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ABSTRACT: A large set of variables is assessed for progeny selection in a plant-breeding 
program and other agronomic fields. The meta-analysis of the coefficient of variation (CVe) 
produces information for researchers and breeders on the experimental quality of trials. This 
analysis can also be applied in the decision-making process of the experimental plan regarding 
the experimental design, the number of repetitions, and the treatments and plants/progenies to 
be measured. In this study, we evaluated the dataset distribution and the descriptive statistics 
of CVe through the Frequentist and Bayesian approaches, aiming to establish the credibility and 
confidence intervals. We submitted CVe data of ten wheat (Triticum aestivum L.) traits reported in 
1,068 articles published to the Bayesian and Frequentist analyses. Sample data were analyzed via 
Gamma and normal models. We selected the model with the lowest Akaike Information Criterion 
(AIC) value, and then we tested three link functions. In the Bayesian analysis, uniform distributions 
were used as non-informative priors for the Gamma distribution parameters with three ranges 
of q~U (a,b). Thus, the prior probability density function was given by: p( ) , ,θ

β α
θ α β=

−
∈  

1
. The 

Bayesian and Frequentist approaches with the Gamma model presented similar results for CVe; 
however, the range Bayesian credible intervals was narrower than the Frequentist confidence 
intervals. Gamma distribution fitted the CVe data better than the normal distribution. The credible 
and confidence intervals of CVe were successfully applied to wheat traits and could be used as 
experimental accuracy measurements in other experiments.
Keywords: Triticum aestivum L., CVe probability distribution, Gamma distribution, credible and 
confidence interval

Meta-analysis of the experimental coefficient of variation in wheat using the Bayesian 

Maicon Nardino1* , Fabyano Fonseca e Silva2 , Tiago Olivoto3 , Willian Silva Barros4 , Chainheny Gomes de Carvalho1 , Victor Silva Signorini1 , Henrique 
Caletti Mezzomo1 , Cleiton Renato Casagrande1

1Universidade Federal de Viçosa – Depto. de Agronomia, 
Av. P.H. Rolfs, s/n. – Campus Universitário – 36570-900 – 
Viçosa, MG – Brasil. 
2Universidade Federal de Viçosa – Depto. de Zootecnia – 
Viçosa, MG – Brasil. 
3Universidade Federal de Santa Catarina/CCA – Depto. de 
Fitotecnia, Rod. Admar Gonzaga, 1346 – 88034-000 – 
Florianópolis, SC – Brasil.
4Universidade Federal de Pelotas/IFM – Depto. de 
Matemática e Estatística, C.P.354 – Campus Capão do Leão 
– 960001-970 – Pelotas, RS – Brasil. 
*Corresponding author <nardino@ufv.br>

Edited by: Thomas Kumke

Received July 28, 2021
Accepted April 13, 2022

Introduction

In many countries, governmental authorities require the 
evaluation of a new cultivar in officially registered trials 
before its release. The estimated coefficient of variation 
(CVe) is usually essential for this process and has been 
used as a parameter of experimental quality (Piepho and 
Möhring, 2006). The CVe must present adequate levels 
depending on the species and traits available (Resende 
and Duarte, 2007; Arnhold and Milani, 2011). This 
measurement considers the experimental estimate error 
( σ̂e

2  is the relation mean overall of the experiment and 
can be easily obtained as 

CVe e=













×

ˆ
ˆ
σ
µ

2

100 .

Classifications for the CVe magnitude have been 
proposed for several crops (Albert and Zhang, 2010; 
Fritsche-Neto et al., 2012; Couto et al., 2013; Aerts et 
al., 2015). The Frequentist approach has been used to 
estimate the CVe (Fritsche-Neto et., 2012; Mora and 
Arriagada, 2016; Nardino et al., 2020); nevertheless, 
few proposals take into account the CVe distribution for 
a trait that follows a non-normal distribution, that is, 
robust methods are necessary, since the distribution is 
unknown in many cases.

The Bayesian inference can be very useful to 
evaluate the CVe classification, since it allows estimating 

parameters and relating measurements of association 
in non-normally distributed data or where asymptotic 
assumptions are not appropriate, due to sparse data or 
small sample sizes. However, no studies were found in 
the literature for wheat crop (Triticum aestivum L.) that 
use the Bayesian approach for the CVe classification. 
The advantages of the Bayesian approach are mainly 
related to the independence of normally distributed data, 
considering that space parametric CVe (%) is > 0 and the 
normal distribution is – ∞ + ∞. Moreover, this method 
offers flexibility to choose the dataset distribution and to 
incorporate prior knowledge on model parameters (Silva 
et al., 2013).

