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ABSTRACT:Data Mining techniques play an important role in the prediction of soil spatial distri-
bution in systematic soil surveying, though existing methodologies still lack standardization and 
a full understanding of their capabilities. The aim of this work was to evaluate the performance 
of preprocessing procedures and supervised classification approaches for predicting map units 
from 1:100,000-scale conventional semi-detailed soil surveys. Sheets of the Brazilian National 
Cartographic System on the 1:50,000 scale, “Dois Córregos” (“Brotas” 1:100,000-scale sheet), 
“São Pedro” and “Laras” (“Piracicaba” 1:100,000-scale sheet) were used for developing models. 
Soil map information and predictive environmental covariates for the dataset were obtained from 
the semi-detailed soil survey of the state of São Paulo, from the Brazilian Institute of Geography 
and Statistics (IBGE) 1:50,000-scale topographic sheets and from the 1:750,000-scale geologi-
cal map of the state of São Paulo. The target variable was a soil map unit of four types: local 
“soil unit” name and soil class at three hierarchical levels of the Brazilian System of Soil Classifi-
cation (SiBCS). Different data preprocessing treatments and four algorithms all having different 
approaches were also tested. Results showed that composite soil map units were not adequate 
for the machine learning process. Class balance did not contribute to improving the performance 
of classifiers. Accuracy values of 78 % and a Kappa index of 0.67 were obtained after prepro-
cessing procedures with Random Forest, the algorithm that performed best. Information from 
conventional map units of semi-detailed (4th order) 1:100,000 soil survey generated models with 
values for accuracy, precision, sensitivity, specificity and Kappa indexes that support their use in 
programs for systematic soil surveying.
Keywords: machine learning algorithms, random forest, tacit soil-landscape relationships, digi-
tal soil mapping
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Introduction

One of the challenges of modeling soil classes for 
digital soil mapping has been to reproduce soil-land-
scape relationships through tacit information on conven-
tional soil maps (Hudson, 1992). A possible strategy for 
overcoming this is to make the assumption that conven-
tional soil survey databases implicitly carry information 
on soil-landscape relationships. Databases derived from 
soil surveys and those from soil predictive covariates, 
such as relief and parent material covariates (McBratney 
et al., 2003), can then be analyzed to produce patterns of 
soil spatial variation with techniques that belong to the 
field conceived as Knowledge Discovery in Databases or 
KDD, of which data preprocessing and data mining are 
essential steps in the entire process (Fayyad et al., 1996).

Optimal routines for the application of data min-
ing techniques are far from reaching a consensus on 
digital soil surveys (Bagatini et al., 2016; Behrens and 
Scholten, 2007), but they can accelerate the generation 
of information on spatial distribution of soil classes. 
Classification algorithms such as Artificial Neural Net-
works (ANN) and Decision Trees (DT) have been widely 
used for soil survey modeling (Behrens et al., 2005; Silva 
et al., 2013). ANN simulates biological neural networks; 
its basic component, a neuron, receives input signals 
that are aggregated and compared to a threshold or bias 

of the neuron. If the aggregated signal is greater than the 
bias, the neuron will be activated and the output signal 
generated by an activation function (Zhou, 2012). Neu-
rons are linked by weighted connections to form a net-
work. DT uses the divide and conquer process, based on 
the values of information gained, to create classification 
rules visually similar to trees (Witten et al., 2016). Algo-
rithms with integrated approaches are also being tested 
for pedological modeling. Bayesian Neural Networks, 
which integrate the maximization of probability estima-
tion by Bayes’ theorem with ANN (Zhou, 2012) and Ran-
dom Forest, an Ensemble Method that uses the strategy 
of Bootstrap Aggregating to create a stronger classifier, 
based on random DT (Zhou, 2012; Breiman, 2001), are 
expected to produce very robust models (Hastie et al., 
2009; Chagas et al., 2017).

The aim of this research was to evaluate the per-
formance of data preprocessing procedures and super-
vised classification approaches applied to conventional 
map units and environmental covariates as reference 
data sources for predicting soil map units.

Materials and Methods

Studied settings
The research was carried out in the Geographic 

Information System (GIS) environment with map poly-
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gons and legend from three 1:50,000-scale sheets of the 
1:100,000-scale soil survey maps of the Brotas and Piraci-
caba quadrangles, in the state of São Paulo, Brazil (Figure 1).

The studied region has its largest extension locat-
ed on the Peripheral Depression, but also has part of 
it on the Basaltic Cuestas, both being geomorphological 
provinces of the state of São Paulo, elevation ranging 
from 453 to 1069 m. On these landscapes, relief classes 
range from nearly level to very steep and lithology is 
mostly of sedimentary rocks but also, in the province of 
Cuestas, of basaltic rocks. Köppen’s climate are Cwa and 
Aw (Alvares et al., 2013).

