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Abstract 
Purpose – This paper aims to discuss multilevel modeling for longitudinal data, clarifying the 
circumstances in which they can be used. 
Design/methodology/approach – The authors estimate three-level models with repeated measures, 
offering conditions for their correct interpretation. 
Findings – From the concepts and techniques presented, the authors can propose models, in which it is 
possible to identify the fixed and random effects on the dependent variable, understand the variance 
decomposition of multilevel random effects, test alternative covariance structures to account for 
heteroskedasticity and calculate and interpret the intraclass correlations of each analysis level. 
Originality/value – Understanding how nested data structures and data with repeated measures work 
enables researchers and managers to define several types of constructs from which multilevel models can be 
used. 
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1. Introduction 
Regression models for longitudinal data are very useful when the researcher wishes to study 
the behavior of a given phenomenon in the presence of nested data structures with repeated, 
or longitudinal, measures. 

While in nested structures of clustered data certain explanatory variables do not 
present variation between observations (representing a level of analysis) coming from a 
given group (representing another level of analysis), in data structures with repeated 
measures there is also the temporal evolution, a fact that enables the researcher to 
investigate the individual reasons that may lead each of the observations to present 
different behaviors of the dependent variable, for the same group or for distinct groups, 
over time (Fávero, 2010; Martins & Terra, 2015; Misangyi, Lepine, Algina, & Goeddeke, 
2006). 
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For example, certain school data that does not vary among students, such as location and 
size, can be compared with data from other schools; and certain student data, such as sex 
and religion, that do not vary over time, can be compared with data from other students, 
which allows the different influences in the dependent variable to be analyzed. In all of these 
situations (nested data without or with repeated measures), datasets provide structures from 
which hierarchical models can be estimated. 

Multilevel regression models have become considerably important in several fields of 
knowledge, and the publication of papers that use estimations related to these models has 
become more and more frequent (Goldstein, 2011). The reason for the importance of 
multilevel modeling is due mainly to the determination of research constructs that consider 
the existence of nested data structures, in which certain variables show variation between 
distinct units that represent groups but do not assess variation between observations that 
belong to the same group. In addition, the computational development and investments that 
data analysis software developers have made in the processing capacity to estimate 
multilevel models have also provided support to researchers who are increasingly interested 
in this type of approach (Gelman & Hill, 2007; Hough, 2006; Santos, Fávero, & Distadio, 
2016; Serra & Fávero, 2018). 

Theoretically, researchers can define a construct with a greater number of levels of 
analysis, even if the interpretation of model parameters is not something trivial. For 
instance, imagine the study of school performance, throughout time, of students nested into 
schools, these nested into municipal districts, these into municipalities, and these into states 
of the federation. In this case, we would be working with six analysis levels (temporal 
evolution, students, schools, municipal districts, municipalities and states). 

The main advantage of multilevel models over traditional regression models estimated, 
for instance, by ordinary least squares (OLS), is the possibility of considering a natural 
nesting of data (Steenbergen & Jones, 2002), that is, multilevel models enable us to identify 
and analyze individual heterogeneities, and heterogeneities between the groups, to which 
these individuals belong, making it possible to specify random components in each analysis 
level (Heck & Thomas, 2009). 

Multilevel models correct for the fact that observations in the same group are not 
independent and thus, compared to OLS models, lead to unbiased estimates of standard 
errors (SEs). But one could say that the same can be obtained with clustered standard errors 
in OLS. Indeed, if the number of clusters is plentiful (i.e. above 20), clustered SEs in OLS 
models and multilevel models are equally adequate for precision estimates of group-level 
effects. On the other hand, if there are less than 20 clusters, researchers should avoid using 
clustered SEs and adopt multilevel modeling. Furthermore, if researchers are also interested 
in testing whether group-level covariates moderate individual-level effects, multilevel 
models may prove to be the most appropriate choice (Arceneaux & Nickerson, 2009; 
Steenbergen & Jones, 2002). 

According to Courgeau (2003), within a model structure with a single equation, there 
seems to be no connection between individuals and the society in which they live. In this 
sense, the use of level equations enables the researcher to “jump” from one science to 
another: students and schools, families and neighborhoods, firms and countries. Ignoring 
this relationship means to elaborate incorrect analyzes about the behavior of the individuals 
and, equally, about the behavior of the groups. Only the recognition of these reciprocal 
influences allows the correct analysis of the phenomena. 

This is in line with what is called by Mathieu and Chen (2011) the multilevel paradigm, 
which refers to a way of thinking: considering management phenomena in context and 
looking for driving variables not only from the focal unit of analysis but also from levels 
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above and below. Such an approach often implies the development of multidisciplinary 
theories and investigations, what is the spirit articulated by Hitt, Beamish, Jackson, and 
Mathieu (2007) when discussing the built of theoretical and empirical bridges across levels 
through multilevel modeling. Most modern-day multilevel studies seek to associate 
relationships across proximal layers, such as team attributes and members’ attitudes or 
environmental conditions and variable performance. 

In an effort to make multilevel modeling more accessible, we provide the syntax for the 
mixed procedures in Stata for each step and show how to test and compare these designs in 
the model-building process. Previous discussions involving multilevel data have illustrated 
the use of multilevel modeling in programs such as MLn (Kreft & de Leeuw, 1998), R 
(Bliese & Ployhart, 2002), HLM (Raudenbush, Bryk, Cheong, Congdon, & Du Toit, 2004), and 
SAS (Littell, Milliken, Stroup, & Wolfinger, 2004; Singer, 1998). 