In the literature, no studies on cross-information 
with the Frequentist and Bayesian approaches were 
observed on dataset distributions or descriptive statistics 
of the CVe in wheat. Therefore, we searched in the leading 
Brazilian journals for the CVe values in wheat traits via 
the meta-analysis. The variables studied are relevant 
for breeding programs to select and estimate genetic 
gain, as well as in the plant science field for studies 
on cultivar characterization. Research on experimental 
quality in these and other fields via different statistical 
approaches is scientifically relevant. Here, we evaluated 
the distribution of the CVe and descriptive statistics 
through the Frequentist and Bayesian approaches to 
establish credibility and confidence intervals for ten 
wheat traits.
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Materials and Methods

Data source 

We researched 1,068 articles on wheat published between 
1970 and 2020 in all editions of the most renowned Brazilian 
scientific journals (Table 1). These data strongly support 
statistical tests to establish criteria of CVe classification 
for the most evaluated traits in wheat. We collected 
experimental CVe values from all journals listed in Table 1 
and accessed all articles on the journal’s online page. The 
following search terms were used: Triticum aestivum L., 
wheat, trigo, coefficient of variation, CV %, Triticum. 

The CVe data were collected for the following traits: 
grain yield (GY, n = 990); days for flowering (DF, n = 98); 
grain yield per plant (GYP, n = 64); hundred-grain weight 
(HGW, n = 63); hectoliter weight (HW, n = 163); spike 
length (LS, n = 52); number of grains per spike (NGS, n 
= 115); number of spikelets per spike (NSPS, n = 76); 
plant height (PH, n = 209); and thousand grain weight 
(TGW, n = 142). We calculated the standard error of the 
mean (SEM) for the ten traits as the estimators as follows: 
SEM

n
= σ  and the inverse of square SEM was obtained: 

1
2SEM

 . Estimated values are presented in Table 1. 

Database reviews

The initial analysis for data inspection revealed that 
90.7 % was obtained from experiments arranged in a 
randomized complete block design (RCBD), 6.17 % was 
obtained from completely randomized design (CRD), 
2.53 % was obtained from an experiment conducted in 
lattice design (DLAT), and 0.6 %, in the design of tracks. 

The data were tabulated in an MS Excel spreadsheet 
containing the categorical traits of the journal, publication 
year, number of treatments, number of replications, and 
the experimental CVe values of traits, prior to preparation 
and organization for the statistical analyses. 

Statistical analyses

Frequentist statistics

Model selection 

The goodness-of-fit of the models to the data was tested 
by the Akaike information criterion (AIC), as follows: 

AIC = –2LogL + 2p

Table 1 – Database of the experimental coefficient of variation (CVe) used in the Bayesian and Frequentist analyses.

Journal Period n-sample block n-mean treatment n-mean
Pesquisa Agropecuária Brasileira 1970–2020 246 3.76 72.00
Bragantia 1973–2020 162 3.37 34.65
Acta Scientiarum Agronomy 2007–2020 3 3.66 20.00
Scientia Agricola 1996–2020 6 5.00 53.33
Crop Breeding Applied Biotechnology 2002–2020 129 2.91 53.12
Bioscience Journal 2009–2020 15 3.93 11.13
Revista Ceres 1997–2020 13 3.77 15.30
Ciência e Agrotecnologia 1999–2020 6 3.83 24.00
Ciência Rural 1993–2020 55 4.20 17.48
Revista Brasileira de Ciências Agrárias 2012–2020 22 3.68 120.00
Pesquisa Agropecuária Tropical 2010–2020 12 4.00 13.40
Semina 2005–2020 22 3.95 16.90
12ª Reunião Técnica 2018 63 4.03 5.90
13ª Reunião Técnica 2019 314 3.74 34.36
Overall  1068 3.85 35.11
Variable* n-sample CV (%) - mean SEM² 1/SEM²
GY 990 12.64 0.042 24.020
DF 98 3.70 0.056 17.746
GYP 64 13.77 0.968 1.033
HGW 63 8.14 0.357 2.804
TGW 142 5.93 0.180 5.568
HW 163 2.66 0.085 11.716
PH 209 6.06 0.215 4.642
LS 52 6.65 0.156 6.402
NSPS 76 6.13 0.103 9.694
NGS 115 11.05 0.171 5.860
Period = time interval between the start and end of the search; n-sample = number of articles with CVe of the wheat used; block n-mean = numerical average of the 
block of articles used in this research; treatment n-mean = numerical mean of treatment of the articles used in this research; SEM² and 1/SEM2 = squared standard 
error mean and inverse of square SEM; *days for the flowering (DF); grain yield (GY); grain yield per plant (GYP); hundred-grain weight (HGW); hectoliter weight (HW); 
spike length (LS); number of grains per spike (NGS); number of spikelets per spike (NSPS); plant height (PH); and thousand grain weight (TGW).
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where: p is the number of parameters, and LogL is 
the logarithm of the maximum value of the likelihood 
function. The best model has the smallest AIC or less 
information loss (Casella and Berger, 2002; Cavanaugh 
and Neath, 2019). We also tested three link functions in 
the Gamma model that used identity, log and inverse, 
and AIC to select the best function link. 