Databases
A 30-m resolution digital elevation model gen-

erated from the Brazilian Institute of Geography and 
Statistics (IBGE) 1:50,000-scale toposheets provided 
seven predictive relief attributes: Elevation, Slope Gra-
dient, Relief Class, Profile Curvature, Plane Curvature, 
Distance to Drainage, and Topographic Wetness Index 
(TWI). Geological Formation or Lithology, as on the geo-
logical map of the state of São Paulo (1:750,000-scale) 
(Perrota et al., 2005), was the 8th predictive variable.

The target variable was either locally named Soil 
Units or soil classes in the 2nd (suborder), 3rd (great 
group) or 4th (subgroup) level of the Brazilian System 
the Brazilian System of Soil Classification (SiBCS) (San-
tos et al., 2013) extracted from the Brotas (Almeida et 
al., 1981) and Piracicaba (Oliveira and Prado, 1989) 
1:100,000-sheet soil surveys. Equivalence among map 
Soil Units, SiBCS subgroups, and U.S. Soil Taxonomy 
subgroups (Soil Survey Staff, 2014) is shown on Table 1. 
Mapping concepts used for Soil Units were those from 

the original 1:100.000-sheet soil surveys (e.g. Oliveira, 
1999). Nomenclature of soil classes in the three categori-
cal levels of SiBCS plus Soil Unit names applied to a da-
tabase of soil map units enabled the structuring of four 
matrices of predictive attributes plus soil classes. 

In order to favor machine learning of soil classes 
with a low number of instances, minority classes were 
merged, producing a larger number of instances per class. 
This was the case for the classes of Hydromorphic soils 
(Glei), Orthents (Litólicos), certain Alfisols with abrupt 
textural changes (Diamante), and Spodosols (Podzóis).

Data mining

Preprocessing
Efficiency of the procedures for variable discreti-

zation, data selection, under- and oversampling, class 
balancing, and variable selection (Table 2) was evaluated 
using the Weka software, version 3.8.0 by “Hold-Out” 
(Supplied Test Set - 2/3 for training, 1/3 for test).

The predictive variable “relief class” was obtained 
by discretization of the slope gradient into the follow-
ing classes: 0-4, 4-8, 8-20, 20-45, 45-75, > 75 %. These 
variables (slope gradient and relief class) were used si-
multaneously in both the continuous and discrete forms 
in data matrices. Discretization of continuous predic-
tive variables in arbitrary classes was also carried out 
for profile curvature and plane curvature. The discrete 
classes described above can better represent the hydro-
dynamic behavior of landscapes than continuous vari-
ables. Discretization was tested for the variables TWI 
and distance to drainage using intervals of equal ranges 
and equal frequencies. The adopted interval for defining 

Figure 1 – Sheets on 1:50,000 scale from study area (São Paulo, Brazil).
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criteria was the one that best improved the performance 
of the classifier, as evaluated by the “Hold-Out” method.

Resampling procedures were evaluated in order to 
improve the predictive power of the models in the less 
representative soil classes in the reference area. Under-
sampling, oversampling, and class balancing procedures 
were applied to 2/3 of the map unit database. Resam-
pling was applied at three levels, zero (0.0), representing 
the original distribution of the data, one (1.0), the bal-
anced distribution of soil classes, and 0.5, a distribution 
involving undersampling of majority classes and overs-

ampling of minority classes. The test database for these 
procedures was 1/3 of the instances using the “Hold-
Out” method (Supplied Test Set).

Ranking predictive variables by importance was 
carried out by chi-square (χ2) and information gain, two 
commonly used feature-selection methods.

Soil class prediction
Preprocessing procedures were evaluated using 

four algorithms, Random Forest, J48, MLP and Bayes 
Net to explore their capabilities to predict soil map units 

Table 1 – Equivalence of mapped Soil Units to soil classes of the Brazilian System of Soil Classification (SiBCS) and U.S. Soil Taxonomy.
Soil Units Soil classes at the 4th level of the SiBCSa U.S. Soil Taxonomy
Alva PVAd e PVAe abrúptico, A moderado, textura arenosa/média Sandy over Fine-loamy, Arenic and Typic Paleudult
Areia Quartzosa RQo típico, A moderado Typic Quartzipsamment

Baguari PVAd e PVAe típico e abrúptico, A moderado, textura média e média/
argilosa Fine-loamy, Typic Kandiudult

