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Abstract 
Russula comprises more than 3,000 species worldwide and is a characteristic genus of the coniferous forests of 
the northern hemisphere. The forest plantations with non-native species in the northeastern Argentina, such as 
pine or eucalyptus, provide the biotic and environmental conditions for the establishment of ectomycorrhizal 
fungi associated with these forest plantations. Due to the complexity of identifying Russula at specific level, 
morpho-anatomical, scanning electron microscopy, and phylogenetic (ITS) analysis were used to identify 
the specimens. As result, three Russula species, R. recondita, R. sardonia, and R. sororia, are described in 
detail and illustrated, none previously known to Argentina. Also, two of them, R. recondita and R. sororia, 
represent new records for South America.
Key words: Basidiomycota; ectomycorrhizae; forestry; fungi; Russulaceae.

Resumen 
Russula es un género que comprende más de 3.000 especies de distribución mundial, siendo un género 
característico de los bosques de coníferas del hemisferio norte. Las plantaciones forestales con especies no 
nativas en el Nordeste argentino, como por ejemplo pino o eucalipto, proporcionan las condiciones bióticas 
y ambientales para el establecimiento de hongos ectomicorrícicos asociados a dichos cultivos. Debido a 
la complejidad que presenta la determinación de Russula a nivel específico, se utilizaron métodos morfo-
anatómicos, de microscopía electrónica de barrido y análisis filogenéticos (ITS) para la identificación de los 
especímenes. Como resultado, tres especies de Russula, R. recondita, R. sardonia y R. sororia son descriptas 
en detalle e ilustradas. Ninguna de estas especies era conocida previamente para Argentina, y dos de ellas, 
R. recondita y R. sororia, representan nuevas citas para Sudamérica. 
Palabras clave: Basidiomycota; ectomicorrizas; forestación; hongos; Russulaceae.
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Introduction
Russula Pers. comprises more than 3,000 

species worldwide (He et al. 2019; Wijayawardene 
et al. 2020). In a traditional sense, Russula 
is characterized by its middle to large size 
basidiomes, with brittle context due to the 
presence of sphaerocysts in conjunction with 
filamentous hyphae, basidiospores with amyloid 
ornamentations and ectomycorrhizal habit 

(Schaeffer 1952; Romagnesi 1967; Largent & 
Baroni 1988; Sarnari 1998). However, with the use 
of phylogenetic tools, currently a broader generic 
concept is considered, which includes not only the 
traditionally agaricoid species, but also species of 
pleurotoid habit, and even truffle-like basidiome of 
hypogeal habit (Buyck et al. 2018). Even though 
Russula is easy to recognize macroscopically 
to genus, most species are difficult to identify 
due to the complexity and subjectivity of many 
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characters (as odor and taste) that were utilized 
to delimit its species (Largent & Baroni 1988). 
Although its infrageneric classification was always 
complex (Kühner & Romagnesi 1953; Romagnesi 
1967; Singer 1986), Buyck et al. (2018) proposed 
a classification based on morphoanatomic and 
multigene characters, concluding in seven well-
defined subgenera: Archaea Buyck & V. Hofst., 
Compactae (Fr.) Bon, Crassotunicata Buyck & 
V. Hofst., Heterophyllidia Romagnesi, Malodora 
Buyck & V. Hofst., Brevipes Buyck & V. Hofst., 
and Russula Pers.

Russula is mainly represented in temperate 
cold forests associated with conifers (Bills et al. 
1986; Schmit et al. 1989; Villeneuve et al. 1989; 
Ferris et al. 2000; Gómez-Hernández et al. 2011; 
O’Hanlon & Harrington 2012) and Angiosperms 
as Fagales (Halling & Mueller 2005; Gómez-
Hernández et al. 2011; O’Hanlon & Harrington 
2012) and Myrtaceae (Packham et al. 2002; Gates 
et al. 2005). Restricting our scope to South America, 
the main diversity of autochthonous Russula species 
is concentrated in Andino-Patagonic forests (Singer 
1950; Gamundi & Horak 1994; Romano et al. 2017), 
lowlands forests in Amazonian region (Singer et al. 
1983; Maia et al. 2015), Northeast Brazil (Sá & 
Wartchow 2016; Sá et al. 2018), and Guyana (Miller 
et al. 2012), being many of them endemic of these 
regions. Nevertheless, forestry with introduced 
species, pine and eucalyptus for example, provides 
biotic and environmental conditions for the 
establishment of allochthonous ectomycorrhizal 
fungi associated with these forest (Barroetaveña 
& Rajchenberg 2003; Diez 2005; Barroetaveña 
et al. 2007, 2012). In recent collections made in 
Pinus plantation from northeastern Argentina, 
three Russula species not previously known for 
Argentina were identified, two of them unknown 
to South America. These species are described and 
illustrated, and their distribution and phylogenetic 
position are discussed.