Initially, the CVe data of each variable were used 
to obtain data distributions and projections of the normal 
and Gamma distribution. Then, a generalized linear 
model (GLM) was fitted (intercept only), assuming a 
Gamma distribution. We tested three link functions, 
using the GLM function of the R software system, as 
follows:

glm (trait1, family = Gamma(link = identity))

glm (trait1, family = Gamma(link = inverse))

glm (trait1, family = Gamma(link = log))

We computed the lower confidence interval (LCi) 
and estimated mean and upper confidence interval 
(UCi).

The statistical analysis was carried out in the R 
software system (R Core Team, version 4.0.2), using the 
metan (Olivoto and Lúcio, 2020) and ggplot2 packages 
(Wickham, 2016). The scripts that were used to carry 
out the analysis are given in Appendix I. 

Bayesian approach

Uniform distributions were used as non-informative 
priors for the Gamma distribution parameters, 
where three ranges were evaluated: r ~ U(0 – 5) 
and mu ~ U(0 –5), r ~ U(0 – 10) and mu ~ U(0 – 10) 
and r ~ U(0 – 20) and mu ~ U(0 – 20) with q~U 
(a, b). The values of deviance information criterion 
(DIC) were computed. Thus, the prior probability 
density function was given by: p( ) , ,θ

β α
θ α β=

−
∈[ ]1

. The uniform distributions have been used in the 
Bayesian analysis for both conceptual and practical 
reasons (Gelman, 2006). When assuming the 
Gamma distribution for the data and the uniform 
distribution for Gamma parameters, the posterior 
density function was given as p(q|y)~Gamma(q|a,b), 
with the following density function: p e( )

( )
,θ β

α
θ θ

α
α βθ= >−

Γ
1 0

, where the mean (expectated) is equal to E( )θ α
β

=  
(Gelman et al., 2004). Iterations of 10,000, with 
burn-in and thin given, respectively, by 1,000 and 10 
iterations were used.

The following statistical criteria of the Bayesian 
approach were used to develop the CVe classification 
of wheat crops: quantile 2.5 (q2.5), 1st quartile (q25), 
lower credible interval (LCi), posterior mean (Mean), 
upper credible interval (UCi), median (Md), standard 
deviation of the posterior (sd), 3rd quartile (q75), and 
quantile 97.5 (q97.5). 

The Highest Posterior Density interval (HPD) was 
used to obtain LCi and UCi with probability = 0.95. For 
the Bayesian analyses, we used boa package (Bayesian 
Output Analysis) (Smith, 2007). The OpenBUGS and 
package R R2OpenBUGS (Sturtz et al., 2005) were also 
used. The scripts for the Bayesian analyses are reported 
in Appendix I.

Results

Convergence and model fit

We used 10,000 iterations for burning and we realized 
a cut of the first 1,000 iterations. The results for all 
9,000 iterations of the parameters of deviance, r, and 
mu of Gamma distribution are demonstrated in the 
supplementary material (Appendix II A and II B), 
considering all the wheat traits evaluated in Table 2.

We used three models with different ranges for 
the parameters r and mu of uniform distribution in the 
script in Table 2, with a range of 0 – 5 in DIC_1, 0 
– 10 in DIC_2, and 0 – 20 in DIC_3. Thus, for each 
model, we generated the DIC of the traits. The values 
of DIC_1, DIC_2 and DIC_3 for GY were: 6,229, 6,230 
and 6,230; for DF: 403.9, 405.8 and 405.8; for GYP: 
6,229, 6,230 and 6,230; for HGW: 351, 352 and 352; for 
TGW: 726, 728 and 728; for HW: 631, 633 and 633; for 
PH: 1,086, 1,087 and 1,087; for LS: 246, 247 and 247; 
for NSPS: 352, 354 and 354; for NGS: 664, 664 and 664, 
respectively. 

The results of the DIC analysis for three models, 
considering ten traits, revealed that model 1, with 0 – 5 
range of uniform distribution, has lower DIC, indicating 
the model with the best fit from which we obtained the 
descriptive statistics and credible intervals.

We obtained the results of the posterior mean 
of three models and the credibility intervals (LCI and 

Table 2 – Results of deviance information criterion (DIC) analysis 
with three ranges for uniform distributions in the r and mu prior 
parameters DIC 1: 0 – 5, DIC 2: 0 – 10 and DIC 3: 0 – 20 and 
Akaike Information Criterion (AIC) for the Gamma model fit and for 
the normal model fit.