Barão Geraldo LVdf típico, A moderado, textura argilosa e muito argilosa Fine and Very Fine, Rhodic Hapludox
Campestre PVe nitossólico e NVe típico, A moderado, textura argilosa/muito argilosa Fine, Rhodic Kandiudult and Kandiudalf
Canela PVd e PVAd típico, A moderado, textura média e média/argilosa Fine-loamy over Fine, Typic Kandiudult
Coqueiro LVAd psamítico e típico, A moderado e fraco, textura média Coarse-loamy, Typic Hapludox
Diamante SXe e SXd típico e vertissólico, A moderado, textura média/argilosa Fine-loamy over Fine, Vertic, Albaquic and Typic Hapludalf
Engenho MTf e MTo típico, textura argilosa Very Fine and Fine, Typic Paleudoll
Estruturada NVef e NVdf típico, A moderado, textura argilosa e muito argilosa Very Fine and Fine, Kandiudalfic Eutrudox

Hidromórficos GXvd, GXve, GXbd e GXbe típico, A moderado e proeminente, textura 
argilosa Fine, Aquept, Aquent, Aquox, Aquult, Aqualf

Hortolândia LVd típico, A moderado, textura média Fine Loamy, Rhodic Hapludox
Itaguaçu NVdf latossólico, A moderado, textura argilosa e muito argilosa Fine and Very Fine, Kandiudalfic Eutrudox and Rhodic Kandiudox
Laranja Azeda LVAd típico, A moderado, textura média Fine-loamy, Typic Hapludox
Limeira LVd típico, A moderado, textura argilosa e muito argilosa Very Fine and Fine, Rhodic Hapludox
Litólicos RLe e RLm típicos, A moderado e chernozêmico, textura média Loamy, Lithic Udorthent

Monte Cristo PVAd e PVAe abrúptico e arênico abrúptico, A moderado, textura 
arenosa/média e média/argilosa

Sandy over Fine-loamy and Sandy over Fine, Arenic Kandiudult 
and Arenic Kandiudalf

Olaria NXd típico, A moderado, textura argilosa e muito argilosa Fine and Very Fine, Typic and Rhodic Kandiudult
Podzóis ESKo típico, textura arenosa/média Sandy over Coarse-loamy, Humod
Ribeirão Preto LVef típico, A moderado, textura argilosa e muito argilosa Fine and Very Fine, Rhodic Eutrudox

Santa Cruz PVAd e PVAe abrúptico, A moderado, textura média/argilosa media/muito 
argilosa e argilosa/muito argilosa Fine-loamy over Fine, Typic Kandiudult and Typic Kandiudalf

Santana NXe chernossólico, textura média/argilosa Fine-loamy over Fine, Typic Paleudoll
São Lucas LAd e LVAd psamítico, A moderado, textura média Coarse-loamy, Typic Hapludox and Kandiudox

Serrinha PVAd, PVAe, PAd e PAe arênico abrúptico, A moderado e fraco, textura 
arenosa/média

Sandy over Fine-loamy, Arenic Paleudult, Grossarenic Paleudult, 
Arenic Paleudalf and Grossarenic Paleudalf

Sete Lagoas CYbd e CYbe típico, A moderado e proeminente, textura argilosa e média Fine and Fine-loamy, Fluventic and Typic Dystrudept
Taquaraxim CXbd e CXbe típico, A moderado e proeminente, textura média e argilosa Fine-loamy, Typic Dystrudept
Três Barras LAd úmbrico, textura media Coarse- and Fine-loamy, Xanthic and Typic Hapludox
aAbreviations as in the Brazilian System of Soil Classification (SiBCS) (Santos et al., 2013).

Table 2 – Summary of preprocessing procedures.
Procedures Importance /Application
Stratified sampling Stratified data sampling separating training and testing datasets in the reference area.
Data Selection Identification and exclusion of inconsistent information.
Discretization Transformation of continuous quantitative variables into categorical ones.
Undersampling Resampling by gradual elimination of information from the majority classes in the training of unbalanced classes.
Oversampling Replication sampling of minority classes in training unbalanced classes.
Class Balancing Resampling with standardization of the distribution (frequency) of prediction classes.
Selection of Variables Evaluation of the predictive power of each explanatory variable and elimination of those detrimental to machine learning.
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(Table 3). Performance of classifiers for each prediction 
class was evaluated by accuracy, true and false positive 
rates (TPR and FPR), and by the area under the curve 
(Bradley, 1997). To evaluate the global performance of 
classifiers, we used global accuracy (Weiss and Zhang, 
2003), weighted mean precision, weighted average of 
the true positive (weighted mean sensitivity) and the 
false positive (one minus weighted mean specificity), 
and the Kappa index (Cohen, 1960).

