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ABSTRACT: The considerable volume of data generated by sensors in the field presents 
systematic errors; thus, it is extremely important to exclude these errors to ensure mapping 
quality. The objective of this research was to develop and test a methodology to identify and 
exclude outliers in high-density spatial data sets, determine whether the developed filter process 
could help decrease the nugget effect and improve the spatial variability characterization of 
high sampling data. We created a filter composed of a global, anisotropic, and an anisotropic 
local analysis of data, which considered the respective neighborhood values. For that purpose, 
we used the median to classify a given spatial point into the data set as the main statistical 
parameter and took into account its neighbors within a radius. The filter was tested using raw 
data sets of corn yield, soil electrical conductivity (ECa), and the sensor vegetation index (SVI) 
in sugarcane. The results showed an improvement in accuracy of spatial variability within the 
data sets. The methodology reduced RMSE by 85 %, 97 %, and 79 % in corn yield, soil ECa, 
and SVI respectively, compared to interpolation errors of raw data sets. The filter excluded the 
local outliers, which considerably reduced the nugget effects, reducing estimation error of the 
interpolated data. The methodology proposed in this work had a better performance in removing 
outlier data when compared to two other methodologies from the literature.
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Introduction

Sensors in agricultural fields collect large amounts 
of spatial data needed for site-specific management; 
however, this may come with a considerable quantity 
of defective data that need to be excluded to provide 
quality to maps (Spekken et al., 2013; Lyle et al., 2014). 
In maps, outliers are spatially referenced objects whose 
non-spatial attribute values are significantly different 
from the corresponding values in their respective spatial 
neighborhoods (Shekhar et al., 2003). They can be 
observed in local regions that demand specific analysis, 
making them difficult to exclude (Singh and Lalitha, 
2017).

Authors have applied sequences of filters to 
remove defective data errors (Ping and Dobermann, 
2005; Simbahan et al., 2004; Menegatti and Molin, 
2004; Arslan and Colvin, 2002). Some filters require 
prior knowledge of the target factor to establish upper 
and lower thresholds to identify outliers; however, 
data removed outside these boundaries were the major 
causes of losses of good data (Spekken et al., 2013).

To filter a large amount of PA data, Leroux et 
al. (2018) created a data-filtering algorithm dedicated 
to data generated by the onboard sensor. The most 
abnormal data points are classified as defective 
observations based on a density-clustering algorithm. 
Vega et al. (2019) created a script for the software R to 
automate error removal from yield maps. First, the data 
were screened by filtering null and edge yield values, 
as well as global outliers. Second, spatial outliers or 
local defective observations were deleted by using the 
Local Moran index of spatial autocorrelation and the 
Moran plot. 

To create a user-friendly tool, Spekken et al. (2013) 
developed a generic software capable of identifying and 
filtering erroneous data points that are inconsistent with 
their neighboring points. Although this software is easy 
to use, removal of erroneous data could also eliminate 
relevant data. According to Leroux et al. (2018), data 
filtering methods have to be robust enough to ensure 
accuracy to the decision-making process. The objective 
of this research was to develop and test a filter to 
identify and exclude spatial outliers in the high-density 
spatial data set. We also investigated whether the filter 
could help decrease the sampling error and improve the 
characterization of spatial variability in high sampling 
spatial data.

Materials and Methods

Data sets

We processed data sets generated by sensors in high spatial 
resolution for agricultural applications. The methodology 
was tested using raw data sets of corn yield, soil ECa, and 
SVI. Yield is the main information for site-specific field 
management. Data on corn yield were generated by a 
yield monitor, composed of sensors that measure grain 
flow inside the harvester elevator thus estimating the 
number of grains harvested (Molin et al., 2015). Soil ECa 
was generated from a four-point system composed of a 
metal structure with six cutting disks serving as electrodes 
that, in contact with the soil, measure the electric current 
(Rabelo et al., 2014). According to Molin and Rabelo 
(2011), ECa data are generally used to estimate soil 
texture, because in the absence of salinity in the soil, ECa 
correlates with the water content of the soil, consequently 