DIC DIC 1 DIC 2 DIC 3 Gamma AIC Normal AIC
GY 6229.00 6230.50 6230.50 6233.30 6462.80
DF 403.90 405.88 405.88 408.03 448.62
GYP 429.40 431.29 431.29 433.42 448.69
HGW 351.00 352.95 352.95 355.02 377.84
TGW 726.90 728.89 728.89 731.12 871.71
HW 631.80 633.74 633.74 636.76 894.67
PH 1086.00 1087.77 1087.77 1090.10 1398.6
LS 246.50 247.39 247.46 249.44 259.39
NSPS 352.90 354.41 354.37 356.44 375.42
NGS 664.00 664.42 664.45 666.49 671.91
Deviance information criterion (DIC); Akaike Information Criterion (AIC); grain 
yield (GY); days for the flowering (DF); grain yield per plant (GYP); hundred-
grain weight (HGW); thousand grain weight (TGW); hectoliter weight (HW); 
plant height (PH); spike length (LS); number of spikelets per spike (NSPS); and 
number of grains per spike (NGS).
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UCI, 95 %) (Figure 1). The smallest range between the 
credibility intervals was observed for Model 1 (r ~ U(0 
– 5) and mu ~ U(0 – 5)). For the posterior mean, the 
most significant difference between the three models 
was found in the trait grain yield plant (GYP), 0.07 %.

The Akaike Information Criterion (AIC) for the 
Gamma model of the Frequentist approach of the ten 
traits is shown in Table 2. The AIC for GY: 6,233.3, DF: 
408, GYP: 433.4, HGW: 355, TGW: 731.1, HW: 636.7, 
PH: 1,090.1, LS: 249.4, NSPS: 356.4, and NGS: 666.4, 
respectively. In the Gamma model, three link functions 
were tested using the AIC criterion to select the model 
best link function. No differences were observed 
between the link functions used, namely identity, Log, 
and inverse. Thus, we selected the identity link function 
due to the easiness to interpret the parameters.

We used a normal model and a Gamma model  
in data of ten traits and obtained the AIC (Table 2). All 
AIC values were higher in the normal model, where 
the AIC for GY was: 6,462.8, DF: 448.6, GYP: 448.6, 
HGW: 377.84, TGW: 871.7, HW: 894.6, PH: 1398.6, 
LS: 259.3, NSPS: 375.4, and NGS: 671.9. The Gamma 
model presented lower AIC values; thus, it adjusted 
better to the CVe values than the normal model.

Comparison Bayesian/Frequentist approaches

The results of posterior Bayesian distribution for the 
ten wheat traits evaluated regarding CVe are presented 
in Figure 2A. The posterior distribution range is short. 
GYP showed a greater CVe range, between 10 % and 
17.5 %, and a density above 0.4. The traits with shorter 
CVe range in the posterior distribution were DF, GY, 
and HW with values 3 – 4.5 %, 12 – 13.5 %, and 2 – 
3.3 %, besides all traits with a density equal to or above 
2. Figure 2B shows that the grouping of the traits in the 
same figure demonstrates that each variable has a shape 
of specific distribution or variability. 

The data results – salmon color, Gamma – 
blue and normal line – dotted line distribution – are 
presented in Figure 3 for the ten wheat traits. The 
traits revealed that the CVe data evaluated were better 
fitted with the Gamma distribution in relation to the 
normal distribution. We highlight the fit for the traits 
DF, TGW, HW and GY of the Gamma distribution also 
the different forms of the trait distribution for CVe.

Table 3 shows the results for the descriptive 
statistics of CVe of the ten traits evaluated in wheat 
by the Bayesian approach. Initially, we considered 
describing the results for descriptive statistics: 
quantile 2.5, 1st quartile, posterior mean, 3rd quartile 
and quantile 97.5.

The Bayesian approach obtained the following 
CVe values of the traits: days of flowering (DF, days) 
– 3.68 %; grain yield (GY, kg ha–1) – 12.64 %; grain 
yield plant (GYP, g) 13.68 %; hundred-grain weight 
(HGW, g) 8.07 %; hectoliter weight (HW, gL–1) 2.65 
%, length of the spike (LS, cm was 6.63 %, number 
of grains of the spike (NGS, units) 11.02 %; the 
number of spikelets/spike (NSPS, units) 6.12 %; plant 
height (PH, cm) 6.05 %; and thousand-grain weight 
(TGW, g) 5.92 %. For the quantiles statistics, the 
Bayesian approach revealed a GYP with the highest 
value for q25 – 13.61 %, q75 –13.84 %, which could 
be associated to the assessments carried out at the 
individual plant level.

We observed lower CVe values for the traits HW 
(q25: 2.63 % and q75: 2.70 %) and DF: (q25: 3.66 % 
and q75: 3.72 %).

Therefore, the credible interval LCi and UCi) 
was used to refer to the Bayesian approach, while 
the confidence interval (CI) was used to refer to the 
Frequentist approach (Figure 4). In both approaches 
DF and HW had the lowest CVe values, with a range 
between 3 and 4 % for DF and 2 and 3 % for HW. 
GY and GYP showed the highest CVe values, ranging 
between 12 and 13 % for GY, and 12 and 16 % for GYP; 
in both approaches, GY and GYP require attention in 
the experimental planning. 