In this paper, our focus will be on hierarchical linear models (HLM), also known as linear 
mixed models (LMM). According to West, Welch, and Gałecki (2015), the term “linear mixed 
models” comes from the fact that these models present linear specification and the 
explanatory variables include a mix of fixed and random effects. That is, they can be 
inserted into components with fixed effects, as well as into components with random effects. 
While the estimated fixed effects parameters indicate the relationship between explanatory 
variables and the metric dependent variable, the random effects components can be 
represented by the combination of explanatory variables and non-observed random effects. 

Our main objectives are:  
� to introduce the concepts of nested data structures;  
� to define the type of model to be estimated based on the characteristics of the data;  
� to estimate parameters through several methods in Stata;  
� to interpret the results obtained through several types of existing estimations for 

multilevel models; and  
� to define the most suitable estimation for diagnosing and forecasting effects in each 

of the cases studied. 

2. Nested data structures 
Models that take into account the presence of nested structures in the data offer benefits to 
researchers since they make possible the study of the sources of variance, in different levels, 
of an outcome variable. 

Raudenbush and Bryk (2002) discuss the applications of multilevel modeling from nested 
data structures in various areas of knowledge, particularly education. In this field, works of 
Aitkin and Longford (1986), Raudenbush and Bryk (1986), Garner and Raudenbush (1991), 
Raudenbush (1993), Rumberger and Thomas (1993), O’Connell and McCoach (2008), and 
Goldstein (2011) deserve mention. 

Multilevel modeling is also extensively used in strategy literature to compare existing 
variances at firm and industry levels for firm performance composition, such as 
Schmalensee (1985), McGahan and Porter (1997), Brush and Bromiley (1997), Mauri and 
Michaels (1998), Brush, Bromiley, and Hendrickx (1999), Chang and Singh (2000), Bowman 
and Helfat (2001), McGahan and Porter (2002), Ruefli and Wiggins (2003), Short, Ketchen, 
Palmer, and Hult (2007) and Short, McKelvie, Ketchen, and Chandler (2009). Other authors 
have analyzed the country-of-origin effect on performance, notably Christmann, Day, and 
Yip (1999), Lee (2003), Hawawini, Subramanian, and Verdin (2004), Makino, Beamish, and 
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Zhao (2004a), Makino, Isobe, and Chan (2004b), Misangyi et al. (2006), Goldszmidt, Brito, and 
Vasconcelos (2007), Fávero (2008), and Holcomb, Combs, Sirmon, and Sexton (2010). 

Therefore, multilevel regression models enable us to formally investigate the behavior of 
a certain dependent variable Y, which represents the phenomenon we are interested in, 
based on the behavior of explanatory variables, whose changes may occur for clustered 
data, between observations and between groups to which these observations belong, and for 
data with repeated measures throughout time. In other words, there must be variables that 
have data that change between individuals that represent a certain level. But these variables 
remain unchanged for certain groups of individuals, and these groups represent a higher 
level. 

First, imagine a dataset with data on n individuals, and each individual i = 1, . . ., n 
belongs to one of the j = 1, . . ., J groups, obviously n> J. Therefore, this dataset can have 
certain explanatory variables X1, . . ., XQ that refer to each individual i, and other 
explanatory variables W1, . . ., WS that refer to each group j; but they are invariable for the 
individuals of a certain group. Table I shows the general model of a dataset with a two-level 
clustered/nested data structure (individual and group). 

Based on Table I, we can see that X1, . . ., XQ (columns 4 to 6) are level-1 variables (data 
change between individuals), and W1, . . ., WS (columns 7 to 9) are level-2 variables (data 
change between groups; however, not for the individuals in each group). Furthermore, 
quantities of individuals in groups 1, 2, . . ., J (column 2) are equal, respectively, to n1, n2 �

n1, . . ., n � nJ� 1 (column 1). Figure 1 shows the existing nesting between the level-1 units 
(individuals) and the level-2 units (groups), which characterizes the existence of clustered 
data. 

Imagine another dataset in which, in addition to the nesting presented for clustered data, 
there is temporal evolution. That is, data with repeated measures. Thus, besides the 
individuals that will now belong to level 2 and therefore will be called j = 1, . . ., J, nested into 

Table I.  
General model of a 
dataset with a two- 
level clustered/nested 
data structure  

(Observation)  
(individual i)  
level 1 (1) 

Group j  
level 2 

(2) 
Yij  

(3) 
X1ij  

(4) 
X2ij  

(5) . . .

XQij  

(6) 
W1j  

(7) 
W2j  

(8) . . .

