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ABSTRACT: The principal component regression (PCR) and the independent component 
regression (ICR) are dimensionality reduction methods and extremely important in genomic 
prediction. These methods require the choice of the number of components to be inserted into 
the model. For PCR, there are formal criteria; however, for ICR, the adopted criterion chooses 
the number of independent components (ICs) associated to greater accuracy and requires high 
computational time. In this study, seven criteria based on the number of principal components 
(PCs) and methods of variable selection to guide this choice in ICR are proposed and evaluated 
in simulated and real data. For both datasets, the most efficient criterion and that drastically 
reduced computational time determined that the number of ICs should be equal to the number 
of PCs to reach a higher accuracy value. In addition, the criteria did not recover the simulated 
heritability and generated biased genomic values.
Keywords: Oryza sativa L., genomic prediction, plant breeding, principal component regression, 
independent component regression
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Introduction

The prediction process in Genome Wide Selection (GWS) 
(Meuwissen et al., 2001) presents statistical problems 
related to high dimensionality (number of markers 
greater than the number of individual phenotypic 
observations) and multicollinearity (highly correlated 
markers), which affect the accuracy of methods based 
on ordinary least squares (OLS) (Desta and Ortiz, 2014).

In this context, methodologies to solve such 
statistical challenges have gained prominence in GWS 
research. Resende et al. (2012) reported that the statistical 
methodologies applied to GWS could be divided into 
three groups: methods based on explicit regression, 
implicit regression, and the dimensionality reduction 
methods. Among these, the dimensionality reduction 
methods, the Principal Component Regression (PCR), 
and the Independent Component Regression (ICR) 
are highlighted when compared to the other methods 
applied to GWS as they present great applicability and 
relatively simple theory.

The PCR and ICR require the choice of the optimal 
number of components, which are linear combinations 
of the markers, to be inserted in the prediction 
equation. The statistical theory of PCR demonstrates 
that the first components represent most of the total 
data variability. Le Floch et al. (2012) presented the 
criterion for choosing the optima number based on this 
assertion. 

In genomic selection, effective methodologies 
for the prediction process are desirable and accuracy 
is one of the main measurements of efficacy. Azevedo 
et al. (2014, 2015) chose the number of independent 
components (ICs) associated to greater accuracy; 
however, the execution of the analyses required a high 
computational effort, which often becomes impractical. 

	  In this study we aimed to propose and 
evaluate, using simulated genomic data, seven decision 
criteria for the optimal number of components to be 
inserted into the template. We also evaluated seven 
criteria with real data in the genomic prediction of 
six rice yield traits to elucidate the importance of 
the procedures described in this study for breeding 
programs and the importance of genomic prediction 
for the Asian rice Oryza sativa L. (Grenier et al., 2015; 
Hassen et al., 2018; Spindel et al., 2015; Spindel et al., 
2016).

Materials and Methods	

The simulated dataset was generated as described 
by Azevedo et al. (2015, 2017). We simulated 2,000 
equidistant Single Nucleotide Polymorphisms (SNPs) 
markers separated by 0.1 centiMorgan among ten 
chromosomes. The quantitative trait loci (QTLs) were 
randomly distributed in the regions covered by the SNPs. 
We genotyped and phenotyped 1,000 individuals from 
20 families of full siblings. The simulations assumed 
absence of dominance and four scenarios were used 
in the analyses: two heritability levels in the restricted 
sense (about 0.20 and 0.30) × two genetic architectures 
(polygenic and mixed inheritance). The scenarios were 
analyzed considering the dimensionality reduction 
methods, ICR and PCR, and the criteria of choice of the 
components. Each type of population (or scenarios) was 
simulated ten times.

The real data set corresponded to the Asian rice 
and the database used in this study consisted of six yield 
traits referring to 370 accessions of rice, which were 
genotyped to 44,100 SNP markers. This dataset is free 
and is part of two projects, the OryzaSNP Project and 
the OMAP Project (Ammiraju et al., 2006; Zhao et al., 
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2011) and it is available at https://ricediversity.org/data/. 
The six traits of rice yield used in this study were: (i) 
panicle number per plant, (ii) plant height, (iii) panicle 
length, (iv) primary panicle branch number, (v) seed 
number per panicle, and (vi) florets per panicle.