The traits TGW, PH, NSPS, LS, HGW, and NGS 
revealed similar magnitudes for CVe, with values 
between 5 and 11 % for both approaches, considering 
the credible and confidence interval of 95 %.

Figure 1 – Posterior mean and credible intervals (LCI and UCI) for ten 
traits of wheat considering uniform distributions non-informative 
priors with parameters: Model_1 r ~ U(0, 5) and mu ~ U(0, 5), 
Model_2: r ~ U(0, 10) and mu ~ U(0, 10) and Model_ 3: r ~ U(0, 
20) and mu ~ U(0, 20), where: days for the flowering (DF), grain 
yield (GY), grain yield per plant (GYP), hundred-grain weight (HGW), 
hectoliter weight (HW), spike length (LS), number of grains per 
spike (NGS), number of spikelets per spike (NSPS), plant height 
(PH), and thousand grain weight (TGW).
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 The variable GYP presented the highest values 
for the interquartile range of credible and confidence 
interval of CVe. For the ten traits evaluated, the Bayesian 
approach showed a shorter range of credible intervals 
for posterior mean in relation to the confidence interval 
for the mean estimate, considering the model Gamma 
for the Frequentist and Gamma model with prior no-
informative for the Bayesian approach. 

Discussion

The DIC values for the Bayesian approach and the AIC 
for the Gamma model and the CVe of the ten traits in 
wheat as well as the values of the normal distribution are 
presented in Table 2. Based on the three DIC values, we 
selected the DIC 1 model with the uniform distribution 
parameters 0-5, due to the smaller deviance values. We 

Figure 2 – Posterior distribution of experimental CVe for ten traits in wheat individual (A) and jointly (B) where: days for the flowering (DF), grain 
yield (GY), grain yield per plant (GYP), hundred-grain weight (HGW), hectoliter weight (HW), spike length (LS), number of grains per spike (NGS), 
number of spikelets per spike (NSPS), plant height (PH), and thousand grain weight (TGW).
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observed differences between DIC 1 and AIC of the 
Gamma model, whose deviance values for the Bayesian 
model were lower than three units in eight of the ten 
traits evaluated. 

On the other hand, the AIC values of the normal 
model were surprisingly higher than the AIC values of 
the Gamma model for all wheat variables evaluated. 
These results directly impact on the CVe classification 
methods that use properties of the normal distribution. 
For the HW, PH, and TGW traits, for example, the 
difference between the AIC values was above 100 units. 
The AIC is a ubiquitous tool in statistical modeling 
and is an estimate for the out-of-sample error based 
on information theory. The AIC estimates the relative 
amount of information lost by a model, that is, the less 
information a model loses, the higher the quality of 
that model and the lower the AIC score. The criteria 
for model selection provide a valuable tool to identify 
a model of appropriate structure and dimension among 
candidates and are used to compare models based on 
different probability distributions for the outcome 
variable. A selection criterion assesses whether a fitted 
model offers an optimal balance between the goodness-
of-fit and the parsimony (Cavanaugh and Neath, 2019). 

Posterior and Frequentist distributions of the CVe 
of the evaluated traits presented some differences, mainly 
for the descriptive statistics. The CVe distribution for 
different traits is an interesting and partially conclusive 
aspect, since the absence of normal distribution of CVe 
of traits in wheat can be visually represented, regardless 
of the sample size. The literature presents many 
methods and studies on CVe with different species and 
most presuppose that the data is normally distributed. 
This is not always true, since the Gamma distribution 
demonstrated a more similar fit for the CVe data 
distribution for the ten traits evaluated here. 

The distributions of CVe data presented in Figures 
2 and 3 indicate a wide variability of CVe in wheat crops. 
The Bayesian and Frequentist approaches demonstrated 
contrasting distributions, while the estimate and 
posterior means as well as the credible and confidence 
intervals were similar. This significant variation is 
observed to justify the classification coefficient variation 
for these traits individually (Costa et al., 2002, Nardino 
et al., 2020). 

Non-normally distributed CVe is commonly 
observed, but this information is frequently neglected. 
The Bayesian approach has some advantages, such as 
flexibility in selecting the distributions for sample data 
and unknown parameters as well as the possibility of 
incorporating the prior knowledge about the parameters 
of the model (Sorensen and Gianola, 2002; Silva et al., 
2013). 

The values of the a posteriori mean and the 
mean of the Gamma model were similar. Associated 
to the average of the Bayesian and Frequentist models, 
we added the a posteriori standard deviation statistic 
and the standard error estimate. The values for these 

Table 3 – Results of descriptive statistics of analysis CVe data 
published for ten traits of wheat. q25 = first quartile; LCi = lower 
credible interval; UCi = upper credible interval; Mean: posteriori 
mean ± standard deviation a posteriori, q75 = third quartile, and 
mean ± standard error.