WSj  

(9)  

1 1 Y11 X111 X211 . . . XQ11 W11 W21 . . . WS1 

2 1 Y21 X121 X221 XQ21 W11 W21 WS1 
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

n1 1 Yn11 X1n11 X2n11 XQn11 W11 W21 WS1 

n1 þ 1 2 Yn1þ1;2 X1n1þ1;2 X2n1þ1;2 XQn1þ1;2 W12 W22 WS2 

n1 þ 2 2 Yn1þ2;2 X1n1þ2;2 X2n1þ2;2 XQn1þ2;2 W12 W22 WS2 
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

n2 2 Yn22 X1n22 X2n22 XQn22 W12 W22 WS2 
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

nJ� 1 þ 1 J YnJ � 1þ1;J X1nJ � 1þ1;J X2nJ � 1þ1;J XQnJ � 1þ1;J W1J W2J WSJ 

nJ� 1 þ 2 J Ynj� 1þ2;J X1nJ � 1þ2;J X2nJ � 1þ2;J XQnJ � 1þ2;J W1J W2J WSJ 
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

n J YnJ X1nJ X2nJ XQnJ W1J W2J WSJ  

Note: The dataset will have a balanced nested data structure if n1 = n2 � n1 = . . . = n � nJ� 1   
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k = 1, . . ., K groups (which now belong to level 3), we will also have t = 1, . . ., Tj periods in 
which each j individual is monitored. Consequently, this new dataset can have the same 
explanatory variables X1, . . ., XQ that refer to each j individual. But now they are invariable 
for each j individual during the periods of monitoring. Moreover, the dataset can also have 
the same explanatory variables W1, . . ., WS that refer to each group k. But W1, . . ., WS are 
also invariable throughout time for each group k. Table II provides the logic to describe a 
dataset with a three-level nested data structure with repeated measures (time, individual and 
group). 

Based on Table II, we can now see the variable that corresponds to the period is a 
level-1 explanatory variable (column 1), since the data change is in each row of the 
dataset, and that X1, . . ., XQ (columns 5 to 7) become level-2 variables (data change 
between individuals, but not for the same individual throughout time), and that W1, . . ., 
WS (columns 8 to 10) become level-3 variables (data change between K groups (column 3), 
but not for the same group throughout time). Furthermore, quantities of periods in which 
individuals 1, 2, . . ., J (column 2) are monitored are equal, respectively, to T1, T2 � T1, . . ., 
TJ � TJ� 1 (column 1). 

Similar to what was shown for the case with two levels, Figure 2 enables us to see the 
existing nesting between the level-1 units (temporal variation), the level-2 units (individuals), 
and the level-3 units (groups), which characterizes a data structure with repeated measures. 

Through Tables I and II, as well as through the corresponding Figures 1 and 2, we can 
see that the data structures present absolute nesting. That is, a certain observation can be 
nested into only one group, and this group into only another higher-level group, and so on. 

In the next section, we will estimate multilevel models with repeated measures in Stata, 
whose econometric development is in Appendix 1. Appendix 2 is intended for the 
presentation of the commands in Stata. 

3. Estimation of multilevel models with repeated measures in Stata 
This section gives researchers the opportunity to estimate multilevel models through 
Stata Statistical Software®. For our example, we will use the step-up strategic 
multilevel analysis proposed by Raudenbush and Bryk (2002), and Snijders and 
Bosker (2011). That is, we first studied the variance decomposition from the definition 
of a null model (non-conditional model), so that afterwards, a random intercepts 
model and a random intercepts and slopes model could be estimated. Finally, from the 
definition of the random nature of the error terms, we estimated the complete model 
by including level-2 variables into the analysis. We, therefore, estimate a three-level 
hierarchical linear model, in which the nesting of data will be characterized due to the 
presence of repeated measures. Thus, there is temporal evolution in the behavior of 
the dependent variable. 

Figure 1. 
Two-level nested 

structure of clustered 
data 
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General model of a 
dataset with a three- 
level nested data 
structure with 
repeated measures 
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3.1 Hypotheses and data 
A dataset was constructed by a professor interested in monitoring students’ school 
performance for a certain period of time, in order to investigate if there is variability in this 
performance throughout time between students within the same school, and between those 
from different schools. In addition, if yes, if there are certain student and school 
characteristics that explain this variability. This dataset follows the logic of the seminal 
work developed by Raudenbush, Rowan, and Kang (1991). 

A total of 15 schools volunteered to provide data on their students’ school performance 
(scores from 0 to 100) in the last four years, a total of 610 students. In addition, the professor 
also obtained each student’s gender in the dataset in order to verify if there are differences in 
school performance resulting from this variable. The variable regarding professors’ years of 
teaching experience, for each school, also was included in the study. The dataset 
PerformanceTimeStudentSchool.dta can be found in Fávero and Belfiore (2019). 

It is important to mention that, although traditional maximum likelihood estimation 
methods for multilevel modeling have been shown to provide biased estimates when the 
number of clusters is below 30, methods such as restricted maximum likelihood (REML) 
estimation have shown potential to perform well with ten clusters or fewer (McNeish & 
Stapleton, 2016). In this paper, as discussed below, we estimate all models through REML. 

First, we test three fundamental hypotheses regarding the nature of student’s school 
performance over time, following the logic proposed by Raudenbush and Bryk (2002) and 
Short, Ketchen, Bennett, and Du Toit (2006):  

H1. There is significant variance in student’s school performance over time, both within 
students and schools.  

H2. Student’s school performance follows a linear trend over time.  

H3. There is significant variance around a linear performance trend. 

Student and schools’ characteristics may influence student’s school performance over time. 
Thus, we test the following:  

H4. There is a significant relationship between students’ characteristics and student’s 
school performance over time. 

Figure 2. 
Three-level nested 

structure with 
repeated measures 
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H5. There is a significant relationship between schools’ characteristics and student’s 
school performance over time. 