Materials and Methods
Collections and morphological 
analyses
The specimens here studied were collected 

under Pinus taeda L. and P. elliottii Engelm 
plantations of Misiones and Corrientes provinces, 
and deposited at CTES Herbarium. These samples 
were described according to Adamčík et al. (2019). 
Color codes follow Kornerup & Wanscher (1978). 
Microscopic characters were examined using light 

microscope (LM), Leica model CME, and scanning 
electron microscope (SEM), JEOL 5800 LV, 
operating at 20 KV. The SEM images were obtained 
from herbarium samples, rehydrated in Triton 
aqueous solution, and dehydrated in an ethanol 
series, dried to critical-point, and then mounted on 
double-sided tape and coated with gold-palladium. 
All LM images were taken with Leica EC3 camera 
from material mounted in 5% KOH and stained with 
phloxine (1%) or treated with Melzer’s reagent, 
Cresyl Blue and sulfobenzaldehyde (Adamčík et 
al. 2019). Ammonia was used to observe color 
changes in the basidiomes. The measurements of 
microstructures (basidiospores, basidia, hyphae 
in the lamellae, trama and pileipellis) were made 
directly in LM or through photographs using 
ImageJ software (Schneider et al. 2012).  The 
basidiospore walls ornamentations were measured 
in SEM. For basidiospores´ measurements, the 
following notations were used: x= arithmetic mean 
of length and width; Q= quotient of length and 
width indicated as a variation range; Qx= mean of 
Q values; n= number of basidiospores measured, 
N= number of basidiomata from which spores were 
measured. All GPS readings were taken on Garmin 
eTrex 10, hand held unit using WGS84 standard. 
Herbaria abbreviations follow Index Herbariorum 
(Thiers 2020) and the authors of species are 
according to Index Fungorum - Authors of Fungal 
Names (2020).

DNA extraction, amplification, 
and sequencing
Genomic DNA of specimens N. Niveiro 

3274 CTES and N. Niveiro 3341 CTES were 
isolated from dried basidiomata tissue following 
standard protocols of the Canadian Centre for DNA 
Barcoding (CCDB) for fungi (Ivanova et al. 2006, 
2016). The nuclear ribosomal internal transcribed 
spacer (ITS) region of the DNA was amplified 
using primers ITS1-F and ITS4-B (Gardes & Bruns 
1993), which was suggested as the universal DNA 
barcode marker for Basidiomycetes fungi (Ivanova 
et al. 2008; Schoch et al. 2012). PCR products were 
purified and sequenced by the Canadian Center 
of DNA Barcoding (CCDB). The ITS sequences 
were deposited in the GenBank database (Tab. 1).

Phylogenetic analysis
The resulting sequences were assembled and 

manually edited using Geneious v. 6.1.8 (Kearse 
et al. 2012). The nrITS dataset was built with 61 



Russula in pinus forest from northeastern Argentina 3 de 19

Rodriguésia 73: e02372020. 2022

Species Collection No
ITS genbank 
Accession No

Reference

Lactifluus chrisocarpus LE<RUS>:253907 NR121551 Morozova et al. (2013)

R. ahmadii LAH2101006 KU535608 Jabeen et al. (2017)

R. ahmadii SJ54 KT834639 Jabeen et al. (2017)

R. ahmadii LAH35006 KT834640 Jabeen et al. (2017)

R. amerorecondita (as R. recondita) 134 KJ834567 Adamčík et al. (2019), Melera et al. (2017)

R. amerorecondita (as R. recondita) 171 KJ530758 Adamčík et al. (2019), Melera et al. (2017)

R. amerorecondita (as R. recondita) 25 KJ834618 Adamčík et al. (2019), Melera et al. (2017)

R. amerorecondita (as R. recondita) 6271 KF318045 Adamčík et al. (2019), Melera et al. (2017)

R. amerorecondita (as R. amoenolens) F:PRL7415  GQ166870 Adamčík et al. (2019), Avis et al. (unpubl.) 

R. amerorecondita (as R. pectinatoides) NAMA4998 EU819493 Adamčík et al. (2019), Palmer et al. (2008) 

R. aff amonolens HMJAU37318 KY357332 Liu et al. (unpubl.) 

R. amoenolens nl27.9.95.6 (TUB) AF418615 Eberhardt (2002)

R. amoenolens MICH12838 KF245510 Bazzicalupo & Berbee (unpubl.) 

R. amoenolens 110 KJ834594 Melera et al. (2017)

R. amoenolens 91 KJ834607 Melera et al. (2017)

R. amoenolens 115 KJ834590 Melera et al. (2017)

R. amoenolens 76 KJ834609 Melera et al. (2017)

R. amoenolens PDD77763 GU222264 Johnston & Park (unpubl.) 

R. amoenolens 110 KJ834594 Melera et al. (2017)

R. amoenolens 91 KJ834607 Melera et al. (2017)

R. amoenolens 115 KJ834590 Melera et al. (2017)

R. amoenolens 76 KJ834609 Melera et al. (2017)

R. amoenolens 111 KJ834593 Melera et al. (2017)

R. amoenolens 280 KY681463 Santolamazza Carbone & Calvino Cancela 
(unpubl.)

R. amoenolens CDW122 JQ622327 Avis (2012)

R. cerolens WTU_F_38361 KF245498 Bazzicalupo & Berbee (unpubl.) 

R. cerolens MICH9611 KF245486 Bazzicalupo & Berbee (unpubl.) 

R. cerolens OSC76727 KF245505 Bazzicalupo & Berbee (unpubl.)  

R. cerolens UBCF23015 KF245524 Bazzicalupo & Berbee (unpubl.)  

R. cerolens UBC_F18893 HQ604829 Berbee et al. (unpubl.) 

R. cerolens 36 KF683922 Melera et al. (2017)

R. cerolens 29 KJ834617 Melera et al. (2017)

R. foetens HMAS194245 JX425383 Li & Wen (unpubl.)

R. foetens R32 LN714598 Větrovský  et al. (2016)

R. foetens VA14 AF478613 Yao & Zhang (2002)

R. granulata PC BB2004-228 EU598189 Hughes & Buyck (unpubl.) 

Table 1 – Sequences used in the phylogenetical analysis. Sequences obtained in this study are in bold.
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Species Collection No
ITS genbank 
Accession No