The linear model is given by:

y = 1m + Xma + e,	  (1)

where: y is the vector of phenotypic observations with 
dimension I × 1, where I is the number of individuals 
genotyped and phenotyped, μ is the overall mean of the 
trait, ma is the vector of additive marker effects with 
incidence matrix X composed of values 0, 1, and 2 
whose dimension is I × J. J is the number of markers 
and e is the vector of random errors with the structure 
of variance given by e N e ( ,I )0 2σ , where I is the identity 
matrix and σe

2  is the residual variance.
The Principal Component Regression (PCR) and 

the Independent Component Regression (ICR) can 
be used in any situation where there are problems of 
high dimensionality. The main difference between the 
methods is that in the PCR, the principal components 
Zm(m = 1, ..., nPCR) are orthogonal components and the 
first components explain much of the total variability. 
In the ICR, the components built are independent, 
that is, there is no functional relationship between the 
components that explain small parts and in different 
proportions the total data variability.

The Principal Component Regression determines 
that the PCs are defined as:

Z = XP,	 (2)

where: X is the incidence matrix of the markers and 
P is the matrix of the eigenvectors of the covariance 
matrix of X. The first component is associated to the 
largest eigenvalue of the eigenvectors matrix and is the 
percentage of explanation of the jth component given by: 

λ

σ
j

jj

m 2
1=∑

, 

where lj is the corresponding eigenvalue. In order to 
perform the prediction of the genomic values, the 
vector of phenotypic observations (y) is related to the 
components (Z) and for this regression to be possible, 
the number of components to be inserted into the 
model (nPCR) is less than or equal to (I, J) – 1. After 
this choice, the nPCR first components, Z1, Z2, ... , ZnPCR

, 
are selected and the adjusted prediction equation is 
ˆ ˆ ˆ ˆy Z Z Zn nPCR PCR= + + +1 1 2 2α α α , where ˆ ˆ ˆ ˆαα = [ ]α α α1 2  nPCR

is the vector of the estimated regression coefficients 
obtained by the OLS method.

The coefficients αα  are not related to the markers. 
The following expression is used to find the estimates of 
the effects of the markers:

ˆ ˆm PPCR nPCR= α ,	  (3)

where: PnPCR
 is the matrix of associated eigenvectors to 

components Z1, Z2, ..., ZnPCR
.

The ICR decomposes the matrix X into X = SA’, 
where S (I × nICR) is an ICs matrix. A (J × nICR) is called 
the mix matrix, which is usually unknown, and nICR is 
the number of ICs chosen. To estimate matrix A, the 
first step is to obtain matrix K (called the whitening 
matrix) by orthogonal decomposition of the covariance 
matrix of X to ensure that the covariance matrix of XK is 
equal to the identity matrix, the correlation between the 
columns of XK is equal to 0, and the variance is equal 
to 1. The orthogonal decomposition is applied to the 
covariance matrix of X, denoted by Ʃ( J × J) obtaining: 
∑∑ == ΛΛP P

− ′
1
2 ; where P is composed of the eigenvectors 

in its columns and ΛΛ  is a diagonal matrix of eigenvalues 
of the covariance matrix of X. In regression, the matrix 
K (J × nICR) is then defined as Pr rΛΛ-1

2 , where Pr is the 
matrix with nICR as the first columns of the matrix P 
(nICR first eigenvectors) and ΛΛr the matrix with nICR as 
the first rows and columns of the matrix ΛΛ  (eigenvalues 
associated with these first eigenvectors). To achieve 
independence between the components, the algorithm 
proposed by Hyvärinen (1998), which is based on the 
principle of maximum entropy, is used to obtain a new 
matrix denoted by R (nICR × nICR). After the algorithm, the 
ICs can be expressed by:

S = XKR. 	  (4)

Then, the prediction equation between the 
response variable Y and the ICs S1, S2, ..., SnICR

 is given 
by ˆ ˆ ˆ ˆy s s sn nICR ICR= + + +β β β1 1 2 2  , where ˆ [ˆ ˆ ˆ ]ββ = ′β β β1 2  nICR    
is the vector of the regression coefficient estimates 
obtained by the OLS method. Analogously to the PCR, 
to find the estimates of the effects of the markers, it is 
enough to use the expression:

ˆ ˆmICR = KRββ.	  (5)

The simulated and real datasets were analyzed 
using two populations (estimation and validation 
population) according to both validation procedures. In 
the simulated data, the criteria were compared by means 
of an independent validation in which the first nine 
simulations were assumed as estimation populations 
and the 10th simulation was assumed as the validation 
population. The real data were evaluated under a ten-
fold validation process. The use of different validation 
processes is justifiable, because the real dataset 
comprise a small number of individuals (370), which 
makes independent validation unviable and, in these 
cases, James et al. (2013) suggest a ten-fold validation.