Results

Preprocessing procedures

Discretization
Profile and plane curvature performed better as 

discrete variables, whereas elevation, distance to drain-
age and topographic wetness index (TWI) had better 
performance as continuous variables. Slope had better 
performance used in conjunction with its discrete form 
(relief class). Small differences in performance were 
considered for pre-selecting the type of predictive at-
tribute. The best adjustment results in these cases are 
shown in Table 4.

Accuracy values were around 50 % and Kappa 
indices between 0.35 and 0.45, meaning fair and good 
agreement (Table 4). The weighted averages of true posi-
tive rates (average sensitivity) for the best models were 
between 42 % and 50 % (Table 4). The specificity of the 
rules generated by the models was high, indicated by 
the low mean of false positive rates, with values from 5 
% to 9 % (Table 4).

Data selection
Data selection was fundamental to the acceptance 

of models generated by all evaluated algorithms. Accura-
cy ranged from 65 % to 78 %, and the Kappa index from 
0.50 to 0.67, representing good and very good agreement 
(Table 5). Composite map units (soil associations and soil 
complexes) from conventional soil maps showed incon-
sistency (reduction of predictive performance) and were 
therefore removed.

Weighted average of true positive rates (TPR) 
(mean sensitivity) for models generated by convention-
al map units were between 65 % and 68 % (Table 5). 
Weighted average of false positive rates (FPR) ranged 
from 6 to 16 %.

Resampling procedures (subsampling, class bal-
ancing and oversampling) did not favor model perfor-
mance. There was a considerable reduction in global 

accuracy and class precision as soil unit distribution 
approached the fully balanced distribution (1.0) (Table 
6). Databases always produced models with better per-
formance when they were not submitted to resampling 
procedures.

Results for variable selection showed that all the 
predictive variables were important for the generated 
models, with classifier performance reduction as any 
predictive variable was removed from databases. Evalu-
ation of variables by chi-square (χ2) and information gain 
methods showed attributes in the following descending 
order of predictive power: elevation, geology, distance 
to drainage, slope gradient, relief class, topographic wet-
ness index (TWI), profile curvature and plane curvature 
(Table 7).

Algorithms
Global model evaluation used the following met-

rics: accuracy (overall accuracy), precision, weighted 
mean of true positive rates, weighted mean of false 
positive rates and Kappa index (Table 5). The algorithm 
with the best overall performance was Random Forest, 
with an Ensemble Method for Prediction approach that 
generated 20 decision trees for the creation of models. 

Table 3 – Algorithms used for supervised classification.
Algorithm (classifier) Reference Type of approach
J.48 (C4.5) Quinlan (1993) DecisionTree (divide and conquer process based on data information gain)
Random Forest Breiman (2001) Ensemble (bootstrap aggregating based on random decision trees)
Multi-Layer Perceptron Si et al. (2003) Artificial Neural Networks (transfer functions based on input signal, connections weight and neuron bias)
Bayes Net Hall et al. (2009) Bayesian Classifiers (integrates Bayesian probability function to ANN)

Table 4 – Best algorithm performances after discretization 
procedures. Classification in soil unit. Accuracy = Global Accuracy; 
TPR = weighted average of true positive rates; FPR = weighted 
average of false positive rates.

Algorithmsa Accuracy Error Precision TPR FPR Kappa
---------------------------------------------------------- % ---------------------------------------------------------

J48 50.19 49.81 48.10 50.20 5.50 44.70
MLP 47.87 52.13 44.90 47.90 8.80 39.76
Bayes Net 42.52 57.48 37.30 42.50 6.50 35.78
aAlgorithm Random Forest could not be used with this dataset due to 
computational limitations.

Table 5 – Performance of the algorithms after discretization and data 
selection. Classification in soil units. Accuracy = Global Accuracy; 
Precision = weighted average precision; TPR = weighted average 
of true positive rates; FPR = weighted average of false positive 
rates.

Algorithms Accuracy Error Precision TPR FPR Kappa
-------------------------------------------------------- % --------------------------------------------------------

Random Forest 78.13 21.87 77.70 78.10 12.80 67.0
J48 76.09 23.91 75.30 76.10 13.50 64.0
MLP 71.64 28.36 71.00 71.60 15.70 57.0
Bayes Net 65.75 34.25 65.00 65.70 15.30 50.0
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Algorithm J48 (Decision Tree) presented results close to 
those of Random Forest, but always inferior, whereas 
the algorithms MLP (Artificial Neural Networks) and 
Bayes Net (Bayesian Neural Networks) showed worse 
performance, despite Kappa indexes of 0.57 and 0.50, 
respectively (Table 5).

