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ABSTRACT: Solum depth and its spatial distribution play an important role in different types of 
environmental studies. Several approaches have been used for fitting quantitative relationships 
between soil properties and their environment in order to predict them spatially. This work aimed 
to present the steps required for solum depth spatial prediction from knowledge-based digital 
soil mapping, comparing the prediction to the conventional soil mapping approach through field 
validation, in a watershed located at Mantiqueira Range region, in the state of Minas Gerais, 
Brazil. Conventional soil mapping had aerial photo-interpretation as a basis. The knowledge-
based digital soil mapping applied fuzzy logic and similarity vectors in an expert system. The 
knowledge-based digital soil mapping approach showed the advantages over the conventional 
soil mapping approach by applying the field expert-knowledge in order to enhance the quality of 
final results, predicting solum depth with suited accuracy in a continuous way, making the soil-
landscape relationship explicit.
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Introduction

Solum depth (A+B horizon) has been applied in 
distributed hydro-ecological models to simulate water-
shed processes as net photosynthesis and stream flow 
(Quinn et al., 2005; Zhu and McKay, 2001), affecting 
the soil storage capacity (Follain et al., 2007) or the soil 
drainage condition (Odeh et al., 1995). Solum depth is 
strongly linked to landscape characteristics and it is im-
portant for soil mapping (Chartin et al., 2011), and land 
use planning and management. 

Several approaches have been used for fitting 
quantitative relationships between soil types and/or 
properties and their environment in order to predict 
their spatial distribution and variability (spatial infer-
ence models) (McBratney et al., 2003). Such models 
are divided into data-driven (Pedometric approach) and 
knowledge-driven (Shi et al., 2009). The pedometric 
approach (statistic and geostatistic) gives a predictive 
accuracy that is generally related to a dense sampling 
scheme, which is not always feasible due to cost and 
time constraints (Zhu and Lin, 2010). 

Zhu and Band (1994) and Zhu (1997) presented an 
alternative approach based on limited observations per 
soil class, using fuzzy logic and similarity vectors, in an 
expert system. Possessing the maps that represent soil 
forming factors (environmental variables), the knowledge 
of pedologists can be incorporated into spatial prediction, 
whereby the qualitative soil-landscape model is converted 
into quantitative predictions using relationships between 
soils and, more frequently, terrain attributes, such as 
slope, topographic wetness index, and profile curvature. 
It overcomes a limitation of the conventional soil map-
ping approach, as raised by Hudson (1992), which fails 
to highlight the soil surveyor mental model. Because this 

approach requires an understanding from a soil scientist’s 
perspective of the repeating soil patterns on the land-
scape, as does the conventional mapping approach, it is 
considered to be a knowledge-driven digital soil mapping 
approach and it has been regarded as efficient and eco-
nomical (Hudson, 1992; MacMillan et al., 2007).

This study aimed to present the steps required for 
solum depth spatial prediction from knowledge-based 
digital soil mapping, comparing it to the conventional 
soil mapping approach through field validation, in a wa-
tershed located at Mantiqueira Range region, in the state 
of Minas Gerais, Brazil.

Materials and Methods

Study area characterization
This study was carried out at Lavrinha Creek Wa-

tershed located at Mantiqueira Range, in the south of 
the state of Minas Gerais, Brazil (Figure 1). It is a typi-
cal headwater watershed, representative of the Alto Rio 
Grande Basin, an important hydrological region, due to 
its potential for generating electricity in the form of  hy-
droeletric energy. There is a predominance of dense rain 
forest, with high slope gradients and few roads, which, 
together, hinder access and traffic in the area. The main 
characteristics of the study site are presented in Table 1.

Conventional soil mapping approach 
The photo-interpretation of the watershed was per-

formed using a stereoscope, with vertical panchromatic 
aerial photography on a scale of approximately 1:35,000. 
Physiographically, homogeneous areas were separated, 
which formed the basis of the preliminary mapping 
units. This map was further tuned in the field. The cor-
relation between map units and landform features were 
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verified and boundaries were redrawn when necessary. 
This study helped to select representative sites for de-
scribing soil profiles and making prospections. After the 
photo interpretation procedure, the landform map was 
digitalized and displayed in the Geographic Information 
Systems (GIS) environment in which places easily iden-
tified in the photo and in the Brazilian Statistics and Ge-
ography  Institute’s (IBGE) maps were used for georefer-
encing the landform maps. With regard to solum depth, 
each soil map unit assumes a unique value based on the 
soil profile described, which represents the central or 
modal concept for that soil map unit.