Reference

R. granulata PC BB2004-227  EU598188 Hughes & Buyck (unpubl.) 

R. granulata 159 KJ834624 Melera et al. (2017)

R. iliota MICH73719 KF245509 Bazzicalupo & Berbee (unpubl.)  

R. iliota UE26.07.2002-3 DQ422024 Eberhardt (unpubl.) 

R. iliota HQ677769 O´Hanlon & Harrington (2012)

R. insignis 94 KJ834606 Melera et al. (2017)

R. insignis 1223IS85 AY061700 Miller & Buyck (2002)

R. laurocerasi E00290534 KF245532 Bazzicalupo et al. (unpubl.) 

R. laurocerasi nl1348 (TUB) AF418614 Eberhardt (2002)

R. laurocerasi (as R. grata) 129 KJ834573 Melera et al. (2017)

R. grata (as R. grata) 100 KJ834604 Melera et al. (2017)

R. grata (as R. grata) 103 KJ834601 Melera et al. (2017)

R. lilacea 220135 KF318049 Melera et al. (2017)

R. pectinatoides PC BB2004-206 EU598185 Hughes & Buyck (unpubl.) 

R. pectinatoides 172 KU640187 Melera et al. (2017)

R. pectinatoides 168 KU640186 Melera et al. (2017)

R. petinata 6 KF318085 Melera et al. (2017)

R. petinata 79 KF318082 Melera et al. (2017)

R. petinata 82 KF318084 Melera et al. (2017)

R. praetervisa 39 KF303606 Melera et al. (2017)

R. praetervisa 124 KJ834578 Melera et al. (2017)

R. praetervisa 44 KF303600 Melera et al. (2017)

R. pulverulenta PC BB2004-245 EU598186 Hughes & Buyck (unpubl.) 

R. recondita FH12-269 KF318064 Melera et al. (2017)

R. recondita ZT Myc 1704 KF318063 Melera et al. (2017)

R. recondita 92 KJ530750 Melera et al. (2017)

R. recondita Niveiro 3341 
(CTES) MT252520 This paper

R. sororia Niveiro 3274 
(CTES) MT252521 This paper

R. sororia 2208ASI KX574701 Lee et al. (2017) 

R. sororia ASIS15775  KX574702 Lee et al. (2017)

R. sororia 9 KF318053 Melera et al. (2017)

R. sororia Nara_RuS01 AB211275 Nara (2006)

R. sororia (as R. aff amoenolens) HMJAU37318 KY357332 Liu et al. (unpubl.) 
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sequences of sect. Ingratae treated by Jabeen et 
al. (2017) and Melera et al. (2017), including our 
sequences (Tab. 1). Lactifluus chrysocarpus E.S. 
Popov & O.V. Morozova was used as outgroup 
(Wang et al. 2015). The nrITS sequences were 
initially aligned with MAFFTv.7 (under Q–INS–i 
criteria) (Katoh & Standley 2013) and manually 
edited using MEGA5 (Tamura et al. 2011). The 
nrITS dataset was subdivided into three data 
partition (ITS1, 5.8S, and ITS2). 

The dataset was analyzed with Maximum 
Likelihood (ML) and Bayesian Inference (BI) 
approaches. Maximum Likelihood searches were 
conducted with RaxML-HPC v.8 (Stamatakis 
2014), searching for the best scored trees with 
GTRGAMMA model for the dataset with all the 
default parameters estimated by the software. 
The analysis first involved 1000 ML independent 
searches each one starting from one randomized 
stepwise addition parsimony tree. Only the best-
scored ML tree was kept, and the confidence 
of nodes was accessed through non-parametric 
Bootstrapping (BS) pseudoreplicates under 
the same model, allowing the program to stop 
bootstrapping automatically by the autoMRE 
option. An additional alignment partition file was 
used to force RAxML software to search for a 
separate evolution model for each partition. The 
best fit model of nucleotide evolution to the dataset 
was selected using AIC (Akaike Information 
Criterion) as implemented in jModelTest2 v.1.6 
(Guindon & Gascuel 2003; Darriba et al. 2012). 
Bayesian Inference analyses were performed with 
MrBayes 3.2.6 (Ronquist & Huelsenbeck 2003), 
and implemented with two independent runs, 
each one beginning from random trees with four 
simultaneous independent chains. A total of 2×107 
generations were carried out, sampling one tree 
every 1×103 generations. The initial 25% of the 
sampled trees was discarded as burn-in and checked 
by the convergence criterion (frequencies of 
average standard deviation of split <0.01) in Tracer 
v.1.6 (Rambaut et al. 2014), while the remaining 
ones were used to reconstruct a 50% majority-rule 
consensus tree and to estimate Bayesian posterior 
probabilities (BPP) of the branches. J Model Test2 
v.1.6, MrBayes 3.1.2 and RaxML-HPC v. 8.2.3 
were used in CIPRES Science Gateway (Miller 
et al. 2010; http://www.phylo.org/). A node was 
considered to be strongly supported if it showed 
a BPP ≥ 0.95 and/or BS ≥ 90%, while moderate 
support was considered BPP ≥ 0.9 and/or BS ≥ 
70%. Only the topology from the best ML tree 

is shown, indicating support values (BPP/BS) of 
each node.

Results
Molecular phylogenetic inferences
The nrITS dataset included 61 sequences 

belonging to 15 species of Russula plus the 
outgroup, resulting in an alignment with 631 
characters, of which 396 are constant sites, 235 
variable uninformative and 135 parsimony-
informative.

The phylogenetic inference from nrITS 
dataset (Fig. 1), shows that Russula specimens 
from Pinus forest plantation in the northeastern 
Argentina are distributed in two strongly supported 
clades. The specimen N. Niveiro 3274 (CTES) is 
closely related to Asian and North American R. 
sororia (BPP=1/BS=98), and the specimen N. 
Niveiro 3341 (CTES) with European specimens 
of R. recondita (BPP=1/BS=100). Both species 
are described below.