Precision per class was evaluated in order to dif-
ferentiate the performance of the models of each algo-
rithm per predicted class. Results showed that preci-

Table 6 – Performance of the algorithms for holdout accuracy (2/3 training and 1/3 test) after subsampling (0.5), class balancing (1.0) and 
resampling keeping the original data distribution (0.0).

Random Forest J48 Bayes Net
1.0 0.5 0.0 1.0 0.5 0.0 1.0 0.5 0.0

Weighted average precision (%)
72.10 75.80 76.50 68.80 71.40 71.70 40.68 61.46 65.00

Soil units Precision per Soil Unit
Alva 0.131 0.206 0.394 0.098 0.128 0.372 0.041 0.159 0.756
Areia Quartzosa 0.730 0.803 0.805 0.699 0.758 0.755 0.696 0.738 0.736
Baguari 0.433 0.701 0.754 0.360 0.564 0.617 0.161 0.347 0.427
Barão Geraldo 0.563 0.663 0.717 0.517 0.597 0.631 0.155 0.179 0.195
Campestre 0.282 0.495 0.648 0.211 0.346 0.453 0.068 0.123 0.291
Canela 0.761 0.803 0.782 0.709 0.740 0.731 0.501 0.558 0.589
Coqueiro 0.205 0.455 0.746 0.147 0.260 0.378 0.036 0.061 0.077
Diamante 0.500 0.429 0.000 0.231 0.292 0.000 0.000 0.000 0.000
Engenho 0.071 0.127 0.231 0.042 0.079 0.072 0.041 0.071 0.067
Estruturada 0.441 0.565 0.639 0.327 0.434 0.506 0.082 0.111 0.127
Hidromórficos 0.423 0.587 0.646 0.406 0.523 0.570 0.269 0.330 0.356
Hortolândia 0.666 0.680 0.699 0.577 0.585 0.584 0.289 0.320 0.380
Itaguaçu 0.732 0.688 0.700 0.673 0.660 0.560 0.087 0.313 0.167
Laranja Azeda 0.370 0.584 0.718 0.291 0.457 0.590 0.160 0.326 0.574
Limeira 0.743 0.773 0.747 0.695 0.728 0.718 0.510 0.573 0.575
Litólicos 0.371 0.614 0.653 0.300 0.481 0.525 0.187 0.368 0.467
Monte Cristo 0.720 0.735 0.748 0.632 0.642 0.668 0.238 0.285 0.376
Olaria 0.350 0.553 0.655 0.259 0.398 0.529 0.098 0.194 0.277
Podzóis 0.053 0.121 0.250 0.038 0.045 0.083 0.027 0.056 0.000
Ribeirão Preto 0.371 0.394 0.381 0.241 0.263 0.212 0.096 0.129 0.089
Santa Cruz 0.461 0.680 0.699 0.420 0.581 0.589 0.321 0.463 0.486
Santana 0.676 0.800 0.867 0.430 0.630 0.565 0.108 0.350 0.579
São Lucas 0.144 0.341 0.526 0.113 0.199 0.277 0.049 0.063 0.054
Serrinha 0.862 0.806 0.792 0.840 0.794 0.780 0.762 0.742 0.744
Sete Lagoas 0.410 0.463 0.532 0.436 0.493 0.592 0.236 0.323 0.393
Taquaraxim 0.587 0.666 0.774 0.516 0.585 0.674 0.363 0.418 0.449
Três Barras 0.902 0.893 0.904 0.868 0.860 0.868 0.698 0.688 0.728

Table 7 – Assessment of covariates by their prediction power based 
on information gain and chi-square (χ2). 

Covariates Information Gain χ2

Elevation 0.885 2,141,866
Geology 0.774 1,258,271
Distance to Drainage 0.219 270,550
Slope Gradient 0.108 168,237
Relief Class 0.074 74,552
TWI 0.054 58,413
Profile Curvature 0.049 45,768
Plane Curvature 0.028 23,355

sion per class followed the results for global model 
evaluation (Table 8). In general, models with better 
overall performance showed better accuracy perfor-
mance per prediction class. Exceptions occurred for 
Campestre and Baguari soil units, where the accuracy 
of MLP algorithm was greater than that obtained by 
J48. For Sete Lagoas, Engenho, Alva and Diamante 
soil units, the model generated by the J48 algorithm 
showed better performance than that developed by 
Random Forest. Precision for Itaguaçu, Santana and 
Alva units was greater in the model generated by 
Bayes Net algorithm than by MLP, in which they ob-
tained zero precision. The São Lucas unit had better 
precision in the model generated by MLP algorithm 
(Table 8).