Ag
ri

cu
ltu

ra
l E

ng
in

ee
ri

ng

Research Article 

https://orcid.org/0000-0003-2675-767X
https://orcid.org/0000-0001-7250-3780
https://orcid.org/0000-0002-8697-1566


2

Maldaner et al. Filter out outliers in the maps

Sci. Agric. v.79, n.1, e20200178, 2022

correlating with the texture or relief of the field. The 
sugarcane vegetation index was generated by an active 
canopy optical sensor that measures canopy reflectance 
of plants commonly used for the variable rate of N in the 
site-specific application in sugarcane (Amaral et al., 2018).

Each raw data set was recorded with different 
frequencies and different widths between the travel 
paths (Figure 1). They were organized by rows in a text 
file. The text files must contain at least three numeric 
attributes: two attributes with latitude and longitude, and 
the target attribute that was subjected to the filter. The 
first row of the file must contain a header (denomination) 
of attributes. Coordinates must be in either WGS 84 
datum provided in geographic coordinates (decimal 
degrees), commonly used for storage of coordinates in 
agricultural data loggers, or the metric form (UTM). The 
headers were named with initials “Lat” and “Long” or “X” 
and “Y” for automatic identification, while the user must 
inform the column to filter the attribute variable. The 
original coordinates in the geographic format (decimal 
degrees) were then converted into UTM coordinates, 
allowing the points to be analyzed in a regular metric 
2D plane and to calculate distances between them.

Filtering data

According to Vega et al. (2019), the global filter avoids 
variance inflation in the local analysis due to very low or 
very high data values; therefore, a global filter method 
was added to precede the local filter. In the global filter, 
the median value of the attribute points values under 
analysis is used to calculate the upper (Eq. 1) and lower 
(Eq. 2) cut-off limits of discrepant values (Maldaner and 
Molin, 2020).

LimS = M
k + Mk × v				    (1)

LimI = Mk – Mk × v				    (2)

where: LimS is the upper limit; LimI is the lower limit; 
Mk is the median of all values located in the data set; 
v is the maximum variation accepted for the median. 
A global outlier in the data set is a point with a value 
greater or smaller than upper and lower cut-off limits, 
respectively.

The local filter was divided into two steps: 
anisotropic and isotropic local filters. The anisotropic 
filter created by Maldaner and Molin (2020) was used to 
filter sugarcane yield data. The filter detected all points 
located in a radius range (R) around a point xi within 
a single direction (Figure 1). The point xi is compared 
with previous and subsequent k neighbors. The k is the 
number of neighbors whose Euclidean distance is less 
than or equal to the radius R (blue line in Figure 2). The 
median of these k neighbors was calculated, and Eq. 1 
and Eq. 2 were applied to point xi. If the value of the 
point xi was greater or smaller than the upper and lower 
cut-off limits, it was considered a local outlier and then 
excluded from the data set.

In the isotropic filter, the methodology created by 
Spekken et al. (2013) was adapted to identify outliers in 
the data set. The isotropic filter, by contrast, detected 
all k points neighbors located in an R around a point xi 
in any direction (Figure 2). Then, the median of these 
k neighbors was calculated, and Eq. 1 and Eq. 2 was 
applied to point xi. While Spekken et al. (2013) added 
weight to the points with values outside the cut-off 
limits, our filter methodology excludes the point xi with 
a value greater or smaller than the upper and lower cut-

Figure 1 – Raw data sets of corn yield, sugarcane vegetation index (SVI), and soil electrical conductivity (ECa).
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off limits. Finally, the points not excluded by the filter 
were saved in a text file.

Software development

We built an algorithm-application with the methodology 
to remove spatial outliers in the software NetBeans 
IDE 8.1, which is a free-integrated development 

environment and is an open-source for the development 
of desktop applications when using the Java platform. 
The application was structured on a single interface 
(Figure 3) with three user inputs. The user input variable 
was the maximum acceptable variation of the median 
used to calculate Eq. 1 and Eq. 2 for the global and local 
filter. The value of the radius R was used to identify the 
neighboring spatial points in the local filter. The filtering 

Figure 3 – The interface of the algorithm-application.