The criteria analyzed aimed to determine the 
optimal number of ICs using the following procedures.

Criterion 1 (Based on predictive ability or accuracy 
obtained through PCR fit): For each PC (m = 1, ..., 
min(I,J)–1), the effects of the markers in estimating the 
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population are estimated by the PCR and they are used 
in the validation population to estimate the genomic 
breeding values of the individuals of this population. 
Then, for the simulated data, we analyzed the accuracy 
raâ( ), the correlation between the estimated genomic 

value and the real genomic value r Cor a aaâ ( ,̂ )=( ) , and for 
the real data ryâ( ) , the correlation between the estimated 
genomic value and the phenotypic value r Cor a yyâ ( ,̂ )=( ). 
This analysis ensures that the number of ICs is equal to 
the number of PCs whose genomic value leads to greater 
accuracy and predictive ability. Cadavid et al. (2008) and 
Azevedo et al. (2013), corroborated the use of PCR in the 
choice of the number of ICs.

Criterion 2 (Based on bias and predictive ability or 
accuracy obtained through the PCR fit): In Criterion 
2, the same procedure in Criterion 1 was used, but 
the regression coefficient byâ( ) is calculated between 
the phenotype and the estimated genomic value and, 
subsequently, the prediction bias given by 1 − byâ. 
Thus, the number of ICs is determined as equal to the 
number of PCs whose genomic value leads to a smaller 
prediction bias.

Criterion 3 (Based on the percentage explanation 
of the total variation of the markers after obtaining 
the PCs): The percentage explanation of the total 
variation of X when using m PCs is given by: 

pm

jj

m

jj

J(%) = =

=

∑
∑

λ

λ
1

1

,

where lj is the eigenvalue corresponding to the jth 
eigenvector of the covariance matrix of X. Criterion 
3 determines that the number of ICs is equal to the 
number of PCs that explain 80 % of the total variation of 
X, as recommended by Ferreira (2012). The researcher 
can also choose another threshold value and it must 
consider the explanation percentage of the data variation 
and the dimensionality reduction caused.

Criterion 4 (Based on the coefficient of 
determination obtained after the PCR fit): Using 
the coefficient of determination  , 
the IC number is chosen as equal to the number of PCs 
explaining 80 % of the total variation of Y.

Criterion 5 (Based on the percentage of explanation 
of the total variation of markers after obtaining 
ICs): Assuming that the ICs have means equal to 0 and 
variances equal to 1, the variation explained by the kth 
IC is given by: 

I a

x

jkj

J

ijj

J

i

I

2
1

2
11

=

==

∑
∑∑

where ajk is the element of the jth row and the kth column 

of the matrix of mixtures A, xij is the element of the ith 
row and jth column of the centered matrix of explanatory 
variables X (i = 1, 2, ..., I) (Bingham and Hyvärinen, 
2000; Helwig and Hong, 2013). The number of ranked 
ICs that explain 80 % of the total variation of X is then 
chosen.

Criterion 6 (Based on the IC’s Forward Selection 
algorithm): After the application of the ICA in matrix 
X, were determined which are predictors, ICs m = ((I, J) 
–1), to be included in the model. For this, based on the 
Forward Selection algorithm described by James et al. 
(2013), the M0 model without ICs is considered. For the 
first iteration of the algorithm, the models with only one 
IC, denoted by M1i (i = 1, ..., (I, J) –1) are constructed 
and R2 is calculated for each model. Subsequently, the 
model with the highest  R2 is defined as model M1. In the 
second iteration, the models with two ICs (all models 
must contain the component that is the model predictor 
M1) denoted by M2i are constructed and the model 
with the larger R2 is denoted as M2. This procedure is 
performed (I, J) –1 times for determinate the models 
M1, M2, … M(I,J)–1 with 1, ..., (I, J)–1 ICs, respectively, in 
each model. Among all these models, the model with the 
lowest BIC (Bayesian Information Criterion) was chosen. 
The present criterion determines which and how many 
ICs must be used in the chosen model.