Taxonomy
Russula recondita Melera & Ostellari. Mycological 
Progress 16 (2): 128 (2017).	 Figs. 2-4

Pileus 30–70 mm diam., flattened-globose 
when young, then convex to flat, depressed when 
mature; margin tuberculate-corrugated, incurved 
to plane-upturned; cuticle viscid when young, 
turning dry, easily separable from the context at 
approximately one third of the diameter of the 
pileus, orange white (6A2), pale orange (6A3), light 
orange (6A4) to grayish orange (6B3-5) surface, 
occasionally with deep orange (5A6-7) stains, 
dark brown (7F4-8) in the center. Lamellae up to 
3 mm broad, adnate to sinuate, crowded at first, 
turning close, thick, whitish (5A1), orange white 
(5A2) to orange gray (5B2), occasionally with 
brownish orange (5C5) to brownish yellow (5C7) 
stains when mature; entire and concolorous edge. 
Stipe 30–80 × 10–20 mm, thick, cylindrical, rough, 
bright, white (5A1) when young, turning pale gray 
(5B1) when old, occasionally with reddish brown 
(7B7) to brown (7E7) stain in lower half. Context 
fleshy, up to 8 mm thickness, whitish (1A1) to 
orange white (6A2), brittle. Taste mild, odor fruity. 
Spore-print cream color (2A2 “yellowish white” 
to 2B2 “yellowish gray”). Negative reaction with 
potassium hydroxide and ammonia.

Basidiospores 6.5–8.5 × 4.5–7 µm; x= 
7.5 × 6.0 µm; Q= 1.15–1.35; Qx= 1.25; n= 22; 
N= 1; ovoid to broadly ellipsoidal, hyaline, 
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Figure 1 – Molecular phylogeny carried out by Maximum Likelihood based on dataset of ITS sequences. Bayesian 
posterior probability above 0.7 (BPP ≥ 0.7) and Bootstrap value above 70% (BS ≥ 70%) are shown. Sequences 
obtained from this work are indicated in bold type. Clade with taxa of interest is shown in grayish box.
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Figure 2 – Macroscopic characters of R. recondita [N. 
Niveiro 3341 (CTES)]. Scale bar = 5 cm.

ornamented with isolated warts (2–4 warts in a 3 
µm diam. circle), or occasionally with thin-lines 
interconnections (0–1 fusion in the circle), warts 
up to 0.8–1.3 µm high, amyloid; smooth suprahilar 
spot, inamyloid. Basidia 43–46 × 9–11 µm, 
clavate, 4-spored, thin-walled, hyaline. Hymenial 
cystidia moderately numerous, ca. 600–1200/
mm2, (30–)37–55(–70) × 5–8 µm, fusiform, 

rarely cylindrical, apically obtuse, mucronate, 
with an appendage 5–9 µm long, occasionally 
moniliform, mainly originating slightly below 
the level of the basidia, a few longer originating 
in subhymenium, thin-walled, smooth, content 
completely heteromorphous, grayish reaction in 
sulfovanillin. Hymenophoral trama with globose 
to subglobose sphaerocysts, 11–21 µm diam., 
thin-walled, intermixed with cylindrical hyphae 
up to 5 µm diam. Gloeopleural hyphae up to 8.5 
µm diam., turning black with sulphobenzaldehyde. 
Pileipellis in an ixotrichoderm up to 280 µm 
deep, orthochromatic in Cresyl Blue; suprapellis 
90–150 µm deep, made up ascending cylindrical 
hyphae, 1–3 µm diam., septate, hyaline, intermixed, 
embedded in a gelatinized matrix; subpellis 
70–130 µm deep, composed of horizontally 
oriented, intermixed and strongly gelatinized 
hyphae. Hyphal termination near the pileus margin 
composed of 2-3 unbranched cells, thin-walled, 
terminal cells 30–35 × 2–3 µm, cylindrical, similar 
to subterminal cells. Hyphal termination near the 
pileus center similar to the margin, slightly longer, 
terminal cells 30–40 × 2–3 µm, cylindrical to 
narrowly lageniform. Pileocystidia dispersed near 
the pileus margin, composed of 1 cell, 38–50 × 
3–5 µm, fusiform to narrowly lageniform, thin-
walled, content undifferentiated; pileocystidia 
near the pileus center, 25–40 × 4–5 µm, fusiform 
to narrowly lageniform, thin-walled, content 
undifferentiated. Oleiferous hyphae frequent in 
context, with yellowish pigments, terminal cells 
occasionally formed larger pileocystidia, 45–80 
× 4–5 µm, cylindrical to lanceolate, thin-walled. 
Examined material: ARGENTINA. CORRIENTES: 
Dpto. Capital, Santa Ana de los Guácaras, 27°27’42.01”S, 
058°40’04.85”W, 70 m a.s.l., 2.VI.2019, in soil between 
pines at the edge of the road, former pine plantation area, 
N Niveiro 3341 (CTES); 11.VIII.2019, in soil between 
isolated pines at the roadside, former pine plantation 
area, A Somrau et al. 3 (CTES).

The species is distributed in Europe, North 
America, and Asia (Lee et al. 2017; Melera 
et al. 2017). Russula recondita was found in 
different habitats (deciduous forest, coniferous 
forest, grasslands, plantations, anthropic habitats) 
associated with numerous potential symbionts (e.g. 
Pinus sp., Quercus sp., and Salix sp.) on sandy and 
airy soils (Melera et al. 2017).

Previous records were not found for South 
America. 