Figure 2 – Identification of neighboring points in the anisotropic and isotropic filter. 
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data were plotted on the display and the application 
calculates the descriptive statistic before and after the 
cleaning process. Therefore, the user could perform a 
visual analysis of the data and reapply the global and 
local filtering with other input values.

Analysis

A process with the different variables R and v was 
performed to analyze the influence of these variables 
on the identification of spatial outliers. Each data set 
was filtered using an initial R value 1.5 times the width 
of the travel paths, and at the end of each processing 
step, the radius (R) was increased by adding a path 
width. 

The spatial dependence of the raw data generated 
by the semivariogram was the maximum R value (Table 
1). For each R, the raw data processed with v between 
5 % and 50 % were tested. Table 1 presents the numbers 
of the filter process for each raw data.

The impact of the proposed filter to exclude 
spatial outliers on raw data was quantified by evaluating 
changes of semivariogram parameters and the kriging 
prediction accuracy between raw and cleaned data 
(Vega et al., 2019). To choose the output with the lower 
root mean square error (RMSE) of cross-validation 
result (Isaaks and Srivastava, 1989), semivariograms 
were individually modeled to test the spherical, 
exponential, and Gaussian models. These models were 
fitted to each raw dataset and after applying the filter. 

The data filtered were compared by the 
methods of Spekken et al. (2013) and Vega et al. 
(2019). All statistical analyses were performed using 
R software (R Core Team, version 3.6.0) using the 
gstat library (Pebesma, 2004) to study the evolution 
of semivariogram parameters and evaluate the kriging 
prediction accuracy. 

Results and Discussion 

The global filter excluded points with values 
below 0.10 mS m–1, 3.06 Mg ha–1, and 0.09, and above 
150.60 mS m–1, 8.09 Mg ha–1, 0.31 for the data set of soil 
ECa, corn yield, and SVI respectively (Figure 4). This 
accounted for the removal of 12 %, 15 %, and 14 % of 
raw data points, respectively. Removal of global outliers 
substantially decreased the mean of the soil ECa and 
SVI by almost 29 % and 2 %. This is because the high 
values points have more influence than the lower values, 
unlike grain yield data filtering in which most errors in 
yield values are below average or close to zero (Vega 
et al., 2019; Leroux et al., 2018; Spekken et al., 2013; 
Sudduth and Drummond, 2007; Menegatti and Molin, 
2004). There was an increase of 5 % in the corn yield 
mean after the removal of the global outliers (Figure 4). 
The filtering processes were compared by removing data 
outside the mean ± 4 SD (Vega et al., 2019). However, it 
was not possible to exclude all global outliers (Figure 4). 
Despite the use of the mean ± 3 SD criteria, as suggested 
by Vega et al. (2019), there was additional removal of 

Table 1 – Raw data set characterization.
Data set Min Max Mean SD CV (%) Freq. Width n n ha–1 Range nP

Hz m m
ECa 0.1 557.7 70.5 68.8 102.4 1.0 15.0 11453 204.9 480.0 320
CY 0.0 99.3 5.4 4.2 129.6 1.0 5.7 58186 502.4 319.0 560
SVI 0.0 0.6 0.2 0.1 257.2 5.0 1.5 423040 18393.0 19.2 320
ECa = Apparent soil electricity conductivity (mS m–1); CY = Corn yield (Mg ha–1); SVI = Sensor vegetation index in sugarcane; SD = standard deviation; CV = coefficient 
of variation; Freq. = Data collection frequency; Width = travel path width; n = number of points in raw data set; Range = a range of the spatial dependence calculated 
by the semivariogram; nP = The numbers of the process for each raw data.