Criterion 7 (Based on the IC Backward Elimination 
algorithm): Based on the Backward Elimination 
algorithm, as described by James et al. (2013), the 
complete model Mn(I,J)–1

 is considered, that is, the model 
with the maximum number of ICs built after the 
application of ICA. Subsequently, the models with  (I, 
J)–2 components are defined as M (I, J)–2, which were 
constructed by removing one IC at a time and calculated 
the R2 for each model. It is denoted as M(I,J)–2, the model 
with the largest R2. The process is repeated to determine 
the models M((I,J)–3), ..., M1. The component that is not 
included into the model also does not participate in the 
following iteration. Then, from these (I, J)–1 models, 
only the model that features lower BIC. The present 
criterion determines which and how many ICs must be 
in the chosen model.

In the simulated data, efficacy measurements of 
genomic prediction were calculated for each replicate, 
such as: i) accuracy ( raaˆ ), raaˆ is the correlation between 
the genomic estimated breeding values (GEBVs – 
denoted by â ) and the simulated genetic values (a); 
ii) prediction bias, which is defined as 1 − byâ being byâ  
the regression coefficient between phenotype (y) and 
GEBVs; iii ) additive genomic heritability ( )haM

2 , given by:

haM
aM

aM e

2
2

2 2=
+

σ
σ σ

, 

where σaM j j ajj

J
p q m2 2

1
2=

=∑  is the additive genomic 
variance, σe

2  is the residual variance, and pi and qi are 
the allelic frequencies of the jth marker. After obtaining 
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the efficacy measures for each replicate in each 
scenario, the results will be the mean and standard 
deviation of these values. In the real data, the efficacy 
measurements of genomic prediction were: i) predictive 
ability ryâ( ), ryâ  is the correlation between the GEBVs 
and phenotype; ii) prediction bias; iii) additive genomic 
heritability.

Regarding the interpretation of efficacy measures, 
we have: i) high accuracy values indicate that the GEBV 
is close to the real genomic value; ii) high predictive 
ability values indicate that the GEBV is close to the 
phenotype; iii) regression coefficients below 1 ( byâ <1), 
it is understood that the GEBVs were overestimated, 
for regression coefficients above 1 ( byâ >1), it is 
concluded that the GEBVs were underestimated, and for 
coefficients equal to 1 ( byâ =1), it concludes that GEBVs 
are unbiased; iv) In simulated data, estimated genomic 

heritability should be close to simulated heritability. 
In real data, the estimated genomic heritability was 
compared to the heritability presented in other studies. 
The configuration of the computer used in the statistical 
analyses was: Intel (R) Core (TM) i7-6500 (CPU 2.50 GHz) 
processor with 16 Gb of RAM. All the computational 
routines of the methods used were implemented in 
GenomicLand (Azevedo et al., 2019) available at https://
licaeufv.wordpress.com/genomicland/.

Results and Discussion

The mean results and the deviations from the simulations 
regarding the number of components, additive molecular 
heritability, accuracy, and bias considering the ICR 
and each criterion for choosing the optimal number 
of ICs are presented in Tables 1 and 2. In addition, the 

Table 1 – The parametric additive heritability (hMapar
2 ), the number of components (NC), additive heritability (haM

2 ), accuracy (raâ), and regression 
coefficient considering ( ˆ ˆbya ) each criterion of choice for the number of independent components and the scenarios of polygenic inheritance. 

Scenario hMapar
2 Criterion NC

haM
2 raâ 

ˆ ˆbya

Scenario 1 0.20

Exhausting 36 ± 0.00 0.20 ± 0.03 0.71 ± 0.02 0.90 ± 0.05
Criterion 1 66 ± 78 0.22 ± 0.07 0.70 ± 0.01 0.89 ± 0.11
Criterion 2 5 ± 4 0.04 ± 0.03 0.34 ± 0.15 1.10 ± 0.10
Criterion 3 130 ± 0.00 0.27 ± 0.03 0.70 ± 0.02 0.75 ± 0.04
Criterion 4 730 ± 0.00 1.00 ± 0.00 0.48 ± 0.04 0.25 ± 0.03
Criterion 5 780 ± 0.00 1.00 ± 0.00 0.46 ± 0.04 0.23 ± 0.02
Criterion 6 630 ± 470 1.00 ± 0.00 0.58 ± 0.17 0.07 ± 0.06
Criterion 7 630 ± 470 1.00 ± 0.00 0.58 ± 0.17 0.07 ± 0.06

