the transformed 
data (means and their standard errors), so we need to 
back-transform them. From among various ways of do-
ing so, let us use function mutate from the dplyr pack-
age (remember to install it if you haven’t done that yet):

 

We are ready to create a bar plot that shows the 
means with their standard errors (Figure 3):

Here, we 

• ordered the sprays by their respective means
• used a transparent border for grey bars
• used the expression function, to write the “±” symbol
• had to “tell” the function how to plot the bars. For 

this, we used a subscript option that lattice uses 
in such instances. We also used panel functions: the 
panel.barchart function (a default panel function 
for barchart) and the panel.arrors function (to 
draw the error bars)

To learn more about these functions, type 
?expression, ?panel.barchart, or ?panel.arrows. 

Easy to notice, we have entered the area of 
more complex functionalities of lattice. The length 
of this paper makes it impossible for me to explain 
all the details of using panel functions. To use them 
at the basic level, however, it is enough to follow the 
pattern (from the above command). While explaining 
how they work is quite difficult, using them by imi-
tation is not that difficult. But remember to define 
the values the function is to use—L and U, for the 
lower and upper limits—and to use them in the panel 
function. To be able to use all the possibilities the 
panel functions offer, however, an interested read-
er should use advanced sources on lattice (e.g., 
Sarkar, 2008). 

Knowing the general functioning of lattice func-
tions, we can create other plots to present the same data. 
Here is an example:

Figure 3 – Mean number of insects for six sprays. Error bars 
represent the standard errors of the means. Data source: Beall 
(1942), through the InsectSprays data set in R.
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Although we have created quite a different graph, 
note how similar the function calls are, the panel func-
tions in particular. I hope this has convinced you that 
what I wrote above about imitating the use of panel 
functions is true.

Now that we are familiar with the main rules gov-
erning creating graphs with lattice, we can easily ap-
ply the other graphing functions lattice offers. Below, 
we will analyze the distributions of variables using two 
types of graphs: the box plot and the density plot. 

Both require more data points than just a few, but 
the iris data set offers samples of sufficient size. As-
suming we are making the graphs to analyze the data 
and not to present the graphs in a publication, we need 
not worry about all aspects of the graphs’ look. 

Here’s a box plot for petal length:

and here’s a density plot:

For the first time, we have used the legend, which 
we done using the auto.key argument. Doing so is sim-
ple—suffice to add the argument auto.key = TRUE. To 
customize a legend, we can use a list of the elements we 
want to change, like here:

or

Although the argument auto.key offers quite rich 
functionalities, it is just a simplified version of the argu-
ment key, which offers even more.

The essence of lattice: Trellis display
It’s time to make a bigger step. We are now moving 

to the essence of lattice: the trellis display (Cleveland, 
1985, 1993; Becker et al., 1996). The simplest version of 
the trellis display for the iris data would be as follows:

Note how easy making a trellis display is—we 
just added one element to the formula: | Species. To 
improve the graph, we will use what we have learned 
above (Figure 4):

Figure 4 – The trellis display for the iris data: petal length versus 
petal width for the three Iris species. Data source: Anderson 
(1935), available through the iris dataset in R.

Note that

• the formula has a new element, | Spieces, which is 
interpreted as “make separate plots for each Species”; 
these plots are called “panels”

• we have added the “g” type, which is responsible for 
adding the grid lines to the panels 

• to add italics to the species names, we have changed the 
strip font type, with the help of the strip.custom func-
tion

Trellis displays (Cleveland, 1993) have a number 
of advantages, the main one being that they make it easy 
to compare data group-by-group. Each group is present-
ed in a separate panel, but—which is crucial—the panels 
are formatted in the same way, so we can easily compare 
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the data they show. Here, this means that each panel has 
the same limits of the x and y axes.

In Figure 4, we made a trellis display of scatter-
plots, but we can work with most other types of plots. We 
will now make a dot plot for the haynes data set, but this 
time each site will have its own panel (Figure 5). First, we 
need to transform the data into a long format, with the 
help of the melt function from the reshape2 package (re-
member to install and load it before using the function):

Figure 5 – Mean AUDPC of 16 clones in eight locations. The panels’ order matches the increasing mean AUDPC value, and so does the clones’ 
order. Data source: Haynes et al. (1998) through the haynes dataset in the agricolae package of R.
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We used the function reorder two times: 
reorder(clone, AUDBC) orders clones on the y axis by 
the mean AUDBC for the clones across all the sites; and 
reorder(site, AUDBC) orders sites on the panels by the 
mean AUDBC for the sites across all the clones. Thus, the 
clone at the bottom of the y axis has the lowest while the 
clone at the top of the y axis has the greatest mean value 
of AUDBC across the sites; and the site in the left bottom 
panel has the lowest while that in the right top panel has 
the highest mean AUDBC across the clones.