Knowledge-based digital soil mapping approach	
The steps required to predict solum depth were, for 

the most part, implemented  using ArcSIE (Soil Inference 
Engine) version 9.2.402, a toolbox that functions as an Ar-
cMap extension (Shi et al., 2009). ArcSIE was designed 
for creating soil maps using fuzzy logic and supports the 
knowledge-based approach to establishing relationships 
between the soil and its environment, providing tools for 
soil scientists to formalize the relationship based on pedo-
logical knowledge of the local soils. A knowledge-based 
digital soil mapping is performed according to existing 
relationships between soil attributes and landforms. The 

landforms can be obtained from Digital Elevation Model 
(DEM) derivatives that create the Digital Terrain Models 
(DTMs) in a GIS environment. From DTMs and pedologi-
cal information, soil-landscape relationships can be used 
for extrapolating information for non-sampled places 
through mapping techniques (fuzzy logic and similarity 
vectors) (Zhu, 1997). In order to predict the solum depth, 
the following steps were taken:

i) Establishing soil-landscape relationships to pre-
dict soil classes: this step was the basis for setting rules 
and was based on soil scientists’ knowledge, maps from 
previous soil surveys and other types of soil research de-
veloped at the study site. Considering the soil-landscape 
relationships at LCW, the alteration of gneiss resulted in 
the predominance of Udepts (moderately developed and 
well-drained soils) (US Soil Taxonomy - Soil Survey Staff, 
1999). The relief is steep with concave-convex slopes, 
dominated by linear pedoforms and narrow floodplains. 
Hydromorphic soils occupy the toeslope areas, where 
the water table is near to the surface for most of the year. 

ii) Quantifying relationships between soils and ter-
rain attributes and formalizing these relationships 
in a set of rules: analogous to a DEM, DTMs are identi-

Table 1 − Basic characteristics of Lavrinha Creek Watershed.
Basic characteristics

Location Between latitudes 22º6’53.7” and 22º8’28.1” South and longitudes 44º26’21.1” and 44º28’39.2” West
Area 676 ha
Elevation From 1151 to 1687 m
Mean annual temperature 15 °C
Annual Precipitation 2000 mm
Land agricultural suitability Fauna and flora reserve
Parent material Alluvial material transported by water (floodplains) and the massive rock gneiss (high lands)

Figure 1 – Geographical location of Lavrinha Creek Watershed.
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fied in an ordered array of numbers that represents the 
spatial distribution of terrain attributes across a land-
scape, in a raster-based format. Terrain models were 
based on a 30 m resolution DEM, generated from the 
Brazilian source of contour lines in 1:50,000 scale (IBGE, 
1973). The sinks were filled and a hydrologically consis-
tent DEM was created using ArcGIS version 10.0. The 
System for Automated Geoscientific Analysis (SAGA) 
(Böhner et al., 2006), version 2.0.8, ArcMap spatial ana-
lyst and ArcMap extension Soil Inference Engine (Arc-
SIE), version 9.2.402 were used to calculate the terrain 
attributes from DEM. 

The following primary (calculated directly from 
DEM) and secondary (calculated from the combination 
of two or more primary terrain attributes) terrain attri-
butes were derived from DEM:

Primary: slope is the gradient of elevation. Profile cur-
vature is the slope shape in the direction of the maxi-
mum slope and is, therefore, important for water flow. 
Plan curvature is the slope shape perpendicular to the 
slope direction, which measures the convergence or 
divergence and, hence, the concentration of water in a 
landscape (Moore et al., 1993);

Secondary: SAGA wetness index (WI) was used instead 
of the well-known topographic wetness index (ln(a/
tanb)), where a = the ratio of upslope contributing area 
per unit contour length and b = the tangent of the lo-
cal slope). Both wetness indexes are similar; however, in 
SAGA it is possible to adjust the width and convergence 
of the WI multidirectional flow to single directional flow. 
Large WI values indicate an increased likelihood of satu-
rated conditions and are usually found in lower-lying 
parts and convergent hollow areas and soils with small 
hydraulic conductivity or areas of gentle slope (Beven 
and Wood, 1983). These indexes have been used to iden-
tify water flow characteristics in landscapes (Sumfleth 
and Duttmann, 2008).