Scenario 2 0.30

Exhausting 44 ± 0.00 0.22 ± 0.04 0.75 ± 0.02 0.92 ± 0.07
Criterion 1 40 ± 25 0.21 ± 0.04 0.74 ± 0.02 0.94 ± 0.06
Criterion 2 7 ± 8 0.08 ± 0.04 0.48 ± 0.13 0.98 ± 0.06
Criterion 3 130 ± 0.00 0.28 ± 0.04 0.72 ± 0.02 0.78 ± 0.05
Criterion 4 730 ± 0.00 1.00 ± 0.00 0.50 ± 0.04 0.25 ± 0.03
Criterion 5 780 ± 0.00 1.00 ± 0.00 0.48 ± 0.04 0.23 ± 0.03
Criterion 6 950 ± 33 1.00 ± 0.00 0.71 ± 0.01 0.04 ± 0.01
Criterion 7 950 ± 33 1.00 ± 0.00 0.71 ± 0.01 0.04 ± 0.01

Scenario 3 0.20

Exhausting 277 ± 0.00 0.53 ± 0.06 0.77 ± 0.02 0.77 ± 0.05
Criterion 1 260 ± 96 0.51 ± 0.14 0.77 ± 0.02 0.80 ± 0.10
Criterion 2 16 ± 17 0.15 ± 0.09 0.53 ± 0.19 1.00 ± 0.03
Criterion 3 130 ± 0.00 0.36 ± 0.04 0.75 ± 0.01 0.89 ± 0.06
Criterion 4 730 ± 0.00 1.00 ± 0.00 0.66 ± 0.02 0.45 ± 0.02
Criterion 5 780 ± 0.00 1.00 ± 0.00 0.63 ± 0.03 0.42 ± 0.03
Criterion 6 960 ± 16 1.00 ± 0.00 0.72 ± 0.02 0.04 ± 0.01
Criterion 7 960 ± 16 1.00 ± 0.00 0.72 ± 0.02 0.04 ± 0.01

Scenario 4 0.30

Exhausting 189 ± 0.00 0.48 ± 0.03 0.80 ± 0.02 0.83 ± 0.03
Criterion 1 200 ± 110 0.50 ± 0.14 0.80 ± 0.02 0.83 ± 0.09
Criterion 2 4 ± 3 0.11 ± 0.05 0.45 ± 0.11 1.00 ± 0.04
Criterion 3 130 ± 0.00 0.42 ± 0.03 0.79 ± 0.02 0.87 ± 0.04
Criterion 4 730 ± 0.00 1.00 ± 0.00 0.66 ± 0.03 0.45 ± 0.02
Criterion 5 780 ± 0.00 1.00 ± 0.00 0.63 ± 0.03 0.42 ± 0.03
Criterion 6 960 ± 30 1.00 ± 0.00 0.73 ± 0.01 0.04 ± 0.01
Criterion 7 960 ± 30 1.00 ± 0.00 0.73 ± 0.01 0.04 ± 0.01

Number of independent components leading to: Independent Component Regression at higher accuracy (exhaustive); Principal Component Regression (PCR) at higher 
accuracy (Criterion 1); PCR at a lower bias value (Criterion 2); 80 % of the total variation of X explained by the principal components (Criterion 3); 80 % of the total 
variation of Y explained by the principal components (Criterion 4); 80 % of the total variation of X explained by the independent components (Criterion 5); Forward 
Selection (Criterion 6); Backward Elimination (Criterion 7).
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Table 2 – The number of components (NC), additive heritability (haM
2 ), predictive capacity (ryâ), and prediction bias ( ˆ ˆbya ) considering the exhaustive 

method and each criterion for choice of number of independent components.

Trait Criterion NC
haM

2 ryâ
ˆ ˆbya

Panicle number per plant

Exhausting 117 0.69 ± 0.05 0.82 ± 0.06 0.98 ± 0.11

Criterion 1 125 0.73 ± 0.03 0.82 ± 0.01 0.97 ± 0.03
Criterion 2 105 0.74 ± 0.01 0.82 ± 0.01 0.97 ± 0.02

Criterion 3 44 0.69 ± 0.03 0.82 ± 0.01 1.02 ± 0.03

Criterion 4 55 0.80 ± 0.03 0.71 ± 0.02 0.79 ± 0.01

Criterion 5 263 1.00 ± 0.00 0.70 ± 0.07 0.66 ± 0.10

Criterion 6 295 1.00 ± 0.00 0.08 ± 0.13 0.00 ± 0.01
Criterion 7 295 1.00 ± 0.00 0.08 ± 0.13 0.00 ± 0.01