Russula pectinatoides Peck is currently 
considered a species complex, that is still not 
resolved (Sarnari 1998; Adamčík et al. 2013; 

Figure 3 - Microscopic characters of R. recondita 
- a. basidiospores - b. basidia - c. hymenial cystidia 
- d. pileipellis terminal hyphae - e. pileocystidia - f. 
pileocystidia originated by gloeopleural hyphae [N. 
Niveiro 3341 (CTES)]. Scale bars = 10 µm.

a

b
c

e fd
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Melera et al. 2017). Firstly, Sarnari (1998), 
separated many European collections of R. 
pectinatoides as an independent species, R. 
praetervisa Sarnari, emphasizing that both species 
are macroscopically identical. Later, Melera et al. 
(2017) analyzed this species complex, concluding 
that the original concept of R. pectinatoides 
(Peck 1907) corresponds to at least three different 
species: R. pectinatoides, R. praetervisa, and a new 
species, R. recondita, differentiating them mainly 
by molecular data. Russula recondita is described 

as a wide and very diverse species, with variability 
in spore size (average range of 6–10 × 5–7 µm), 
ornamentation (from isolated warts to sometimes 
with some connections), habitat, and potential 
symbionts (Melera et al. 2017). In addition, recent 
phylogenetic studies (Lee et al. 2017; Melera et al. 
2017) have shown the concept of R. recondita (fide 
Melera et al. 2017) or R. aff. pectinatoides (fide Lee 
et al. 2017) comprises three geographical distinct 
clades: i- European specimens, ii- Asian specimens 
and, iii- North American specimens. Further 

Figure 4 - Microscopic characters of R. recondita - a-b. basidiospores on SEM - c. basidia - d. hymenial cystidia. 
[N. Niveiro 3341 (CTES)]. Scale bars = 10 µm.
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studies of R. recondita are needed to determine if 
this phylogenetic arrangement indicates a middle 
stage of speciation or a discrete species (Lee et al. 
2017). Recently, Adamčík et al. (2019), propose 
to R. amerorecondita Avis & Barajas as the North 
American sister species of R. recondita, restricting 
the latter to Europe and Asia. The South American 
specimens described here are closely related to the 
clade of European specimens, named R. recondita 
s.s. by Melera et al. (2017). 

The completely mild taste, without any 
bitterness, and its fruity smell distinguish R. 
recondita from other morphologically similar 
species (Melera et al. 2017). Russula ahmadii 
S. Jabeen, A. Razaq., A.R. Niazi, I. Ahmad 
& A.N. Khalid is a similar species of the R. 
pectinatoides species complex, but is differentiated 
from R. recondita by having partially reticulate 
basidiospores, with crests that are mostly forked 
(Jabeen et al. 2017). Russula catillus H. Lee, 
M.S. Park & Y.W. Lim is microscopically similar 
to R. recondita, but differs in its paler pileus 
coloration, with pale yellow to light yellow surface 
(Lee et al. 2017). Russula hortensis Sarnari and 
R. pseudopectinatoides G.J. Li & H.A. Wen are 
two other macroscopically similar species, but 
are differentiated by their crested ornamented 
basidiospores, forming complete reticles (Sarnari 
1998; Li et al. 2015). The recently described R. 
amerorecondita is another similar species to R. 
recondita but has larger basidiospores (8.5–10.7 
× 7.5–9.5 µm) that the European and Argentinean 
specimens (Adamčík et al. 2019). In relation to 
this complex of species, Wright & Albertó (2002) 
described R. pectinatoides for introduced pine 
forests on Pampean region of Argentina. Russula 
pectinatoides could be confused with R. recondita, 
but further morphological studies and molecular 
analyses should be performed to confirm their 
identity and relationship.”Russula recondita was 
described as part of the section Foetentinae Melzer 
& Zvára (Lee et al. 2017; Melera et al. 2017), 
currently included in subgenus Heterophyllidae 
(Byuck et al. 2018; Adamčík et al. 2019). 

Russula sardonia Fr., Epicrisis Systematis 
Mycologici: 353 (1838).	 Figs. 5-7

Pileus 70–120 mm diameter, convex to 
flattened, depressed on the central region when 
mature; striated to subsulcate at the margin, 
incurved; subviscid cuticle when wet, turning 
dry, glabrous, red-purple (11A6), brownish-violet 
(11D6) to brownish-red (9A7-9C7), turning darker 

in the center, darker violet (11F5-11F8). Lamellae 
up to 5 mm, deep, attached, sinuated, crowded to 
close, smooth to finely crenulated margin, whitish 
(1A1) when young, turning yellowish white (1A2) 
to pale yellow (1A3) when mature, frequently 
with brownish orange (6C6-6C8) stained; entire 
and concolorous edge. Stipe 60–82 × 10–18 
mm, cylindrical or more attenuated towards the 
base, central, slightly rough surface, fibrillose, 
whitish (9A1) when young, with a red-pinkish 
stained when mature, pale red (9A3) to grayish 
red (9B4). Context fleshy, up to 10 mm thickness, 
whitish (1A1), slightly reddish brown (9D6-9E6) 
towards the cuticle, firm, brittle, with watery line 
at the level of the lamellae. Taste hot spicy, odor 
fruity. Spore-print cream color (2A2 “yellowish 
white” to 2B2 “yellowish gray”). Positive reaction 
with potassium hydroxide and ammonia coloring 
salmon red (near 9B5 “grayish red”).