Assessment of categorical levels of SiBCS
As for the evaluated categorical levels of SiBCS 

(Suborder, Great Group and Subgroup), there was little 
difference in accuracy and Kappa between the catego-
ries. A small decrease in performance was associated 
with an increase in the detail of the categorical level, the 
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Table 8 – Precision of algorithms evaluated by Hold-Out (2/3 training 
and 1/3 test) in each soil map unit and classification in Soil Units.

Soil Unit Random Forest J48 MLP Bayes Net
Alva 0.411 0.550 0.000 0.806
Areia Quartzosa 0.826 0.809 0.760 0.736
Baguari 0.778 0.708 0.709 0.441
Barão Geraldo 0.726 0.670 0.510 0.205
Campestre 0.678 0.552 0.644 0.276
Canela 0.800 0.749 0.624 0.591
Coqueiro 0.744 0.612 0.000 0.000
Diamante 0.333 0.600 0.000 0.000
Engenho 0.000 0.083 0.000 0.000
Estruturada 0.687 0.586 0.487 0.120
Hidromórficos 0.656 0.625 0.419 0.356
Hortolândia 0.727 0.645 0.582 0.376
Itaguaçu 0.721 0.596 0.000 0.154
Laranja Azeda 0.728 0.640 0.689 0.578
Limeira 0.758 0.751 0.587 0.586
Litólicos 0.700 0.640 0.559 0.477
Monte Cristo 0.783 0.694 0.621 0.375
Olaria 0.693 0.585 0.425 0.322
Podzóis 0.667 0.200 0.000 0.000
Ribeirão Preto 0.494 0.338 0.000 0.075
Santa Cruz 0.718 0.695 0.643 0.489
Santana 0.947 0.735 0.000 0.481
São Lucas 0.574 0.409 0.804 0.067
Serrinha 0.792 0.781 0.753 0.742
Sete Lagoas 0.566 0.635 0.624 0.412
Taquaraxim 0.790 0.714 0.602 0.453
Três Barras 0.911 0.889 0.781 0.733

Table 9 – Best performance of the algorithms evaluated by Hold-Out 
(2/3 training and 1/3 test), with classification in the 2nd, 3rd and 4th 
categorical levels of SiBCS.

Algorithms
SiBCS hierarchical levels SiBCS hierarchical levels

2nd 3rd 4th 2nd 3rd 4th

Accuracy Kappa
-------------------------------------------------------- % --------------------------------------------------------

Random Forest 78.69 78.61 78.18 67.90 67.81 67.42
J48 76.77 76.62 76.25 65.00 64.89 64.57
MLP 71.74 72.22 71.45 57.42 57.78 57.42
Bayes Net 66.71 66.37 65.84 51.28 50.86 50.42

algorithm MLP (Artificial Neural Networks) was an ex-
ception, and had better performance with classification 
at the 3rd categorical level of SiBCS (Great Group) (Table 
9). Predictions of conventional map units classified by 
the Brazilian System of Soil Classification (SiBCS) (Table 
9) were very similar to classification by soil units (Table 
5), even though slightly better.

Results for the weighted average of true positive 
rates in each class by the algorithm of best performance 
with classification at the 4th level (Subgroup) of SiBCS 
was 78 %, indicating good average sensitivity (average 
chance of the classifier to hit a particular class) (Table 

10). The weighted mean false positive rates were 13 %, 
indicating that the classification rules also showed good 
average specificity (average chance of the classifier fail-
ing in a given class) due to the low number of false posi-
tive occurrences (Table 10).

The lowest sensitivity values were for “Planosso-
los” (Alfisols with abrupt textural changes), “Espodos-
solos” (Spodosols), “Chernossolos” (Mollisols), “Latos-
solos Amarelos and Vermelho-Amarelos psamíticos” 
(coarse- and fine-loamy, Xanthic and Typic Oxisols), 
and “Latossolos Vermelhos Eutroférricos” (Rhodic Eu-
trudox). Rules created for the remaining classes showed 
good sensitivity, the best results being obtained for “Ar-
gissolos Vermelho-Amarelos” (Arenic and Grossarenic 
Paleudults and Paleudalfs) and “Latossolos Amarelos 
Distróficos úmbricos, textura media” (coarse- and fine-
loamy Typic Hapludox), with sensitivity values close to 
0.9 (Table 10).