Statistics q25 LCi Mean UCi q75
   GY  

r 4.17 4.30 4.42
mu 0.33 0.34 0.35
Bayesian (r/mu) 12.61 12.26 12.64 ± 0.19 13.01 12.66
Frequentist (Gamma) 12.25 12.64 ± 0.20 13.03

   DF  
r 2.77 3.06 3.33
mu 0.75  0.83  0.91
Bayesian (r/mu) 3.66 3.27 3.68 ± 0.21 4.11 3.72
Frequentist (Gamma) 3.23 3.70 ± 0.24 4.17

   GYP  
r 2.9 3.27 3.62
mu 0.21  0.24  0.27
Bayesian (r/mu) 13.61 11.87 13.68 ± 0.95 15.60 13.84
Frequentist (Gamma) 11.84 13.77 ± 0.98 15.70

   HGW  
r 3.21 3.61 4
mu 0.39  0.45  0.5
Bayesian (r/mu) 8.01 7.07 8.07± 0.54 9.21 8.16
Frequentist (Gamma) 6.97 8.14 ± 0.60 9.31

   TGW  
r 2.73 2.96 3.17
mu 0.46  0.5  0.54
Bayesian (r/mu) 5.89 5.37 5.92 ± 0.28 6.51 5.97
Frequentist (Gamma) 5.10 5.93 ± 0.42 6.76

   HW  
r 1.41 1.51 1.61
mu 0.52  0.57  0.61
Bayesian (r/mu) 2.63 2.34 2.65 ± 0.17 3.01 2.70
Frequentist (Gamma) 2.09 2.66 ± 0.29 3.23

   PH  
r 2.59 2.77 2.93
mu 0.43  0.46  0.49
Bayesian (r/mu) 6.02 5.58 6.05 ± 0.25 6.57 6.08
Frequentist (Gamma) 5.15 6.06 ± 0.46 6.97

   LS  
r 4.33 4.53 4.84
mu 0.64  0.68  0.73
Bayesian (r/mu) 6.58 5.81 6.63 ± 0.43 7.51 6.77
Frequentist (Gamma) 5.88 6.65 ± 0.39 7.42

   NSPS  
r 4.36 4.56 4.84
mu 0.70  0.74  0.79
Bayesian (r/mu) 6.09 5.51 6.12 ± 0.33 6.83 6.22
Frequentist (Gamma) 5.50 6.13 ± 0.32 6.76

   NGS  
r 4.56 4.69 4.90
mu 0.41  0.43  0.45
Bayesian (r/mu) 10.95 10.10 11.02 ± 0.47 11.94 11.19
Frequentist (Gamma) 10.24 11.05 ± 0.41 11.86
Parameters Gamma distribution Bayesian (r, mu and r/mu); grain yield (GY); 
days for the flowering (DF); grain yield per plant (GYP); hundred-grain weight 
(HGW); thousand grain weight (TGW); hectoliter weight (HW); plant height (PH); 
spike length (LS); number of spikelets per spike (NSPS); and number of grains 
per spike (NGS).
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Figure 3 – Frequentist distribution of experimental CVe for ten wheat traits. The data distribution is in salmon color, the Gamma distribution is 
in blue line, and the normal distribution is in the dotted line, where: days for the flowering (DF), grain yield (GY), grain yield per plant (GYP), 
hundred-grain weight (HGW), hectoliter weight (HW), spike length (LS), number of grains per spike (NGS), number of spikelets per spike (NSPS), 
plant height (PH), and thousand grain weight (TGW).

statistics generated are lower in the Bayesian model 
in seven of the ten traits studied. However, the mean 
magnitude is highly contrasting among the variables, 
with the lowest CVe mean for HW = 2.6 % and the 
highest CVe mean for GYP = 13.6 %. This demonstrates 
that the CVe magnitude is directly associated to the 
trait nature and its distribution. Some variables, such 
as GYP, NGS, and GY presented high CVe magnitudes. 
Therefore, we should increase the number of repetitions 
and/or plants per plot to reduce the magnitude of the 
experimental error.

In terms of the credible interval, the Bayesian 
approach revealed a shorter range than the frequentist. 
Credible intervals or credible regions are built to qualify 
in terms of final precision, that is, for validation of the 
data observed rather than repetitions or hypothetical 
results (Resende et al., 2014). In this respect, significant 
criticism has been made about the Frequentist confidence 
intervals (Murteira, 1995) since the experiments are not 
likely to be thoroughly repeated.