Plant Height

Exhausting 175 0.65 ± 0.07 0.81 ± 0.05 1.00 ± 0.17

Criterion 1 213 0.47 ± 0.01 0.78 ± 0.01 1.17 ± 0.01
Criterion 2 5 0.24 ± 0.01 0.56 ± 0.01 1.14 ± 0.03

Criterion 3 44 0.35 ± 0.01 0.72 ± 0.01 1.20 ± 0.02

Criterion 4 55 0.38 ± 0.02 0.72 ± 0.01 1.18 ± 0.02

Criterion 5 263 0.94 ± 0.06 0.71 ± 0.06 0.74 ± 0.07

Criterion 6 295 1.00 ± 0.00 0.04 ± 0.09 0.00 ± 0.01
Criterion 7 295 1.00 ± 0.00 0.04 ± 0.09 0.00 ± 0.01

Panicle length 

Exhausting 157 0.52 ± 0.08 0.69 ± 0.06 0.92 ± 0.18

Criterion 1 140 0.42 ± 0.02 0.68 ± 0.03 1.04 ± 0.05
Criterion 2 152 0.44 ± 0.03 0.69 ± 0.02 1.05 ± 0.06

Criterion 3 44 0.38 ± 0.02 0.66 ± 0.03 1.06 ± 0.06

Criterion 4 55 0.39 ± 0.02 0.65 ± 0.03 1.04 ± 0.04

Criterion 5 263 0.94 ± 0.06 0.51 ± 0.12 0.56 ± 0.19

Criterion 6 295 1.00 ± 0.00 0.04 ± 0.12 0.00 ± 0.01
Criterion 7 295 1.00 ± 0.00 0.04 ± 0.12 0.00 ± 0.01

Primary panicle branch number

Exhausting 123 0.46 ± 0.08 0.64 ± 0.08 0.90 ± 0.25

Criterion 1 154 0.78 ± 0.06 0.51 ± 0.03 0.57 ± 0.04
Criterion 2 3 0.19 ± 0.03 0.43 ± 0.06 0.97 ± 0.07

Criterion 3 44 0.52 ± 0.05 0.54 ± 0.04 0.75 ± 0.08

Criterion 4 55 0.60 ± 0.03 0.55 ± 0.02 0.70 ± 0.05

Criterion 5 263 0.74 ± 0.26 0.51 ± 0.13 0.64 ± 0.26

Criterion 6 295 1.00 ± 0.00 0.01 ± 0.07 0.00 ± 0.01
Criterion 7 295 1.00 ± 0.00 0.01 ± 0.07 0.00 ± 0.01

Seed number per panicle

Exhausting 48 0.31 ± 0.08 0.56 ± 0.08 1.02 ± 0.13

Criterion 1 27 0.31 ± 0.04 0.46 ± 0.03 0.82 ± 0.05
Criterion 2 22 0.28 ± 0.04 0.47 ± 0.02 0.89 ± 0.07

Criterion 3 44 0.37 ± 0.01 0.45 ± 0.04 0.74 ± 0.07

Criterion 4 55 0.37 ± 0.02 0.46 ± 0.05 0.75 ± 0.08

Criterion 5 263 0.89 ± 0.11 0.54 ± 0.09 0.60 ± 0.12

Criterion 6 295 1.00 ± 0.00 0.01 ± 0.17 0.00 ± 0.01
Criterion 7 295 1.00 ± 0.00 0.04 ± 0.12 0.00 ± 0.01

Florets per panicle

Exhausting 52 0.42 ± 0.09 0.66 ± 0.08 1.03 ± 0.13

Criterion 1 140 0.69 ± 0.06 0.50 ± 0.05 0.72 ± 0.07
Criterion 2 152 0.69 ± 0.02 0.60 ± 0.02 0.73 ± 0.02

Criterion 3 44 0.31 ± 0.03 0.56 ± 0.02 1.00 ± 0.05

Criterion 4 55 0.33 ± 0.02 0.56 ± 0.02 0.98 ± 0.06

Criterion 5 263 0.73 ± 0.23 0.50 ± 0.08 0.60 ± 0.13

Criterion 6 295 1.00 ± 0.00 0.01 ± 0.16 0.00 ± 0.01
Criterion 7 295 1.00 ± 0.00 0.01 ± 0.16 0.00 ± 0.01

Number of independent components leading to: Independent Component Regression at higher accuracy (exhaustive); Principal Component Regression (PCR) at higher 
accuracy (Criterion 1); PCR at a lower bias value (Criterion 2); 80 % of the total variation of X explained by the principal components (Criterion 3); 80 % of the total 
variation of Y explained by the principal components (Criterion 4); 80 % of the total variation of X explained by the independent components (Criterion 5); Forward 
Selection (Criterion 6); Backward Elimination (Criterion 7).
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results of the analyses of the calculating the number 
of components required to reach the maximum value 
of accuracy via ICR by the exhaustive method are also 
presented.