Soil-landscape relationships were qualitatively 
modeled using DTMs, based on the terrain attributes 
that represent soil and hydrologic processes. Next, a 
qualitative soil landscape model from step a) was used 
to quantify soil-landscape relationships on a continuous 
basis, based on terrain attributes and their histogram dis-
tribution values. For the development of the model, a set 
of rules for the entire watershed was created for each 
soil map unit (step a) and applied in ArcSIE in order to 
create a soil map for the entire watershed. ArcSIE pro-
vides different types of knowledge integration. In this 
study, rule-based reasoning was applied allowing for the 
covering of the entire mapping area (Shi et al., 2009).

The soil-landscape relationships were extracted 
and the characterized environmental conditions were 
linked through a set of inference techniques to popu-
late the similarity model for the area (Zhu and MacKay, 
2001). The terrain attribute values and ranges associated 

with each soil map class were used to define member-
ship or optimality functions (curves), which, in turn, 
define the relationship between the values of an envi-
ronmental feature and soil type. The initial output from 
the inference is a series of fuzzy membership maps in 
raster format, one for each soil type under consideration 
(Shi et al., 2009). The fuzzy membership values repre-
sent the similarities of each pixel in the landscape to the 
soil types. Then, these fuzzy membership maps are com-
bined into one final soil class map, in which only the 
soils with the highest membership are assigned to that 
pixel.  

iii) Creating soil property map (solum depth): after 
creating the soil class map, the soil property map (so-
lum depth) can be created. This technique allows for 
the prediction in a continuous way of any soil property 
that shows a recognizable relationship with the terrain 
attribute or landscaping position. Based on fuzzy mem-
bership values, the continuous variation of soils can be 
represented by continuous solum depth derived from 
the similarity vectors, using the following formula (Zhu 
et al., 1997):

=

=

=∑
∑

  1

1

* 
 

n k k
ijk

ij n k
ijk

S V
V

S
	

where: Vij is the estimated solum depth at location (i,j), 
Vk  is a typical value of soil type k (e.g. Udepts), and 
n is the total number of prescribed soil classes for the 
area. The typical value consists of the central concept of 
the soil type, and corresponds to those same soil profiles 
used in the conventional soil mapping approach. If the 
local soil formative environment characterized by a GIS 
resembles the environment of a given soil category (so-
lum depth), then property values of the local soil should 
resemble the property values of the candidate soil type. 
The resemblance between the environment for soil at 
(i,j) and the environment for soil type k is expressed by 

k
ij  S , which is used as an index to measure the level of 

resemblance between the soil property values of the lo-
cal soil and soil category (Zhu et al., 2001). The property 
value k

ij  S  
can be any property that shows a recognizable 

pattern or relationship with the terrain attribute or land-
scape position. The higher the membership of a local soil 
in a given soil type, the closer the property values (solum 
depth) will be at that location to typical property values 
(Zhu et al., 2010).

Based on the five soil class map units established 
in step i) and the resulting fuzzy membership map in 
step ii) measured solum depth values from the five soil 
profiles were assigned to their respective fuzzy soil 
membership maps.

Assessment of accuracy of solum depth prediction
A set of data containing the solum depth informa-

tion was obtained for assessing the accuracy of solum 
depth maps (conventional and digital). In order to com-
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pare the solum depth information (real vs. estimated) 
contained in both maps, R²,  R²adj, mean error (ME) and 
root mean square error (RMSE) were calculated using R 
software (R Development Core Team). ME and RMSE 
have the formulas below:
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= −∑
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where: n is the number of observations, ei is the esti-
mated value of the solum depth and  mi is the measured 
value of the solum depth.