The low false positive rates indicate that the rules 
created by the Random Forest algorithm (committee of 
20 decision trees) showed good specificity with the con-
ventional map units and classification at the 4th level 
(Subgroup) of the SiBCS (Table 10). Values obtained for 
the area under the curve were quite satisfactory, rang-
ing from 0.7 to 1.0 (Table 10).

Discussion

Preprocessing procedures were extremely im-
portant to improving the performance of the models 
generated by the algorithms. When evaluating data 
selection, certain information showed inconsistent for 
machine learning (Han et al., 2011), as they drastically 
reduced the performance of the evaluated models in 
supervised classification. This was observed for map 
units of soil associations and soil complexes. Com-
posite map units (soil associations or complexes) are 
supposed to carry greater complexity of soil forming 
factors than those present in soil consociations. Thus, 
as soil forming factors relief and parent material were 
used for deriving covariates for soil prediction, this 
greater complexity could affect the results. Exclusion 
of composite map units from the training set does not 
preclude to map areas with features associated with 
these map units since soil complex and soil associa-
tions, composed of two or more soil consociations, are 
represented by the single unit of the main consociation 
in the training set. Reducing complexity of predictive 
covariates has been a successful strategy for improv-
ing the prediction of soil map units (Ten Caten et al., 
2012).

To deal with the substantial amount of informa-
tion extracted from the training areas (1,013,329 instanc-
es after preprocessing) we used the Hold-Out method, 
2/3 for training and 1/3 for model testing, increasing 
the amount of information for training and testing the 
models, optimizing the analysis procedure in relation to 
computational capacity or processing time.
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Results from class balancing followed the pattern 
found by Crivelenti et al. (2009), with a decrease in per-
formance of classifiers after class balancing (training 
in equal frequency classes). This indicates that, in this 
case, undersampling majority classes was detrimental 
to the machine learning process, probably due to the 
failure of classifiers to learn important relationships. 

Therefore, even though an improvement in the predic-
tion of minority classes after balancing was expected, 
class balancing was detrimental to the overall perfor-
mance of the models.

Random Forest, a supervised classification method 
with ensemble approach, produced models with the best 
performances, similar to the findings of Dias et al. (2016), 

Table 10 – Performance per class of the Random Forest algorithm. Classification in the 4th level (Subgroup) of SiBCS. TP = true positive rate; 
FP = false positive rate; AUC = area under th e curve.

TP FP Precision AUC Soil classa U.S. Soil Taxonomy

0.701 0.001 0.811 0.972 CXbd e CXbe típicos, A moderado e proeminente, textura média e 
argilosa Fine-loamy, Typic Dystrudept

0.683 0.006 0.578 0.990 CYbd e CYbe típicos, A moderado e proeminente, textura argilosa 
e média Fine and Fine-loamy, Fluventic and Typic Dystrudept

0.000 0.000 0.000 0.707 ESKo típico, textura arenosa/média Sandy over Coarse-loamy, Humod

0.601 0.006 0.663 0.973 GXvd, GXve, GXbd e GXbe típicos, A moderado e proeminente, 
textura argilosa Fine, Aquept, Aquent, Aquox, Aquult, Aqualf

0.180 0.002 0.564 0.860 LAd e LVAd psamíticos, A moderado Coarse-loamy, Typic Hapludox and Kandiudox

0.902 0.001 0.922 0.997 LAd úmbrico, textura média Coarse- and Fine-loamy, Xanthic and Typic Hapludox

0.300 0.000 0.770 0.903 LVAd psamítico e típico, A moderado e fraco, textura média Coarse-loamy, Typic Hapludox

0.617 0.001 0.739 0.965 LVAd típico, A moderado, textura média Fine-loamy, Typic Hapludox

0.850 0.005 0.759 0.994 LVd típico, A moderado, textura argilosa e muito argilosa Very Fine and Fine, Rhodic Hapludox

0.617 0.002 0.737 0.986 LVd típico, A moderado, textura média Fine Loamy, Rhodic Hapludox

0.682 0.002 0.738 0.987 LVdf típico, A moderado, textura argilosa e muito argilosa Fine and Very Fine, Rhodic Hapludox

0.212 0.000 0.607 0.913 LVef típico, A moderado, textura argilosa ou muito argilosa Fine and Very Fine, Rhodic Eutrudox

0.010 0.000 0.143 0.743 MTf e MTo típicos, textura argilosa Very Fine and Fine, Typic Paleudoll

0.611 0.000 0.733 1.000 NVdf latossólico, A moderado, textura argilosa ou muito argilosa Fine and Very Fine, Kandiudalfic Eutrudox and Rhodic 
Kandiudox