Figure 4 – Boxplot of raw data set before filtering, after the global filter of the current study (Filter 1), and the methodology of Vega et al. (2019) 
(Filter 2).
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in the cross-validation when compared to the raw data 
set (Table 2). There was a reduction of 85 %, 97 %, and 
79 % in the RMSE for the corn yield, soil ECa, and 
SVI data sets, respectively. The smaller RMSE in the 
filtered data sets presented filter cut-off limits with a 
median variation of 5 %. Therefore, the lower values of 
median variation resulted in smaller interpolation error 
(smaller RMSE). There was a decrease in the correlation 
coefficient values during the cross-validation, dropping 
from 0.8 to 0.5 (corn yield), 0.9 to 0.8 (soil ECa), and 
0.9 to 0.5 (SVI), while the median variation increased. 
According to Simbahan et al. (2004), the prediction error 
decreases with the increased detection of local outliers 
in the protocol for error. These results are smaller than 
the RMSE of data filtered by the methodologies of 
Spekken et al. (2013) and Vega et al. (2019). These two 
methodologies also presented lower values than the raw 
data. However, the methodology using the Local Moran 
index (Vega et al., 2019) could not process the SVI data 
due to the high density of sampled points per area.

All raw data sets present greater nugget effects 
(Leroux et al., 2018) and the presence of the global 
and local outliers influenced these values. There was 
a considerable reduction in the nugget effects after the 
exclusion of spatial outliers. The exclusion of outliers 
when using the local filter with a median variation of 10 
% was more efficient than the methodologies of Spekken 
et al. (2013) and Vega et al. (2019), which presented a 
reduction of 99 % in the corn yield, 80 % in the soil 
ECa, and 82 % in the SVI compared to their respective 
raw data sets. Other studies that compared the methods 
to filter grain yield data also showed a decrease in the 
nugget effects after data filtering (Leroux et al., 2018; 
Menegatti and Molin, 2004; Sudduth and Drummond, 
2007). The primary aim in filtering spatial errors is to 
improve the interpolation by kriging, and a reduction in 
nuggets usually indicates improvement in data quality. 

valid points, which eliminated data with low and high 
spots within the field, possibly because extreme values 
influence the methodology that uses these parameters 
(mean and SD). The mean is used for normal numerical 
distributions with a small number of discrepant values 
(Hubert and Van der Veeken, 2008). This is in contrast 
to data collected by sensors in agricultural fields, which 
present a large number discrepant values and, notably, 
mostly in a non-symmetric distribution (Menegatti and 
Molin, 2004; Vega et al., 2019; Leroux et al., 2018). This 
does not happen with the median because it returns the 
central tendency for distorted numerical distribution. 
The use of the upper and lower cut-off limits calculated 
from the median allowed removing more points (Figure 
4) without loss of data that characterized the spatial 
variability, keeping data that showed the low and high 
spots within the field.

When using the local filter, the lower median 
variation within the radius resulted in a greater 
number of points excluded. However, the R values do 
not influence the number of points excluded. By using 
5 % variation and radius equal to the semivariogram 
range (Table 1), 71 %, 34 %, and 57 % of the points 
were excluded in the data set of corn yield, soil ECa, and 
SVI, respectively. The amount of data excluded from 
corn yield data set was larger than what is normally 
observed done by other authors (Menegatti and Molin, 
2004; Simbahan et al., 2004; Sudduth and Drummond, 
2007; Sun et al., 2013; Leroux et al., 2018; Vega et al., 
2019). This indicates that the use of 5 % may exclude 
valid data, leading to loss of data information on small 
scales. By using the coefficient of variation (CV) in the 
local filter, Spekken et al. (2013) suggested that a range 
between 10 and 25 % of CV is capable of eliminating 
most spatial outliers in yield maps.