Results and Discussion

Conventional soil survey
The map of landforms (Figure 2A) was the basis 

for creating the soil class map (Figure 2B). The follow-
ing landforms were identified: convex hills, ravined hills, 
steep slopes, alluvial plains, and embedded valley. The 
relief played an important role in soil distribution, since 
it is the only varying factor in the study area out of the 
five soil forming factors (Jenny, 1941). The removal of 
soil through geologic erosion from the steepest portions 
of relief and material accumulation by alluvial addition 
in floodplains explain the spatial variability of Udepts in 
the first case, and Fluvents and Acquents in the second 
case. Figure 2B shows the soil profiles used for assigning 
solum depth and the validation points for comparing con-
ventional and digital knowledge-based solum depth maps.  

The conventional soil map has only one solum 
depth assigned to each soil polygon map unit from soil 
profile, and does not necessarily reflect the variability 
and continuous nature of solum depth in and between 
soil polygon map units. The polygon model assumes a 
discrete distribution with definite boundaries, in which 
spatial generalization occurs due to scale limitations. 
According to the soil survey scale, delineations, smaller 
than the minimum mappable area, are included in larger 
polygons and their actual spatial locations are lost (Zhu, 
1997). The polygon represents only the distribution of 
a set of prescribed soil classes (central concepts of the 
soil), and other minor soil classes/minor components are 
not spatially represented. Pedologists know that there 
are local soils that differ from the central concepts of 
the assigned class, but this expert knowledge cannot be 
conveyed using polygon-based soil mapping (Zhu et al., 
2001). This procedure results in a simplification of a so-
lum depth mapping and loss of information.

Knowledge-based digital soil mapping
The DTMs used in the prediction are presented in 

Figure 3. These models numerically describe the surface 
form as a continuum, which is more appropriate for the 

representation of geographic features than the discrete 
polygon model. According to Zhu (1997), pixel-based 
maps minimize the discrepancies between the spatial 
resolution of soil spatial information and environmental 
data (in this case, relief).

The ranges and curve shapes (Table 2) that define 
the modal soil types were adjusted using DTMs. This ta-
ble represents information on optimality curves that de-
scribe quantitatively the relationships between soil type 
and a particular DTM (Zhu et al., 1997). It overcomes 
a limitation of conventional soil mapping approach, as 
described by Hudson (1992), which is the failure to rep-
resent the soil surveyor mental model. Figure 4 shows 
two examples of curve shapes used in this study. For 
the bell-shape (a), the optimality value decreases as the 
difference between the environmental feature value and 
the central values (v1 and v2) increases. For example, 
in Table 2, for classifying any place in the landscape 

Figure 2 – A) Map of landforms from aerial photointerpretation; B) 
conventional soil map, validation points, soil profiles used for 
assigning solum depth and the respective solum depth prediction 
for each mapping unit at Lavrinha Creek Watershed – MG. 
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Table 2 − Environmental control variables of soil classes at LCW.
Soil type1 Full membership

Altitude Slope WI Plan 
curvature

Profile 
curvature

Fluvents 1,156 1 15; 21 - -
Udepts1 - 32.5 7 1 2.3
Udepts2 - 15 7 -1 0
Udepts3 - 32.5 7 -1 0
Udepts4 - 51 7 -1 0

50 % membership
Fluvents 1,200 10 14; 22 - -
Udepts1 - 19.5; 45.5 0; 14 0.11; 3 1.56; 9.5
Udepts2 - 10; 20 0; 14 -11; 0 -1.5; 1.5
Udepts3 - 19.5; 45.5 0; 14 -11; 0 -1.5; 1.5
Udepts4 - 45; 95 0; 14 -11; 0 -1.5; 1.5

Curve shape
Fluvents Z Z Bell - -
Udepts1 - Bell Bell Bell Bell
Udepts2 - Bell Bell Bell Bell
Udepts3 - Bell Bell Bell Bell
Udepts4 - Bell Bell Bell Bell

as clayey Typic Dystrudept, the optimal (central) slope 
value to receive 100 % membership is 15 and the curve 
shape is a bell, which indicates that as slope values de-
crease from 15 to 10 or increase to 20 the pixels will 
receive membership values decreasing from 100 to 50 
%, the latter being, therefore, less characteristic for clay-
ey Typic Dystrudept to occur (Figure 4A). On the other 
hand, the Z-shaped or the-lower-the-better shaped curve 
defines that all the values inferior to the central one will 
correspond to 100 % membership. In Table 2, this curve 
type is used to define the typical conditions for loamy/
sandy Typic Udifluvent occurrence. The full member-
ship altitude value was identified as 1,156 m, and all of 
the altitude values smaller than 1,156 m will also receive 
100 % membership due to the Z-shaped curve. Howev-
er, as the altitude increases from 1,156 to 1,200 m, the 
membership decreases from 100 % until it reaches 50 % 
(Figure 4B). This low membership value (50 %) indicates 
environmental conditions less characteristic of loamy/
sandy Typic Udifluvent, contrary to places where alti-
tude values are smaller than 1,156 m. 