0.546 0.001 0.655 0.964 NVef e NVdf típicos, A moderado, textura argilosa e muito argilosa Very Fine and Fine, Kandiudalfic Eutrudox

0.527 0.001 0.669 0.943 NXd típico, A moderado, textura argilosa e muito argilosa Fine and Very Fine, Typic and Rhodic Kandiudult

0.759 0.000 0.837 0.991 NXe chernossólico, textura média/argilosa Fine-loamy over Fine, Typic Paleudoll

0.707 0.002 0.763 0.988 PVAd e PVAe abrúpticos e arênico abrúpticos, A moderado, textura 
arenosa/média e média/argilosa

Sandy over Fine-loamy and Sandy over Fine, Arenic 
Kandiudult and Arenic Kandiudalf

0.572 0.000 0.490 0.998 PVAd e PVAe abrúpticos, A moderado, textura arenosa/média Sandy over Fine-loamy, Arenic and Typic Paleudult

0.571 0.021 0.714 0.931 PVAd e PVAe abrúpticos, A moderado, textura média/argilosa, 
média/muito argilosa e argilosa/muito argilosa

Fine-loamy over Fine, Typic Kandiudult and Typic 
Kandiudalf

0.604 0.006 0.769 0.943 PVAd e PVAe típico e abrúpticos, A moderado, textura média e 
média/argilosa Fine-loamy, Typic Kandiudult

0.902 0.235 0.793 0.907 PVAd, PVAe, PAd e PAe arênicos abrúpticos, A moderado e fraco, 
textura arenosa/média

Sandy over Fine-loamy, Arenic Paleudult, Grossarenic 
Paleudult, Arenic Paleudalf and Grossarenic Paleudalf

0.836 0.003 0.788 0.994 PVd e PVAd típicos, A moderado, textura média e média/argilosa Fine-loamy over Fine, Typic Kandiudult

0.412 0.001 0.677 0.947 PVe nitossólico e NVe típico, A moderado, textura argilosa/muito 
argilosa Fine, Rhodic Kandiudult and Kandiudalf

0.518 0.011 0.702 0.916 RLe e RLm típicos, A moderado e chernozemico, textura média Loamy, Lithic Udorthent

0.757 0.040 0.829 0.956 RQo típico, A moderado Typic Quartzipsamment

0.000 0.000 0.000 0.964 SXe e SXd típicos e vertissólicos, A moderado, textura média/
argilosa

Fine-loamy over Fine, Vertic, Albaquic and Typic 
Hapludalf

0.782 0.128 0.777 0.929 Weighted average
aAbbreviations as in the Brazilian System of Soil Classification (SiBCS) (Santos et al., 2013).
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and Chagas et al. (2017), surpassing J.48, a decision tree 
algorithm. This opposes the findings of Ten Caten et al. 
(2013), in terms of accuracy and kappa indexes above 
70 % when using decision trees in smaller datasets than 
those studied here. The use of Bootstrap Aggregating 
(Bagging) in the Random Forest algorithm shows advan-
tages due to the combination of classifiers (Zhou, 2012). 

The high performance of the model generated by 
the Random Forest algorithm at the 4th level (Subgroup) 
of SiBCS (accuracy above 78 % and kappa index above 
67 %) indicates that the approach has great potential for 
producing digital pedological maps compatible to me-
dium and high intensity reconnaissance (4th order) soil 
surveys.

Some of the minority classes were better predict-
ed by models with lower global performance. However, 
in all cases the information gain with these individual 
classes was not significant enough to improve the overall 
performance of the models. This fact may be due, in the 
main, to the prevalence of certain classes in the training 
area, which resulted in assigning great weight to small de-
creases in the performance of these majority classes. The 
high accuracy level in most of the predicted classes is in-
dicative of the high predictive power of the models tested.

Conclusions

Composite soil map units (soil complex and soil 
associations) proved to be inadequate for the machine 
learning process, since their exclusion from the training 
dataset improved overall prediction.

When modeling soil map units for pedological 
mapping, training on unbalanced databases outper-
formed training on balanced databases, showing no 
need for class balancing for machine learning on the 
studied dataset.

The Random Forest algorithm had good perfor-
mance for soil class prediction and, though requiring 
preprocessing procedures, outscored algorithms of 
different approaches, such as single Decision Trees, 
Artificial Neural Networks and Bayesian Classifica-
tion.

The applied predictive variables (terrain attributes 
and geology) trained on 1:100,000 soil survey maps 
showed excellent performance for predicting soil map 
unit distribution, and can be used to create digital pe-
dological maps consistent with high intensity reconnais-
sance soil survey (4th order) maps.
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