We have a balanced longitudinal data structure since all 610 students are monitored in the 
four periods. Figure 3 enables us to analyze the temporal evolution of the school 
performance of the first 50 students in the sample. From the trends in the lines, we can see 
that the temporal evolutions of the school performance have different intercepts and slopes 
between students. These different intercepts and slopes justify the use of multilevel 
modeling and provide reasons to include intercept and slope random effects in Level 2 of the 
models that will be estimated. 

Figure 4 shows the temporal evolutions of the average school performance. The 
increasing trend over time provides further justification for estimating a three-level 

Figure 3. 
Temporal evolution 
of the school 
performance of the 
first 50 students in 
the sample 

Figure 4. 
Temporal evolution 
of students’ average 
school performance at 
each school (linear 
adjustment through 
OLS) 
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hierarchical model. Figure 4 also shows the linear adjustment through OLS of the school 
performance behavior over time for each school. In addition, the figure enables us to display 
the intercept and slope random effects in Level 3 of the models that will be estimated, since 
the temporal evolutions of the school performance present different intercepts and slopes 
between the schools. 

3.2 Step-up strategic multilevel modeling 
Having characterized the temporal nesting of the students from different schools in the data 
with repeated measures, we can initially estimate a null model (non-conditional model) that 
enables us to determine if there is variability in the school performance between students 
from the same school and between those from different schools. No explanatory variable is 
inserted into the modeling, which only considers the existence of one intercept and of error 
terms u00k, r0jk and etjk, with variances, respectively, equal to tu000, t r000 and s 2. The model 
to be estimated has the following expression: 

Null Model: 

performancetjk ¼ p 0jk þ etjk   

p 0jk ¼ b00k þ r0jk   

b00k ¼ g 000 þ u00k  

which results in[1]: 

performancetjk ¼ g 000 þ u00k þ r0jk þ etjk  

At the top of Figure 5, we can initially demonstrate that we have a balanced longitudinal 
data structure since for each student we have minimum and maximum quantities of periods 
of monitoring equal to four, with a mean also equal to four. 

About the fixed effects component, we can see that the estimation of parameter g 000 is 
equal to 68.714, which corresponds to the average of students’ expected annual school 
performance of the (horizontal line estimated in the null model, or general intercept). 
Moreover, at the bottom of Figure 5, the estimations of the variances of error terms tu000 = 
180.194, t r000= 325.799 and s 2 = 41.649 are presented. 

We can, therefore, define two intraclass correlations, given the existence of two variance 
proportions. The first one refers to the correlation between the data of variable performance 
in t and in t0 (t= t0) of a certain student j from a certain school k (Level-2 intraclass 
correlation). The other one refers to the correlation between the data of variable performance 
in t and in t0 (t= t0) of different students j and j0 (j= j0) from a certain school k (Level-3 
intraclass correlation). Therefore, we have:  
� Level-2 intraclass correlation: 

rhostudentjschool ¼
tu000 þ t r000

tu000 þ t r000þs 2 ¼
180:194þ 325:799

180:194þ 325:799þ 41:649
¼ 0:924   

� Level-3 intraclass correlation: 

Multilevel 
modeling for 
longitudinal 

data  

467  



rhoschool ¼
t u000

tu000 þ sr000þs 2 ¼
180:194

180:194þ 325:799þ 41:649
¼ 0:329  

Hence, the correlation between annual school performances is equal to 32.9 per cent 
(rhoschool) for the same school, and the correlation between annual school performances is 
equal to 92.4 per cent (rhostudent|school) for the same student of a certain school. Therefore, for 
the model without explanatory variables, while the annual school performance is slightly 
correlated between schools, the same becomes strongly correlated when the calculation is 
carried out for the same student from a certain school. In this last case, we estimate that 
students and schools random effects representing approximately 92 per cent of the total 
variance of the residuals[2]. 

Regarding the statistical significance of these variances, the fact that the estimated 
values of tu000, t r000 and s 2 are considerably higher than their respective standard errors 
suggests that there is significant variation in the annual school performance between 
students and between schools. 

This information is essential to underpin the choice of the multilevel modeling, instead of 
a simple and traditional regression model through OLS. At the bottom of Figure 5, we can 
verify this fact by analyzing the result of the likelihood-ratio test. Given Sig. x 2 = 0.000, we 
can reject the null hypothesis that the random intercepts are equal to zero (H0: u00k = r0jk = 
0), which makes the estimation of a traditional linear regression model be ruled out for the 
data with repeated measures. 

Figure 5. 
Null model 
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Even though researchers frequently ignore the estimation of null models, analyzing the 
results may help to reject the research hypotheses or not. It may even provide adjustments 
in relation to the constructs proposed. For our data, the results of the null model allow us to 
state that there is significant variability in the school performance throughout the four years 
under analysis. Furthermore, there is significant variability in the school performance over 
time between students of the same school, and there is significant variability in the school 
performance over time between students from different schools. 

H1 can be supported, i.e. there is significant variance in student’s school performance over 
time within both students and schools. Since our main objective is to verify if there are student 
and school characteristics that would explain the variability in the school performance between 
students from the same school and between those from different schools, we will continue with 
the next modeling steps, respecting the step-up strategic multilevel analysis. 

Let us insert level-1 variable year into the analysis, aiming at investigating if the 
temporal variable has a relationship to students’ school performance behavior and, more 
than this if the school performance has a linear behavior throughout time. 