Other examples
In this section, I will show you several additional 

examples representing the rich possibilities of lattice. 
The examples will be simple in terms of the code, but 
this simplicity will not be reflected in the simplicity of 
the resulting graphs. 

The below code creates a strip plot, showing petal 
lengths of all 150 individuals, 50 per iris species (Figure 
6):

Now a density plot:

In plot.points = F, F stands for FALSE; this set-
ting means that we do not want the graph to include 
points (which would be plotted along the x axis), just the 
lines representing the density functions.

Figure 6 – Petal lengths of the three Iris species (n = 50 per 
species). Data source: Anderson (1935), available through the 
iris dataset in R.

We can use the useOuterStrips function of the 
latticeExtra package to make the graph look a little 
better:

And here are two other versions of the graph:

Here are two versions of a trellis box plot:

Another useful plot is a matrix of scatter plots, 
easily available via lattice’s splom function (two ver-
sions again):

Saving graphs in various file formats
These days, journals expect their authors to sub-

mit graphs in various file types. For vector graphs, most 
common are PDF and EPS (encapsulated postscript), and 
for raster images, TIFF and JPEG. lattice makes it pos-
sible to construct such files in quite an easy way, with 
the function trellis.device. It applies other functions 
built into R. Beginning users seldom need to know more 
than how to use these functions with their several main 
arguments. 

For example, let us create the following graph:

To make a PDF file, you can use the following 
code:

Remember about closing the connection by 
dev.off(). Failing to do so, you will fail to make the 
graph: R will be still waiting for you to either change the 
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graph or close the file. The dot in the path represents 
the working directory, but you can of course use any 
path and any valid file name (remembering about the 
.pdf extension). This call will construct a PDF file with 
the default settings. We can change them, for instance, 
using arguments

• width and length  (both having default values of 7 
inches) to specify the graph’s size 

• paper (e.g., paper = “a4”) to specify the sheet’s for-
mat from among several standards

• colormodel (“srgb”, “gray” and “cmyk”) to specify 
the color model

See ?pdf for more such arguments and more in-
formation about them. Note that when you choose col-
ormodel = “gray”, the graph will be made in shades of 
grey, so you need not worry about changing the graph’s 
setting: lattice will do that for you! 

As already mentioned, R enables us to create EPS 
files, often required by scientific journals for vector 
graphs. Here is an example:

 

In both pdf and postscript devices, we use inch-
es to set up the device’s parameters. In other devices, 
like tiff, we can use also other units:

Note the double use of update: since it does not 
enable one to change the existing legend, the first in-
stance removes the legend while the second adds its 
new version. 

Conclusions

We have discussed simple and more advanced 
data visualization with the lattice package of R. To 
create simple graphs is easy, and to create more complex 
ones does not have to be overly difficult, either. It may 
happen, however, that controlling some of the graph ele-
ments may require skills and knowledge—though simi-
lar graphs might be much more difficult to create with 
other software.

I do not claim that lattice or even R is the only 
sensible option. It depends on various factors, such as 
whether you already know other software that enables 
creating professional graphs, your abilities to learn basic 
programming, and so on. But if you are starting your 
adventure with creating professional graphs, you don’t 
know any other professional software, and you are not 
afraid of spending some time on learning how to write 
code to create graphs—then R might be a good choice. 
Its popularity among researchers has been continuously 
increasing, not only for data visualization, but mainly for 
data analysis. Thus, R might occur helpful in a variety of 
research situations. For those who know at least some R, 
lattice should not pose too many problems: Its basic 
syntax should be quite straightforward for those who 
are familiar with the syntax for creating formulas (for 
example, in linear models). 

I do not want to repeat the arguments I used in 
the introduction to this paper, so let me just stress that 
lattice enables one to create even advanced graphs 
with quite simple syntax. The package’s default options 
are usually quite well-chosen, so beginning users do not 
have to worry about changing various aspects of their 
graphs.

As I mentioned, ggplot2 is another option in R, 
and it can even give you more opportunities to control 
graphs and create atypical, complex ones. It is, however, 
more difficult than lattice, so it might require more 
knowledge and experience. For those who do not wish 
to spend too much time on learning data visualization 
but need to create professional graphs, lattice seems 
a good option.

Even though data visualization’s is clearly impor-
tant in science publishing, such tools as R’s lattice 
and ggplot2 or Python’s Plotly are still seldom chosen. 
Researchers seem to prefer simpler tools (such as Mi-
crosoft Excel). I have noticed, however, among agricul-
tural graduate students and young researchers a trend 
towards R: More and more of them have heard of it, 
learn it, and consider it a valuable tool for data analysis. 
It is also high time that also we, agricultural researchers, 
start considering R a valuable tool for data visualization, 
a tool that helps create professional scientific graphs 
with little effort and skill. And lattice seems to be one 
of several good choices for this.
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