Basidiospores 6.4–9.8 × 5.5–8 µm; x= 8 × 
6.4 µm; Q= 1.05–1.44; Qx= 1.23; n= 21; N= 2; 
ellipsoidal, hyaline, with subreticulated warts [(4–) 
5–7 warts in a 3 µm diam. circle] frequently fused 
in short to long ridges (0–3 fusions in the circle), 
connected by occasional thin-lines (0–4 fusions in 
the circle), warts of 0.75–1.22 µm high, amyloid; 
smooth suprahilar spot (wrinkled under SEM), 
inamyloid. Basidia 38–51 × 5.8–7 µm, cylindrical-
subclavate, 4-spored, thin-walled, hyaline. 
Hymenial cystidia numerous, ca. 1800–2600/
mm2, 57.5–90 × 7.5–12.5 µm; cylindrical-fusoid, 
apically obtuse, mucronate, with an appendage 1–9 
µm long, originating in subhymenium, thin-walled, 
smooth, content completely heteromorphous, 
grayish reaction in sulfovanillin, more numerous 
near to the lamellae edges, usually smaller, 
35–50 × 5.5–7.5 µm, cylindrical-fusoid to fusoid, 
occasionally claviform. Hymenophoral trama 
irregular, with polyhedric sphaerocysts up to 20 
µm diameter intermixed with cylindrical hyphae, 
up to 6 µm diam. Gloeopleural hyphae up to 
7.8 µm thick, turning black when stained with 
sulphobenzaldehyde. 

Pileipellis in an ixotrichoderm, 160–200 µm 
deep, orthochromatic in Cresyl Blue; suprapellis 
90–120 µm deep, made up ascending cylindrical 
hyphae, 1–4 µm diam., septate, hyaline, intermixed, 
embedded in a gelatinized matrix; subpellis 70–100 
µm deep, composed of horizontally oriented, 
intermixed and strongly gelatinized hyphae. 
Hyphal termination near the pileus margin 
composed of 2-3 unbranched cells, thin-walled, 
terminal cells 35–45 × 2.5–3.5 µm, cylindrical 
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Figure 5 – Macroscopic characters of R. sardonia - a. general aspect - b. pileus surface detail - c. 
longitudinal section of basidiome - d. lamellae detail. [O. Popoff 5601 (CTES)]. Scale bars = 5 cm.

a b

c d

to narrowly lageniform, subterminal cells wider 
and shorter, unbranched. Hyphal termination 
near the pileus center similar to the margin, 
slightly shorter, terminal cells 20–40 × 2–3 µm, 
cylindrical to narrowly lageniform. Pileocystidia 
dispersed near the pileus margin, composed of 
1–2 cells, thin or slightly thick-walled, often 
flexuous and occasionally slightly moniliform; 
terminal cells 23–43 × 4–5 µm, conic to narrowly 

fusiform, content with dispersed granulations; 
pileocystidia near the pileus center similar to the 
latter in shape and size, slightly wider, 38–45 × 
4–6 µm. Oleiferous hyphae frequent in context, 
with yellowish pigments. 
Examined material: ARGENTINA. CORRIENTES. 
Dpto. Gral. San Martin, La Cruz, Paraje Tres Cerros, 
29°04’09.15”S, 057°03’13.52”W, 88 m a.s.l., 19.V.2017, 
associated with Pinus elliottii plantation, abundant. O 
Popoff 5601 (CTES).
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The species is known from Europe (Kühner 
& Romagnesi 1953; Moser 1978; Moreno et al. 
1986; Sarnari 1998). In South America, described 
from center and south Chile, associated with pine 
plantation (Garrido 1982; Furci 2008). Russula 
sardonia grows associated with pine forest or 
plantation, on sandy or loose soils, with a great 
abundance of basidiomes (Moreno et al. 1986; 
Furci 2008). Previous records were not found for 
Argentina.

Russula sardonia is characterized by its large 
pileus up to 18 cm diameter, with glabrous, purple-
reddish to purplish surface, yellowish lamellae, 
subglobose basidiospores, 7–9 × 6–8 µm in size, 
ornamented with subreticulate amyloid warts, 
context and lamellae with hot spicy taste, and 
by reacting to potassium hydroxide or ammonia 
turning salmon red color. This species forms 
ectomycorrhizal associations with several Pinus 
species (Garrido 1982; Valenzuela et al. 1996, 
1998). Its basidiomes with purple-violet coloration 
are morphologically similar to R. queletti Fr. and 

R. torulosa Bresad; however, these species can be 
distinguished from R. sardonia by their context 
and lamellae immutable to ammonia and potassium 
hydroxide test, smaller basidiomes (up to 6 and 
8 cm wide respectively), and basidiospores with 
isolated warts (Kühner & Romagnesi 1953; Moser 
1978). Other similar species is R. exalbicans (Pers.) 
Melzer & Zvára, which is differentiated by having 
basidiospores, 7.5–8.5 × 6–7 µm, with isolated 
warts (Moser 1978). Russula cavipes Britzelm. 
is other species with yellowish-toned lamellae, 
which turns salmon red with ammonia as observed 
in R. sardonia, but it has smaller basidiomes with 
variable colorations and basidiospores with more 
marked warts (Kühner & Romagnesi 1953).

Wright & Albertó (2002) described R. 
amethystina Quélet from Argentina, a species 
with similar dimensions and liliaceous colorations 
that resembles R. sardonia, nevertheless, it is 
differentiated by its darker and velvety pileus 
surface, whitish colored lamellae, and sweet taste.

Russula sardonia is part of the subgenus 
Russula (Byuck et al. 2018). 