We opted to use non-informative prior due to the 
different approaches observed in the literature on the 
CVe distribution. We also identified that CVe distribution 
was highly dependent on the species studied and the 
variable measured, hindering the establishment of 
general intervals for CVe classification. This has been 

reported in the literature. Nevertheless, few studies have 
reported on the distribution of the CVe by comparing the 
confidence and credible intervals between the Bayesian 
and Frequentist approaches. The Bayesian approach 
provided shorter credible intervals than the Frequentist 
approach for most wheat traits studied. We obtained the 
standard deviations using Bayesian inference on the CVe 
study with the posterior and exact credible intervals for 
the parameters of each variable obtained through the 
meta-analysis.

The CVe of the ten variables studied is frequently 
used in wheat research for cultivar phenotyping, 
phenotypic diversity, the selection of progenies and 
families in breeding programs, and the final screening 
for the release of new wheat cultivars. These traits are 
associated to grain yield (TGW, NGS, HGW, GYP and 
GY), plant morphology (PH, NSPS, LS and DF) and, 
indirectly, industrial quality (HW). In this sense, the 
results of this study also have applicability in different 
agronomic areas, including plant breeding. This study 
demonstrates the experimental quality of the trials 
based on the CVe magnitude. Besides, the results assist 
in the decision-making process for an experimental 
plan, such as the experimental design, number of 
repetitions, and the treatments of the plants/progenies 
to be measured.
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Conclusions

This study obtained the CVe credible and confidence 
intervals for wheat traits, which could be used in 
experimental accuracy measurements of other experiments. 

The posterior distribution of CVe for the ten wheat 
traits has less variation among percentiles. The Gamma 
distribution presents a better fit in the CVe data distribution 
than the normal distribution. 

The estimate and posterior means were similar 
between the Bayesian and Frequentist approaches. CVe 
values higher than 13 % are outside the confidence and 
credible intervals for grain yield in wheat.
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Appendix I – R Program used for obtained of results

library(tidyverse)
library(metan)
library(rio)
library(ggrepel)
library(R2OpenBUGS)
library(boa)
library(ggformula)

The data and code can be obtained at: https://tiagoolivoto.github.io/paper_coefvar/code.html#2_Data 

3 Bayesian
3.1 Function

data_cv <-
  import("http://bit.ly/data_cvs") %>% 
  select(GY:NGS)

# Long format
data_cv_long <-
data_cv %>%
  pivot_longer(everything(), 
               names_to = "var",
               values_to = "cv") %>%
  remove_rows_na()

# samples per variable
data_cv_long %>% n_by(var)

 
# create a list of traits with no missing values
df <- lapply(data_cv, remove_rows_na)

bayes <- function(df){
linemodel <- function(){
  for (i in 1:64) # change the number of samples for each variable
  {
    y[i] ~ dgamma(r, mu)
  }  

Continue...
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  r ~ dunif(0,5)
  mu ~ dunif(0,5)    
}
################ Specification the data
linedata <- list(y = df[[1]])
###################### Specification initial values
lineinits <- function(){list(r = 0.5, mu = 1) }
#Specification the parameters
parameters <- c("r","mu")
############# Execution function analysis with bugs package of R2OpenBUGS
Niter <- 10000
Nburn <- 1000
Nthin <- 10
################ results of descriptive statistics #############
modelo <- bugs(data = linedata,
               inits = lineinits,
               parameters.to.save = parameters,
               model.file = linemodel,
               n.chains = 1,
               n.iter = Niter,
               n.burnin = Nburn,
               n.thin = Nthin,
               debug = TRUE)
return(modelo$sims.matrix[,1] / modelo$sims.matrix[,2])
}

3.2 Posterior distribution

GY <- bayes(df$GY)
GYP <- bayes(df$GYP)
HGW <- bayes(df$HGW)
TGW <- bayes(df$TGW)
HW <- bayes(df$HW)
DF <- bayes(df$DF)
PH <- bayes(df$PH)
LS <- bayes(df$LS)
NSPS <- bayes(df$NSps)
NGS <- bayes(df$NGS)

3.3 Credibility intervals and mean posterior for each trait

posterior <- import("http://bit.ly/data_posterior")
conf_int_bayes <- 
sapply(posterior, 
       function(x){
         conf_int <- boa.hpd(x, 0.05)
         data.frame(LCI = conf_int[[1]],
                    MEAN = mean(x),
                    UCI = conf_int[[2]])
       }) %>% 
  t()

3.4 Marginal posterior density

posterior_long <- posterior %>% pivot_longer(everything())

ggplot(posterior_long, aes(value))+
  geom_density(fill = "red", alpha = 0.5, size = 0.1) +
  theme(panel.grid.minor = element_blank(),
        legend.position = "bottom",
        legend.title = element_blank(),
        axis.text = element_text(color = "black"),
        axis.ticks = element_line(color = "black"),

Continue...