Figure 4 – Bell-shape (A) and Z-shape (B) optimallity curves adjusted in ArcSIE interface.

Figure 3 – Digital terrain models at Lavrinha Creek Watershed.
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Higher values of WI and low slopes (Table 2) were 
used for mapping hydromorphic soils in flatter alluvial 
areas (footslope). Udepts occupy the well-drained por-
tions of the landscape with lower values of WI (summit, 
shoulder and backslope) formed by different combina-
tions and ranges of slope, plan and profile curvature that 
represent different landforms. This procedure reduced 
the inconsistency and costs associated with conventional 
manual processes (Zhu et al., 2001). 

A fuzzy logic based on the model called similarity 
vector (Zhu, 1997) represents soils at a given location 
perceiving the landscape as a continuum. The fuzzy log-
ic is used to infer the membership of a soil type from en-
vironmental variables, such as a digital elevation model 
and its derivative maps. A soil at a given pixel (i,j) is rep-
resented by a n-element of similarity vector: ijS = ( 1

ijS , 
2
ijS ,... k

ijS ,... n
ijS ...), where n is the number of prescribed 

soil types over the area, k
ijS  is an index which measures 

the similarity between the local soil at (i,j) to the pre-
scribed soil type k. The similarity value is measured ac-
cording to how close the soil is to a centroid concept (be-
tween 1 and 0). The more similar a soil is to a prescribed 
soil type, the higher its similarity value (fuzzy member-
ship). The soil class, as well as the continuous spatial pre-
diction is determined under fuzzy assignment, whereby a 
soil object can be labeled as being more than one soil type 
with different degrees of assignment depending on the 
similarities between the soil and a set of prescribed soil 
classes. The more similar a soil is to a prescribed soil type, 
the higher its similarity value, and from a fuzzy perspec-
tive, such values are the same as fuzzy memberships of 
the local soil to a soil type (Zhu et al., 2010).  

Figure 5 shows the fuzzy membership maps created 
according to the instances for the five soil types (Table 
2). They are the first product generated by the inference 
process. Every pixel is classified assuming a value ranging 
from 0 to 100, being high or low according to its similar-
ity to the soil class which is being classified. These maps 
reveal more details about soil types than polygon maps 
because they are made at pixel size spatial resolution. 
The general shapes on the membership maps follow the 
landscape better than the ones on the soil polygon maps 
where inclusion or exclusion from a region is based more 
on restrictions derived from the scale of the map than 
from local conditions (Zhu et al., 1996). The central con-
cept of the soil type responds to local variations in the ap-
parent soil forming environment (represented by DTMs 
or terrain attributes). Fuzzy membership maps can be 
viewed as a non-linear transformation of the environmen-
tal variables (DTMs) (Zhu et al., 2010), and can be used to 
portray the uncertainty associated with the hardened or 
polygon map (McKay et al., 2010).

Solum Depth Predictive Maps
Figure 6 shows the solum depth prediction map 

from knowledge-based digital soil mapping. The shal-
lowest sola display hydromorphic features, occurring 
under low elevation regions, with gentle slopes, higher 