Russula sororia (Fr.) Romell, Öfvers. K. Förh. 
Kongl. Svenska Vetensk.-Akad. 48 (3): 177 
(1891).	 Figs. 8-10

Pileus 30–70 mm diam., globose at first, then 
convex to flat, broadly depressed when mature; 
margin corrugated, incurved to plane-upturned; 
viscid cuticle when young, turning dry, easily 
separable from the context at approximately one 
third of the pileus diameter; light brown surface 
(6A2 “orange white” to 6A3 “pale orange”), darker 
in the center, dark brown (6F4-8), with ferruginous 
(6C5 “brownish orange” to 6D5 “light brown”) 
stains in mature specimens. Lamellae up to 3 mm 
deep, adnate to sinuate, crowded at first, turning 
close, thick, whitish (1A1) when young, turning 
yellowish white (1A2) when mature, with brownish 
orange (6C6-6C8) stained when bruised. Stipe 
30–60 × 10–15 mm, thick, cylindrical or slightly 
attenuated at the base, rough, bright, white (1A1) 
when young, turning pale gray (1B2) when old, 
stained with ochre (6B2-3, “orange-gray”, “grayish 
orange”) at the base or when is bruised. Context 
fleshy, up to 6 mm thick, whitish (1A1), brittle. 
Taste hot spicy, odor spermatic or artichoke. Spore-
print cream color (near to 2A2 “yellowish white”). 
Negative reaction with potassium hydroxide and 
ammonia.

Basidiospores 7–9.2 × 5.4–7.2 µm; x= 8 
× 6.2 µm; Q= 1.13–1.45; Qx= 1.3; n= 20; N= 

b c

d e

a

Figure 6 – Microscopic characters of R. sardonia - a. 
basidiospores - b. basidia - c. hymenial cystidia - d. 
pileipellis terminal hyphae - e. pileocystidia. [O. Popoff 
5601 (CTES)]. Scale bars = 10 µm.
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2; broadly ellipsoidal to subglobose, hyaline, 
ornamented with isolated warts [3–5 (–7) warts 
in a 3 µm diam. circle], or occasionally with thin 
interconnections [0–3 (–5) fusions in the circle], 
warts 0.8–1.0 (–1.2) µm high, amyloid; smooth 
suprahilar spot, inamyloid. Basidia 38–47 × 
5–9 µm, clavate, 4-spored, thin-walled, hyaline. 
Hymenial cystidia numerous, ca. 1100–1700/
mm2, (38–)45–69 × 5–9 µm, fusiform, rarely 
cylindrical, apically obtuse, mucronate, with an 
appendage 2–12 µm long, usually moniliform, 
occasionally bifurcate, mainly originating slightly 
below the level of the basidia, a few longer 
originating deeply in subhymenium, thin-walled, 
smooth, content completely heteromorphous, 

grayish reaction in sulfovanillin; Hymenial 
cystidia near the lamellae edges smaller, 38–45 
× 4.5–7.5 µm, fusiform to narrowly lageniform. 
Hymenophoral trama with globose to subglobose 
sphaerocysts, 12–34 × 11–22 µm, thin-walled, 
intermixed with cylindrical hyphae up to 5 µm 
diam. Gloeopleural hyphae dispersed, up to 5 µm 
diam., black with sulphobenzaldehyde. Pileipellis 
in an ixotrichoderm up to 150 µm, orthochromatic 
in Cresyl Blue; suprapellis 60–90 µm deep, 
made up ascending cylindrical hyphae, 1–3 
µm diam., septate, hyaline, intermixed more or 
less parallel, embedded in a gelatinized matrix; 
subpellis up 40–70 µm deep, composed of 
horizontally oriented, intermixed and strongly 

Figure 7 - Microscopic characters of R. sardonia - a-b. basidiospores on SEM - c. hymenial cystidia - d. pileipellis 
with pileocystidia (marked with arrows) [O. Popoff 5601 (CTES)]. Scale bars = 10 µm.

b

c d
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Figure 8 - Macroscopic characters of R. sororia - a. general aspect - b. pileus surface detail from a young basidiome 
- c. stipe surface detail - d. lamellae detail [N. Niveiro 3274 (CTES)]. Scale bars = 5 cm.

a b

c d

gelatinized hyphae. Hyphal termination near the 
pileus margin composed of 2-3 unbranched cells, 
thin-walled, terminal cells 38–68 × 1.5–2.5 µm, 
cylindrical, thin-walled, occasionally flexuose, 
slightly moniliform. Pileocystidia near the pileus 
margin dispersed, composed of one apical cell, 
35–45 × 4–6 µm, fusiform, narrowly lageniform 
to cylindrical, thin-walled, with heteromorphous 
content; pileocystidia near the pileus center longer, 
43–58 × 5–6 µm, fusiform to lageniform, thin-
walled, with heteromorphous content. Oleiferous 
hyphae not observed in the context.
Examined material: ARGENTINA. MISIONES: 
Dpto. Iguazú, Puerto Libertad. Arauco S.A., San Jorge 
plantation, 25°48’09.84”S, 054°30’43.70”W, 271 m 
a.s.l., 2.V.2017, in 10 years old Pinus taeda plantation, 
N Niveiro 3274, N Niveiro ARA-P01-00.; ARA-P01-03; 
ARA-P03-01; ARA-P04-02 (CTES); 10.IV.2018, N 
Niveiro 2018.10.152 (CTES); N Ramírez 2018.10.88 
(CTES). Dpto. Libertador General San Martin, Garuhapé, 
26°48’36.16”S, 54°55’57.20”W, 163 m a.s.l., 6.X.2018, 
in Pinus taeda plantation, N Niveiro et al. 3350 (CTES). 

Dpto. San Ignacio, San Ignacio, 27°16’55.46”S, 
55°33’07.68”W, 149 m a.s.l., in 15 years old Pinus taeda 
plantation, 29.IX.2018, N Niveiro 3351 (CTES).

Russula sororia grows scattered, solitary 
or gregarious, in soil associated with pinus and 
deciduous forest in Europe (Kühner & Romagnesi 
1953; Moser 1978) and North America (Shaffer 
1972; Chou & Wang 2005). Previous records were 
not found for South America. 