Among the seven criteria analyzed, criteria 1, 3, 
6, and 7 presented the values of accuracy closer to the 
maximum accuracy value obtained by the exhaustive 
method, considering the four scenarios. Although 
criteria 6 and 7 presented high accuracy values, both 
criteria overestimated the genomic values, which can 
be observed in the regression coefficient, revealing 
that the estimates found have variability beyond the 
simulated ones. Criteria 1 and 3 present values closer 
to unity than those obtained by the exhaustive method, 
highlighting Criterion 1 even more as it presents high 
accuracy and low bias. The bias property is relevant 
because that selection involves individuals of many 
generations using effects of estimated markers in a 
single generation, which is desirable not only to select 
individuals, but also to determine the genomic merits 
of individuals (Resende et al., 2014).

No criterion were adequate to estimate heritability 
in scenarios 2, 3, and 4, since the values do not recover 
the simulated heritability. However, these values are 
close to the heritability attained by the exhaustive 
criterion, considering the maximum value of accuracy 
via the ICR. In criteria 4, 5, 6, and 7, heritability 
estimates equal 1 and these criteria are associated 
to the largest number of components in the model. 
Likewise, we evaluated the number of components 
influencing the heritability estimation and the extent 
to which components are included in the model where 
heritability tends to 1. This can be explained by the 
ICR method assuming the SNPs as fixed effects; since 
according to Resende et al. (2014), when the markers 
are assumed to be fixed effects, heritability is implicitly 
assumed to equal 1.

Regarding the Forward Selection and Backward 
Elimination criteria (criteria 6 and 7, respectively), the 
variable selection methods aimed to remove variables 
that are not relevant or those not closely related to the 
dependent variable (James et al., 2013). In the case of the 
ICR, the components were independent (the components 
were uncorrelated and without any functional relation to 
each other) and thus more variables were needed, that 
is, more components to explain the response variable 
in criteria 6 and 7. The prediction of genomic values 
using these selection criteria was not adequate since 
the criteria associated to the largest biases (coefficient 
values close to 0) were not adequate.

Other criteria have been proposed, such as 
Akaike Information Criterion (AIC), BIC, coefficient 
of determination mean square of the residues, and 
adjusted coefficient of determination. However, the 
application of these suggested criteria was not feasible, 
since the computational time would have been the 
same as in the exhaustive method. Similarly, using the 
Stepwise Selection method, the number of variables 

selected resulted in the complete model (considering 
999 components) that was associated to low accuracy 
values.

The number of components, additive molecular 
heritability, predictive capacity, and prediction bias 
for the six rice traits are shown in Table 2, considering 
each criterion (Criterion 1 – Based on predictive 
ability or accuracy obtained through PCR fit, Criterion 
2 – Based on bias and predictive ability or accuracy 
obtained through the PCR fit, Criterion 3 – Based on 
the percentage explanation of the total variation of the 
markers after obtaining the PCs, Criterion 4 – Based 
on the coefficient of determination obtained after 
the PCR fit), Criterion 5 – Based on the percentage 
of explanation of the total variation of markers after 
obtaining ICs, Criterion 6 – Based on the IC’s Forward 
Selection algorithm and Criterion 7 – Based on the 
IC Backward Elimination algorithm) for choosing the 
optimal number of ICs. Likewise, the number of ICs 
required by the exhaustive model is also shown in 
Table 2. The results for the six traits corroborate the 
findings obtained in the simulated data.

For the real data, Criterion 1 presented values 
of predictive capacity closer to the maximum for the 
traits panicle number per plant, plant height, and 
panicle length. In this context, Criteria 2 and 3 were 
also significant for the traits panicle number per 
plant and panicle length, while Criterion 4 did not 
show prominence for any trait. The analyses of the 
regression coefficient showed that all the criteria were 
biased and Criteria 6 and 7 considerably overestimated 
the genomic values for all traits, as observed in the 
analyses of the simulated data.