wetness index and concave landforms (Figure 3), where 
the water table is closer to the surface for most of the 
year. Also, these soils do not contain B horizon because 
of the frequent sediments deposited due to floods, which 
inhibit soil development, limiting the solum depth to the 
A horizon thickness only in these places. On the other 
hand, Udepts are formed under different landforms, 
slopes, and are not subjected to floods, which, in turn, 
allow for the development of a B horizon and, hence, 
the solum depth. The moderately deep solum areas (yel-
low and light blue on the map), related to Udepts, cor-
respond to places on steep slopes (Figure 3) and they 
are thicker than the ones from lowlands that are poorly 
developed. The deepest Udepts are related to places 
with gentle slopes and intermediate wetness index (high 
lands). Such conditions allow soil development with cur-
rent characteristics that may reduce erosion rates and 
provide higher water infiltration, which enhance the 
pedogenesis development rates. Also, these areas tend to 
receive soil eroded (colluvium) from the uplands which 
further contributes to their increased thickness. As re-
ported by Menezes et al. (2009), the only detailed soil 
survey report of the Mantiqueira Mountain region, the 
Udepts around the Lavrinha Creek Watershed, under 
the same climate and parent material, are deeper than 
the ones found in the rest of the Alto Rio Grande Basin, 
that are influenced by the faster weathering of gneiss 
and the intense precipitation regime.

Validation and Accuracy Assessment of the Predict-
ed Solum Depth

The scatterplot graphics to compare the accuracy 
of conventional and knowledge-based digital soil map-
ping approaches are shown in Figure 7, and the results 
of the comparison parameters RMSE, ME, R2 and R2

adj 
for the knowledge-based and conventional solum depth 
map are presented in Table 3. The scatterplot graphic 
for conventional solum depth map (7A), shows a greater 
spread of data points compared to the knowledge-based 
graphic (7B), which means a greater discrepancy be-
tween predicted and real solum depths. It is also appar-
ent in the low R² and R²adj. RMSE and ME values, which 
indicate that the knowledge-based solum depth map is 
more accurate  compared to the solum depth map de-
rived from the conventional soil polygon map (Table 3).

The knowledge-based digital soil mapping showed 
the gradual changing of solum depth throughout the 
landscape, which is more realistic, and resulted in 
greater spatial detail and accuracy when compared to 
the conventional map. Also, the knowledge-based solum 
depth map provides information about the smaller but 
potentially important environmental niches that may be 
described by higher resolution DTMs (Zhu, 1997).

The knowledge-based digital soil mapping ap-
proach has been successfully applied in the prediction 
of A horizon depth (Zhu et al., 1997), drainage classes 
(McKay et al., 2010), A horizon silt and sand contents 
(Qi et al., 2006), soil transmissivity (Zhu et al., 1997), 
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Figure 5 – Fuzzy membership maps for each soil type described at 
Lavrinha Creek Watershed.

hydraulic conductivity (Zhu and McKay, 2001), and so-
lum depth (Quinn et al., 2005; Zhu and McKay, 2001). 
While the information about surface topography can 
nowadays be derived from easily accessible DEMs in 
different spatial resolutions and accuracies (Hengl and 
MacMillan, 2009), the use of aerial photography inter-
pretation is becoming harder due to the limited num-
ber of pedologists trained in this methodology and the 
difficulty of acquiring aerial photographs on adequate 
scales in comparison to widely available high resolu-
tion satellite images. Furthermore, the use of digital soil 
mapping approach employed in this study provided ad-
equate estimates of the solum thickness distribution at 
LCW. It reinforces the need of associating the knowl-

Table 3 – Comparison parameters between conventional and 
knowledge

Parameters Conventional Knowledge-based

RMSE 35.56 9.12

ME -3.94 -3.29

R2 0.16 0.92

R2
adj 0.11 0.92

RMSE: root mean square error; ME: mean error.

edge of soil experts with soil-landscape relationships to 
predict soil properties along the landscape, especially 
in areas with limited data availability (Menezes et al., 
2013).

Conclusions

	 The knowledge-based digital soil mapping ap-
proach showed advantages over the conventional soil 

Figure 6 – Solum depth prediction from knowledge-based digital soil 
mapping.

Figure 7 – Scatterplot of measured vs. predicted solum depth, R2 
and R2 adjusted from conventional (A) and knowledge based digital 
soil mapping approach (B).
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mapping approach, by applying field expert-knowledge 
to predict solum depth with suited accuracy in a con-
tinuous way. A low density of samples was used, which 
is considered adequate given the low financial resources 
for soil survey programs currently available in Brazil.

The use of digital elevation models to derive ter-
rain attributes and the possibility of employing them 
to predict soil properties using fuzzy logic provide ad-
equate results for study areas with various soil types and 
difficult to access.
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