Russula sororia is morphologically difficult 
to distinguish from related species (Sarnari 1998). 
However, characters as the light brown pileus that 
does not exceed 8 cm in diameter, the white stipe 
that turns brown when is bruised, and the broadly 
ellipsoidal to subglobose basidiospores with 
subreticulated warts (Kühner & Romagnesi 1953; 
Sarnari 1998; Chou & Wang 2005; Kränzlin 2005; 
Mir et al. 2017) are useful to recognize it.

Russula sororia constitutes a complex of 
morphologically similar species and commonly 
confused with R. amoenolens Romagn., R. cerolens 
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Shaffer, R. pectinata (Bull.) Fr., R. pectinatoides 
(Shaffer 1972; Melera et al. 2017), and R. ahmadii 
(Jabeen et. al. 2017). Russula amoenolens is 
distinguished by having larger (up to 10 cm) and 
firmer basidiomes, darker pileus surface (dark 
yellowish brown), more strongly acrid lamellae 
and a strong artichoke odor (Shaffer 1972). Russula 
cerolens is characterized by the red-brown stains on 
the stipe base and the ornamentation’s pattern of its 
basidiospores, with warts up to 0.8 µm high, isolated 
or with occasional interconnections forming a 
partial reticle (Shaffer 1972). Russula pectinata has 
more yellowish pileus surface, fish-like odor and 
is related to deciduous trees (Moser 1978; Thiers 
1997). Russula pectinatoides, originally described 
for North America, is differentiated by its mild 
taste, of oil or fruity, and smaller basidiospores, 
6–8.5 × 5.7–7.2 µm, with well-marked warts 
(Singer & Digilio 1951; Schaeffer 1952; Kühner 
& Romagnesi 1953; Moser 1978; Adamčík et al. 
2013). Russula ahmadii, recently described from 

Pakistan, differs by its smaller pileus (up to 4.5 
cm), darker colorations and a more reticulated spore 
ornamentation (Jabeen et al. 2017).

Russula sororia and related species were 
traditionally considered within the subgenus 
Ingratula Romagnesi, section Foetentinae (Lee 
et al. 2017), but are currently considered in the 
subgenus Heterophyllidae (Byuck et al. 2018; 
Adamčík et al. 2019). 

Discussion
Russula is one of the most diverse and well-

known genus worldwide with more than 3,000 
species (He et al. 2019). However, the identification 
of its species is difficult due to the subjectivity 
of many diagnostic characters, and by having 
species complex morphologically very similar 
among them, such as R. recondita and R. sororia 
case. To understand the diversity of this group, 
comprehensive studies are necessary, covering 
morphological, ecological, and phylogenetic 
analysis based on molecular data. Furthermore, 
the identification of species associated with 
introduced environments, such as pine forest 
plantations, is challenging because in many cases 
there is no prior knowledge of their biodiversity, 
neither the relationships that may exist among their 
components.

The diversity of ectomycorrhizal fungi 
associated with forest plantations in northern 
Argentina is little known (Niveiro et al. 2009; 
Campi et al. 2017). Studies on diversity of 
ectomycorrhizal fungi associated with Pinus 
elliottii in southern Brazil (Giachini et al. 2000, 
2004; Sulzbacher et al. 2013, 2018; Silva-Filho 
et al. 2020), and center of Argentina (Urcelay et 
al. 2017), Pinus radiata D. Don. (Barroetaveña 
& Rajchenberg 2003), and Pinaceae (Hayward 
et al. 2015) in southern Argentina, did not record 
Russula species. 

In South America there is a mixture of 
forest species of different biogeographic origins, 
with their respective associated ectomycorrhizal 
fungi, which favors the conditions for hosts switch 
(Silva-Filho et al. 2020). Thus, it is probable that 
most non-native ectomycorrhizal fungi have been 
introduced together with the seeds or seedlings of 
exotic Pinus species, coming from North America 
and Europe with ornamental or industrial purposes 
(Sulzbacher et al. 2013; Silva-Filho et al. 2020). 
Specimens of R. recondita studied here, in spite 
of being related to the European lineage of this 

Figure 9 – Microscopic characters of R. sororia - a. 
basidiospores - b. basidia - c. hymenial cystidia - d. 
pileipellis terminal hyphae - e. pileocystidia. [N. Niveiro 
3274 (CTES)]. Scale bars = 10 µm.
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Figure 10 - Microscopic characters of R. sororia - a-b. basidiospores on SEM - c. basidia - d. hymenial cystidia [N. 
Niveiro 3274 (CTES)]. Scale bars = 10 µm.

species, were found associated with symbionts 
originating from southeastern North America such 
as P. taeda and P. elliottii. This was also previously 
found in Lactarius quieticolor Romagn., which was 
originally described associated to the European P. 
sylvestris L. and in South America found growing 
under P. taeda in Brazil and P. radiata in Chile, 
both species of North American flora (Silva-Filho 
et al. 2020).

The presence of ectomycorrhizal fungi is a 
fundamental requirement for the normal growth 
of pine species (Barroetaveña & Rajchenberg 
2003), therefore knowledge about its distribution 
and ecology is important for the species selection 
for use in forest nurseries (Castellano & Molina 
1989; Giachini et al. 2000), or to establish control 

mechanisms on introduced species that may have 
effects as invasive (Hayward et al. 2015; Urcelay 
et al. 2017). 

The presence of R. recondita, R. sardonia, 
and R. sororia represents the first records for the 
subtropical region of South America, allowing 
us to have a more complete knowledge about the 
diversity of ectomycorrhizal fungi associated with 
pine forest plantations.
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