Linear Trend Model with Random Intercepts: 

performancetjk ¼ p 0jk þ p 1jk � yearjk þ etjk   

p 0jk ¼ b00k þ r0jk   

p 1jk ¼ b10k   

b00k ¼ g 000 þ u00k   

b10k ¼ g 100  

which results in the following expression[1]: 

performancetjk ¼ g 000 þ g 100 � yearjk þ u00k þ r0jk þ etjk  

First, we can see that the mean of the annual increase in school performance is 
statistically significant, with an estimated parameter of g 100 = 4.348, ceteris paribus. 
Thus, we can also support H2, since student’s school performance over time statistically 
follows a linear trend. 

Regarding the random effects components, we have also verified that there is statistical 
significance in the variances of u00k, r0jk and etjk, because the estimations of tu000, t r000 and 
s 2 are considerably higher than the respective standard errors. Therefore, new intraclass 
correlations can be calculated, as follows:  
� Level-2 intraclass correlation: 

rhostudentjschool ¼
tu000 þ t r000

tu000 þ t r000þs 2 ¼
180:196þ 333:675

180:196þ 333:675þ 10:146
¼ 0:981   

� Level-3 intraclass correlation: 
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rhoschool ¼
tu000

tu000 þ t r000þs 2 ¼
180:196

180:196þ 333:675þ 10:146
¼ 0:344  

Both variance proportions are higher than the ones obtained in the estimation of the null 
model, which shows the importance of including the variable that corresponds to the 
repeated measure in level 1. Besides, the result of the likelihood-ratio test at the bottom of 
Figure 6 allows us to prove that the estimation of a simple traditional linear regression 
model (performance based on year) only with fixed effects must be ruled out (H3 supported). 

Therefore, now, our model starts to have the following specification: 

performancetjk ¼ 57:844þ 4:348 � yearjk þ u00k þ r0jk þ etjk  

Figures 7 and 8 provide better visualization of the random intercepts per school and per 
student. 
Therefore, we are able to conclude that students’ school performance follows a linear trend 
throughout time. In addition, there is a significant variance of intercepts between those who 
study at the same school and between those who study at different schools. 

Thus, we also need to verify if there is a significant variance of the school performance 
slopes throughout time between the different students. Therefore, let us insert slope random 
effects into Levels 2 and 3 of our multilevel model that, by maintaining the intercept random 
effects, will have the following expression: 

Linear Trend Model with Random Intercepts and Slopes: 

performancetjk ¼ p 0jk þ p 1jk � yearjk þ etjk   

p 0jk ¼ b00k þ r0jk   

Figure 6. 
Linear trend model 
with random 
intercepts 
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p 1jk ¼ b10k þ r1jk   

b00k ¼ g 000 þ u00k   

b10k ¼ g 100 þ u10k  

which results in[1]: 

performancetjk ¼ g 000 þ g 100 � yearjk þ u00k þ u10k � yearjk þ r0jk þ r1jk � yearjk þ etjk  

Figure 8. 
Random intercepts 

per student 

Figure 7. 
Random intercepts 

per school 
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Note that the variable year is present in the fixed effects component and in the Level-3 
random effects components (by multiplying error term u10k), and in the Level-2 ones (by 
multiplying error term r1jk). Figure 9 shows the results obtained through this estimation. 

We can see that, even though the fixed-effects parameter estimations do not change 
considerably in relation to the previous model, the variance estimations are different, which 
generates new intraclass correlations, as follows:  
� Level-2 intraclass correlation: 

rhostudentjschool ¼
tu000 þ tu100þt r000 þ t r100

tu000 þ tu100þt r000 þ t r100þs 2

¼
224:343þ 0:560þ 374:285þ 3:157

224:343þ 0:560þ 374:285þ 3:157þ 3:868
¼ 0:994   

� Level-3 intraclass correlation: 

rhoschool ¼
tu000 þ tu100

tu000 þ tu100þt r000 þ t r100þs 2

¼
224:343þ 0:560

224:343þ 0:560þ 374:285þ 3:157þ 3:868
¼ 0:371  

Therefore, for this model, we estimate that the students and schools random effects 
represent approximately 99 per cent of the total variance of the residuals. 

Figure 10 shows a likelihood-ratio test applied to compare the estimations of the linear 
trend models with random intercepts and with random intercepts and slopes. 

Figure 9. 
Linear trend model 
with random 
intercepts and slopes 
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By using the values of the restricted likelihood functions obtained in Figures 5 and 9, we 
arrive at the x 2 statistic for the test, with 2 degrees of freedom: 
x 2

2 = (� 2·LLr-randomintercept � (� 2·LLr-randomslope)) = {� 2·(� 7,801.420) � [� 2·(� 7,464.819)]} = 
673.20 which results in a Sig. x 2

2 = 0.000< 0.05 and ends up favoring the linear trend model 
with and random intercepts and slopes. It is important to mention that this likelihood-ratio 
test is only valid when a comparison of the estimations obtained through REML of two 
models is carried out with identical fixed effects specification. Given that in our case, both 
models, that were estimated through REML, present the same fixed effects specification, 
g 000 þ g 100 yearjk, the test is considered valid. 

Hence, our model starts to have the following specification: 

performancetjk ¼ 57:858þ 4:343 � yearjk þ u00k þ u10k � yearjk þ r0jk þ r1jk � yearjk þ etjk  

In the current situation, we are able to state that students’ school performance follows a 
linear trend throughout time. In addition, there is a significant variance of intercepts and 
slopes between those students who study at the same school and between those who study 
at different schools. Therefore, let us insert Level-2 variable gender into the analysis to 
determine if this characteristic explains the variation in the annual school performance 
between students. 