Global and local filtering reduced errors between 
the actual and predicted values by the semivariogram 

Table 2 – Geostatistical analysis of the data sets before and after applying the filter.
Corn yield1 Soil electrical conductivity Sensor vegetation index

Median variation2 Nugget R23 RMSE Nugget R2 RMSE Nugget R2 RMSE
5 0.177 0.844 0.157 91.998 0.981 2.453 0.00080 0.915 0.008
10 0.1775 0.683 0.278 89.630 0.965 3.660 0.00078 0.843 0.014
15 0.178 0.595 0.355 92.350 0.942 5.141 0.00079 0.763 0.020
20 0.177 0.547 0.402 89.980 0.917 6.403 0.00078 0.684 0.025
25 0.178 0.523 0.431 92.176 0.891 7.548 0.00080 0.621 0.029
30 0.177 0.514 0.446 90.208 0.866 8.606 0.00078 0.577 0.031
35 0.179 0.509 0.453 93.680 0.848 9.613 0.00082 0.555 0.033
40 0.179 0.507 0.456 90.737 0.821 10.616 0.00081 0.540 0.034
45 0.180 0.506 0.457 96.517 0.811 11.722 0.00082 0.533 0.035
50 0.179 0.506 0.457 92.994 0.805 12.560 0.00080 0.527 0.035
Spekken et al. (2013) 0.780 0.589 0.850 106.309 0.823 7.891 0.00070 0.698 0.027
Vega et al. (2019) 0.578 0.573 0.989 110.967 0.885 7.832 -4 - -
Raw data set 17.810 0.539 1.057 261.400 0.658 105.2 0.00441 0.510 0.038
1The results represent the average values of all files processed according to Table 1. 2Median variations used in the Eq. 1 and Eq. 2 (cut-off limits). 3The correlation 
coefficient between actual and predicted by the semivariogram in the cross-validation. 4The methodology by Vega et al. (2019) was unable to filter the data set of the 
sugarcane vegetation index. 5Lowest value for each parameter.
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However, even after the reduction of nuggets by the 
methodologies of Spekken et al. (2013) and Vega et al. 
(2019), it is still possible to identify some spatial outliers 
in the yield map (Figure 5). These methodologies were 
able to exclude data with only high variation in relation 
to their neighbors, such as the width platform error in the 
corn yield data set. Additionally, all points close to field 
edges were excluded, which should be included as valid 
data. On the other hand, the filter proposed was capable 
of excluding erroneous data, such as harvester feed and 
fill time errors, while keeping the valid data points.

The method proposed (Method 3 in Figure 5) was 
efficient in filtering points whose values were inconsistent 
with the neighboring points, which represented most 
spatial outliers in the maps. The filtering of local 
spatial outliers resulted in noise reduction within 
the field, smoothing the variation in values. A certain 
degree of data smoothing in the field is necessary for 

interpretation of maps and their use in site-specific 
management practices (Blackmore and Moore, 1999). 
Both methodologies of Spekken et al. (2013) and Vega et 
al. (2019) kept small variations within the field. This was 
the case for the soil ECa, where both methodologies kept 
small variations in small distances. The density of points 
is significantly high, even after the removal of local 
outlier points. Furthermore, high variability in the SVI 
values was expected even after filtering. This was due 
to the large density of points collected by the on-the-go 
sensor, especially because sugar cane has high biomass 
variability at short distances (Amaral et al., 2018). The 
filter proposed characterized the regions (stains) of high 
and low SVI values within the field.

The algorithm-application developed demonstrated 
the potential practical use of filtering spatial data by 
end-users and it was granted the Brazilian patent n° 
BR512019002014-6.

Figure 5 – Maps of the data sets after the filtering process. Method 1: Vega et al. (2019); Method 2: Spekken et al. (2013); Method 3: proposed 
in this study. 
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Conclusion

According to the results, the methodology proposed in 
this work had a better performance in removing outlier 
data when compared to the other two methodologies. 
The algorithm-application is a simple tool that could 
be used in different high-density data sets collected by 
sensors in agriculture. The results, based on different 
data sets, showed that the filter improved accuracy 
of maps. The filter reduced the RMSE compared to 
interpolation errors of the raw data. The filter excluded 
the local outliers, which considerably reduced the 
nugget effects. The global and local filter smoothed the 
data, characterizing the regions of greater and lower 
values of the attributes used in this study within the 
field. The algorithm-application developed has the 
potential for daily use by end-users as it is practical for 
filtering spatial data.
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