In relation to the traits of plant height, panicle 
length, and seed number per panicle, Bisne et al. (2009) 
reported that heritability values oscillate between high 
and medium, indicating success in selection. Thus, 
considering the real dataset, the heritability values 
found in our study and other studies are presented 
in Table 3. Heritability presented by Akinwale et al. 
(2011) and Seyoum et al. (2012) was estimated via 
pedigree and, in the context of our study, genomic 
heritability was considered. In addition, Ogunbayo et 
al. (2014) reported a high heritability value for number 
of panicles in the primary panicle, which is justifiable, 
since these authors considered heritability in the broad 
sense.

The computational times associated to the 
simulated and real data in s and h are presented in 
Table 4. The computational time for the exhaustive 
method of the simulated dataset, considering a 
replicate of each scenario, required high computational 
time. This can also be observed in the real dataset using 
a high number of molecular markers. However, using 
Criterion 1, the reduction in time was drastic. This 
time would be substantially greater when we consider 
that 500,000 and 600,000 SNPs are identified in bovine 
and ovine genotyping (Brito et al., 2017; Wilkinson et 
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Table 3 – Heritability values and heritability observed in the literature for each trait.

Traits Estimated heritability References
Panicle number per plant 0.73C1, 0.74C2, 0.63 C3, (0.69) (0.59) Akinwale et al. (2011) and (0.50) Seyoum et al. (2012)
Plant Height 0.47* (0.65) Grenier et al. (2015), Spindel et al. (2015) and Spindel et al. (2016)
Panicle length 0.42 C1, 0.44 C2, 0.38 C3, (0.52) (0.53) Akinwale et al. (2011)
Primary panicle branch number 0.78 C1, 0.52 C2, (0.46) (0.76) Ogunbayo et al. (2014)
Seed number per panicle 0.31 C1, 0.28 C2, (0.31) (0.70) Akinwale et al. (2011)
Florets per panicle 0.69 C1, C2, (0.42) (0.60) Seyoum et al. (2012) and (0.61) Akinwale et al. (2011)
C1 = Estimated heritability by Criterion 1; C2 = Estimated heritability by Criterion 2; C3 = Estimated heritability by Criterion 3; ( ) = Estimated heritability by the 
exhaustive method.

Table 4 – Computational time in s (h) considering the simulated 
data and real data and each criterion for choosing the number of 
independent components.

Data Criterion Computational Time

Simulated

Exhausting 587,776.39 (163.27)
Criterion 1 224.80 (0.06)
Criterion 2 197.67 (0.05)
Criterion 3 197.22 (0.05)
Criterion 4 888.99 (0.25)
Criterion 5 2,235.96 (0.62)
Criterion 6 1,351.34 (0.38)
Criterion 7 1,350.24 (0.38)

Real

Exhausting 3,189,757.20 (886.04)
Criterion 1 5,945.90 (1.65)
Criterion 2 5,029.09 (1.40)
Criterion 3 2,179.76 (0.61)
Criterion 4 2,524.28 (0.70)
Criterion 5 19,827.66 (5.51)
Criterion 6 3,260.44 (0.91)
Criterion 7 3,262.01 (0.91)

Number of independent components leading to: Independent Component 
Regression at higher accuracy (exhaustive); Principal Component Regression 
(PCR) at higher accuracy (Criterion 1); PCR at a lower bias value (Criterion 
2); 80 % of the total variation of X explained by the principal components 
(Criterion 3); 80 % of the total variation of Y explained by the principal 
components (Criterion 4); 80 % of the total variation of X explained by the 
independent components (Criterion 5); Forward Selection (Criterion 6); 
Backward Elimination (Criterion 7).

al., 2017), that is, hundreds of thousands of marker 
effects to be estimated considering only the additive 
model. It was also vrified that the computational time is 
drastically reduced considering Criterion 1.

Conclusion

In general, Criterion 1, the number of ICs equals 
to the number of PCs that leads to a higher value of 
accuracy, presented an effective and computationally 
feasible alternative compared to the exhaustive method, 
both for simulated data and for the traits of real data. 
Criterion 3 had high accuracy values for simulated data 
and for some traits of real data, but essentially lower 
values compared to Criterion 1. Criteria 6 and 7 had 
high accuracy values for real and simulated data, but 
they overestimate the genomic breeding values. Criteria 

2 and 4 had low accuracy values. None of the criteria 
were capable of capturing the heritability values that 
were simulated.
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