Linear Trend Model with Random Intercepts and Slopes and with Level-2 Variable gender: 

performancetjk ¼ p 0jk þ p 1jk � yearjk þ etjk   

p 0jk ¼ b00k þ b01k � genderjk þ r0jk   

p 1jk ¼ b10k þ b11k � genderjk þ r1jk   

b00k ¼ g 000 þ u00k   

b01k ¼ g 010   

b10k ¼ g 100 þ u10k   

b11k ¼ g 110  

which results in the following expression[1]: 

performancetjk ¼ g 000 þ g 100 � yearjk þ g 010 � genderjk þ g 110 � genderjk � yearjk þ u00k 

þu10k � yearjk þ r0jk þ r1jk � yearjk þ etjk  

Figure 10. 
Likelihood-ratio test 
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This model shows significant estimations for the fixed effects parameters, as well as for the 
variances of the random effects terms, at a significance level of < 0.05 (Figure 11). Moreover, 
at this moment of the modeling, we are able to state that students’ school performance 
follows a linear trend throughout time, and there is a significant variance of intercepts and 
slopes between those who study at the same school and between those who study at 
different schools. Additionally, the fact that a certain student is female or male is part of the 
reason why there is this variation in school performance (H4 supported). 

The model then has the following specification: 

performancetjk ¼ 64:498þ 4:029 � yearjk � 15:033 � genderjk þ 0:705 � genderjk � yearjk

þ u00k þ u10k � yearjk þ r0jk þ r1jk � yearjk þ etjk  

and, from which we can see that male students (dummy gender = 1) have worse 
performance than female students, on average and ceteris paribus. 

Finally, let us investigate if Level-3 variable texp (professors’ years of teaching 
experience), also explains the variation in the annual school performance between the 
students. After some intermediate analyses, let us move on to estimate the three-level 
hierarchical model with the following specification: 

Linear Trend Model with Random Intercepts and Slopes, Level-2 Variable gender and 
Level-3 Variable texp (Complete Model): 

performancetjk ¼ p 0jk þ p 1jk � yearjk þ etjk   

p 0jk ¼ b00k þ b01k � genderjk þ r0jk   

Figure 11. 
Linear trend model 
with random 
intercepts and slopes 
and Level-2 variable 
gender 
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p 1jk ¼ b10k þ b11k � genderjk þ r1jk   

b00k ¼ g 000 þ g 001 � texpk þ u00k   

b01k ¼ g 010   

b10k ¼ g 100 þ g 101 � texpk þ u10k   

b11k ¼ g 110  

which results in the following expression[1]: 

performancetjk ¼ g 000 þ g 100 � yearjk þ g 010 � genderjk þ g 001 � texpk 

þ g 110 � genderjk � yearjk þ g 101 � texpk � yearjk þ u00k 

þ u10k � yearjk þ r0jk þ r1jk � yearjk þ etjk  

Even though the estimations of the fixed effects parameters and random effects variances 
are significant, at a significance level of 0.05, it is necessary to study the structure of the 
random effects (u00k, u10k and r0jk, r1jk) variance-covariance matrix. Based on the outputs 
found in Figure 12, we have: 

Figure 12. 
Linear trend model 

with random 
intercepts and slopes 
and Level-2 variable 

gender and Level-3 
variable texp 
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� Random effects variance-covariance matrix for level school: 

var
u00k

u10k

" #

¼
87:994 0

0 0:263

" #

� Random effects variance-covariance matrix for level student: 

var
r0jk

r1jk

" #

¼
337:627 0

0 3:092

" #

Since we did not specify any covariance structure for these error terms, we are assuming 
that this structure is independent, that is, both cov(u00k, u10k) = 0 and cov(r0jk, r1jk) = 0. 
Nevertheless, we can generalize the structure of these matrices by allowing u00k and u10k 
to be correlated, and r0jk and r1jk to be correlated too. Thus, following Short et al. (2006), 
one additional contribution of this paper is the testing of alternative covariance 
structures to account for heteroskedasticity. In our sample, we found significant 
differences based on the model assumptions and covariance structure specified in our 
empirical test. 

Figure 13. 
Outputs of the linear 
trend model with 
random intercepts 
and slopes and Level- 
2 variable gender and 
Level-3 variable texp, 
with correlated 
random effects (u00k, 
u10k) and (r0jk, r1jk) 
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The results obtained through the estimation considering correlated random effects (u00k, 
u10k) and (r0jk, r1jk) are shown in Figure 13. 

The fixed effects parameter estimations are close to those obtained when estimating the 
model that considers the existence of a structure that is independent from the random-effects 
variance-covariance matrices (Figure 12). Regarding the random-effects parameters, except 
for the estimations of u10k and cov(u00k, u10k), which are statistically significant at a 
significance level of 0.10, all the other estimations are significant at a significance level of 
0.05. Considering that cov(u00k, u10k) and cov(r0jk, r1jk) are statistically different from zero, 
based on the outputs in Figure 13 we can write that:  
� Random effects variance-covariance matrix for level school: 

var
u00k

u10k

" #

¼
88:737 � 3:185

� 3:185 0:255

" #

� Random effects variance-covariance matrix for level student: 

var
r0jk

r1jk

" #

¼
350:913 � 13:251

� 13:251 3:258

" #

Even statistically different from zero, the estimations of the random effects covariances in 
both levels of the analysis, if researchers wish to prove the better suitability of this last 
model over the one that considers the matrix with independent error terms, they just need to 
run a likelihood-ratio test to compare both estimations (Figure 14). 