Appendix I - Continuation.
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        axis.ticks.length = unit(0.15, "cm")) +
  facet_wrap(~ name, scales = "free_y", ncol = 5) +
  theme(panel.grid.minor = element_blank(),
        legend.position = "bottom",
        legend.title = element_blank(),
        axis.text = element_text(color = "black"),
        axis.ticks = element_line(color = "black"),
        axis.ticks.length = unit(0.15, "cm")) +
  labs(x = "Coefficient of variation (%)",
       y = "Density")
ggsave("figs/fig1_posterior.jpg", dpi = 600, width = 25, height = 10, units = "cm")

# An alternative plot
ggplot(posterior_long, aes(value))+
  geom_density(aes(fill = name),
               alpha = 0.5) +
  theme(panel.grid.minor = element_blank(),
        legend.position = "bottom",
        legend.title = element_blank(),
        axis.text = element_text(color = "black"),
        axis.ticks = element_line(color = "black"),
        axis.ticks.length = unit(0.15, "cm")) +
  theme(panel.grid.minor = element_blank(),
        legend.position = "bottom",
        legend.title = element_blank(),
        axis.text = element_text(color = "black"),
        axis.ticks = element_line(color = "black"),
        axis.ticks.length = unit(0.15, "cm")) +
  labs(x = "Coefficient of variation (%)",
       y = "Density")

ggsave("figs/fig1_posterior2.jpg", dpi = 600, width = 25, height = 10, units = "cm")

4 Frequentist
4.1 Confidence interval

get_confint <- function(df, var){
    if(is.grouped_df(df)){
      results <- doo(df, get_confint, var = {{var}})
      return(results)
    }
    values <- na.omit(df %>% select_cols({{var}}) %>% pull())
    model <- glm(values ~ 1, family = Gamma(link = "identity"))
    conf <- confint(model)
    MEAN <- coef(model)[[1]]
    LCI <- conf[[1]]
    UCI <-  conf[[2]]
    data.frame(LCI = LCI, MEAN = MEAN, UCI = UCI)
  }

freq_lim <- 
  data_cv_long %>%
    group_by(var) %>% 
    get_confint(cv)

p <-
  gf_density( ~ cv | var,
              data = data_cv_long,
              fill = "red",
              alpha = 0.5) %>%

Continue...

Appendix I - Continuation.
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  gf_fitdistr(linetype = 2) %>%
  gf_fitdistr(dist = "gamma", color = "blue")

p +
  facet_wrap(~var, nrow = 2, scales = "free_y") +
  theme(panel.grid.minor = element_blank(),
        axis.text = element_text(color = "black"),
        axis.ticks = element_line(color = "black"),
        axis.ticks.length = unit(0.15, "cm")) +
  scale_y_continuous(expand = expansion(c(0, 0.05))) +
  labs(x = "Coeficient of variation (%)",
       y = "Density")

ggsave("figs/fig2_density.jpg", dpi = 600, width = 25, height = 10, units = "cm")

5 Results
5.1 Confidence interval

df_confint <- import("http://bit.ly/data_confint")

ggplot(df_confint, aes(MEAN, fct_rev(VAR), color = APPROACH)) +
  geom_point(position = position_dodge(width = 0.7),
             size = 2) +
  geom_errorbarh(aes(xmin = LCI, xmax = UCI),
                 position = position_dodge(width = 0.7),
                 width = 0.3) +
  scale_x_continuous(breaks = seq(2, 19, by = 2),
                     expand = c(0.15, 0.15)) +
  theme(panel.grid.minor = element_blank(),
        legend.position = "bottom",
        legend.title = element_blank(),
        axis.text = element_text(color = "black"),
        axis.title  = element_text(color = "black"),
        axis.ticks = element_line(color = "black"),
        axis.ticks.length = unit(0.15, "cm")) +
  labs(x = "Coefficient of variation (%)",
       y = "Variable") +
  geom_text(aes(label = round(LCI, 2),
                x = LCI),
            position = position_dodge(width = 0.7), 
            hjust = 1.2,
            size = 2.5,
            show.legend = FALSE) +
  geom_text(aes(label = round(UCI, 2),
                x = UCI),
            position = position_dodge(width = 0.7), 
            hjust = -0.3,
            size = 2.5,
            show.legend = FALSE)

ggsave("figs/fig3_confidence.jpg", dpi = 600, width = 10, height = 12, units = "cm")

Appendix I - Continuation.
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Appendix II – (A) Illustrations for the number of iterations of parameters Gamma distribution (r, mu and deviance) of the Bayesian analysis for the traits: 
days for the flowering (DF); grain yield (GY); grain yield per plant (GYP); hundred-grain weight (HGW); hectoliter weight (HW); and spike length (LS).
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Appendix II - (B) Illustrations for the number of iterations of parameters Gamma distribution (r, mu and deviance) of Bayesian analysis for the 
traits: number of grains per spike (NGS), number of spikelets per spike (NSPS), plant height (PH), and thousand grain weight (TGW).