Figure 15 presents the result of the likelihood-ratio test applied to compare the 
estimations of the complete models with independent and correlated random effects (u00k, 
u10k) and (r0jk, r1jk). 

Figure 14. 
Variance-covariance 

matrices with 
correlated random 

effects (u00k, u10k) and 
(r0jk, r1jk) 

Figure 15. 
Likelihood-ratio test 
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As Sig. x 2
2 = 0.000< 0.05, we can state that the structure of the random effects variance- 

covariance matrices can be considered unstructured. That is, we can consider that error 
terms u00k and u10k are correlated (cov(u00k, u10k) =�0) and that error terms r0jk and r1jk are 
correlated too (cov(r0jk, r1jk) =�0). 

We have arrived at our final model, with the following specification: 

performancetjk ¼ 54:734þ 4:516 � yearjk � 14:702 � genderjk þ 1:179 � texpk þ 0:652

� genderjk � yearjk � 0:057 � texpk � yearjk þ u00k þ u10k � yearjk þ r0jk

þ r1jk � yearjk þ etjk  

Besides, the expected values of each student’s school performance in each of the periods 
monitored are given by: 

performânce_studentjk ¼ 54:734þ 4:516 � yearjk � 14:702 � genderjk þ 1:179 � texpk

þ 0:652 � genderjk � yearjk � 0:057 � texpk � yearjk þ u00k þ u10k

� yearjk þ r0jk þ r1jk � yearjk  

On the other hand, the expected values of each student’s school performance in each of the 
periods monitored, without considering the random effects in the level student, can be given 
by: 

performânce_schoolk ¼ 54:734þ 4:516 � yearjk � 14:702 � genderjk þ 1:179 � texpk

þ 0:652 � genderjk � yearjk � 0:057 � texpk � yearjk þ u00k þ u10k

� yearjk  

We have seen that students’ school performance follows a linear trend over time. Moreover, 
there is a significant variance of intercepts and slopes between those who study at the same 
school and between those who study at different schools, and students’ gender is significant 
to explain part of this variation. H5 can be supported since professors’ years of teaching 
experience at each school (Level-3 variable) itself also explains part of the discrepancies in 
the annual school performance between students from different schools. 

Figure 16 shows the predicted values of school performance throughout time for the first 
50 students in the sample (yhatstudent) and, through which, we can see different intercepts 
and slopes throughout time for different students. 

Finally, a more inquisitive researcher, aiming at questioning the superiority of multilevel 
models in relation to traditional regression models estimated through OLS, whenever there 
are datasets with nested structures, decides to construct a graph (Figure 17). Through this 
graph, it is possible to compare the predicted school performance values generated by this 
three-level hierarchical modeling (HLM3) to those generated by an estimation through OLS, 
for all the students in the sample, in each of the periods analyzed, using the same 
explanatory variables year, gender, texp, genderyear and texpyear. Obviously, there are only 
fixed effects in the estimation through OLS. 

The gray line at 45° shows the observed school performance values of each one of the 
students in the sample in each of the periods analyzed (performance x performance). By 
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using Figure 17, we can clearly see the superiority of the linear trend model with 
explanatory variables and random intercepts and slopes in levels 2 and 3 (complete HLM3 
model) over the multiple linear regression model estimated through OLS with the same 
explanatory variables in this case. The absence of random terms for each contextual effect in 
traditional regression models, such as OLS, prevents greater adherence between predicted 
and observed values of the outcome variable in phenomena where is possible to directly or 
indirectly identify hierarchies, or levels, in the data structure (Raudenbush & Bryk, 2002). 
This demonstrates the importance of considering the random effects components whenever 
there are nested data structures. 

4. Final remarks 
This paper provides a brief discussion about the concepts, processes, stages, tasks, and the 
types of methods and techniques it can employ. It enables researchers and managers to 
assess the relationship between a certain performance variable and one or more predictor 
variables, which characterize different levels of analysis. 

Figure 16. 
Predicted school 

performance values 
throughout time for 
the first 50 students 

in the sample 

Figure 17. 
Values predicted 
through OLS and 
through HLM3 �

observed school 
performance values 
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Moreover, as well as contributed and discussed by Short et al. (2006), this study offers 
progress toward resolving the ambiguity related to the structure of the random effects 
variance-covariance matrices by applying a multilevel model with random intercepts and 
slopes, by explicitly accounting for and modeling heteroskedasticity in the data analysis, 
and by articulating the importance of and offering interpretations for different specifications 
to testing the effects of time on performance. Time studies in business management research 
have not reflected enough attention to these issues, and multilevel modeling provides a tool 
to ameliorate such issues when using a longitudinal design. 

Researchers can also estimate hierarchical cross-classified models (HCM) and multilevel 
multiple membership classification models (MMMC) in situations where lower level 
observations are nested within multiple higher-level units from the same classification. 
According to Durrant, Vassallo, and Smith (2018), not accounting correctly for such multiple 
membership structures leads to biased results. Researchers can study HCM and MMMC in- 
depth in Browne, Goldstein, and Rasbash (2001), Meyers and Beretvas (2006), Uyar and Brown 
(2007), Fávero (2011), Rabe-Hesketh and Skrondal (2012a, 2012b), Chung and Beretvas (2012), 
Brunton-Smith, Sturgis, and Leckie (2017), and Fávero, Serra, Santos, and Brunaldi (2018b). 

Multilevel modeling is a broad theme that can often be explored in depth in the field of 
business management. Each level is formed by individuals or groups nested into other 
groups and so on. Since variables from a certain group are invariable between groups or 
individuals that correspond to lower levels that are nested into that group, it is natural for 
many researchers and constructs to use such models (Zhang, Li, & Song, 2014). 

Many can be the characteristics of the datasets with nested data structures. The most 
common are those with absolute nesting, in which there are clustered data or data with 
repeated measures. In this paper, we chose to use a dataset to estimate three-level hierarchical 
linear models with repeated measures. Nonetheless, from which, we believe researchers will 
have the conditions to estimate, for example, for three-level models with clustered data or even 
to consider a higher number of analysis levels, resulting from more complex nesting structures. 

Multilevel models enable us to identify and analyze individual heterogeneities and the 
heterogeneities between the groups to which these individuals belong, making it possible to 
specify random components in each analysis level. This fact represents the main difference 
of the traditional regression models estimated through OLS, which cannot consider the 
natural nesting of data and, consequently, generate biased parameter estimators (Fávero & 
Belfiore, 2017; Lazega & Snijders, 2016; Pinheiro & Bates, 2009). 

Although many papers use multilevel models only to estimate null models to investigate 
the variance decomposition of the phenomenon being studied in the different analysis levels, 
the possibility of including explanatory variables that correspond to the different levels 
in the fixed and random effects components enables us to investigate possible relationships 
between these variables and the dependent variable. This makes it possible to establish and 
examine new research objectives and interesting constructs (Gelman, 2006). 

The models we studied in this paper are part of what we call generalized linear latent and 
mixed models (GLLAMM), which encompass the hierarchical linear models (HLM). In this 
sense, as discussed by Fávero, Santos, and Serra (2018a), a researcher can also propose 
hierarchical nonlinear models, that refer to the situations in which, in a nested data 
structure, the dependent variable is a categorical variable or a variable with count data. 
Thus, logistic, Poisson or negative binomial multilevel models could also be estimated. 

Discovering implicit and contextual standards from larger and larger volumes of data 
becomes an essential condition for organizations to become successful in competitive 
environments, and multilevel modeling contributes in a considerable way to our ability to 
understand phenomena. 
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Notes  

1. All parameters are defined in the Appendix 1.  

2. One might notice that the sum of variance percentages is not equal to 1. This is the default for 
displaying Stata outputs. In order to obtain the variance percentages of each level on the outcome 
variable, we must proceed with the following calculations:  

Level-1 intraclass correlation:  

rhotime ¼
41:649

180:194þ 325:799þ 41:649 ¼ 0:076  

Level-2 intraclass correlation:  

rhostudent ¼
325:799

180:194þ 325:799þ 41:649 ¼ 0:595  

Level-3 intraclass correlation:  

rhoschool ¼
180:194

180:194þ 325:799þ 41:649 ¼ 0:329  

whose sum is 1. 

References 
Aitkin, M., & Longford, N. (1986). Statistical modelling in school effectiveness studies (with discussion). 

Journal of the Royal Statistical Society (Series A), 149, 1–43. 
Arceneaux, K., & Nickerson, D. W. (2009). Modeling certainty with clustered data: A comparison of 

methods. Political Analysis, 17, 177–190. 

Bliese, P. D., & Ployhart, R. E. (2002). Growth modeling using random coefficient models: Model 
building, testing, and illustrations. Organizational Research Methods, 5, 362–387. 

Bowman, E. H., & Helfat, C. E. (2001). Does corporate strategy matter? Strategic Management Journal, 
22, 1–23. 

Browne, W. J., Goldstein, H., & Rasbash, J. (2001). Multiple membership multiple classification (MMMC) 
models. Statistical Modelling, 1, 103–124. 

Brunton-Smith, I., Sturgis, P., & Leckie, G. (2017). Detecting and understanding interviewer effects on 
survey data by using a cross-classified mixed effects location-scale model. Journal of the Royal 
Statistical Society: Series A (Statistics in Society)), 180, 551–568. 

Brush, T. H., & Bromiley, P. (1997). What does a small corporate effect mean? A variance components 
simulation of corporate and business effects. Strategic Management Journal, 18, 825–835. 

Brush, T. H., Bromiley, P., & Hendrickx, M. (1999). The relative influence of industry and corporation on 
business segment performance: An alternative estimate. Strategic Management Journal, 20, 519–547. 

Chang, S., & Singh, H. (2000). Corporate and industry effects on business unit competitive position. 
Strategic Management Journal, 21, 739–752. 

Christmann, P., Day, D. L., & Yip, G. S. (1999). The relative influence of country conditions, industry 
structure and business strategy on MNC subsidiary performance. Journal of International 
Management, 5, 241–265. 

Chung, H., & Beretvas, S. N. (2012). The impact of ignoring multiple membership data structures in 
multilevel models. British Journal of Mathematical and Statistical Psychology, 65, 185–200. 

Courgeau, D. (2003). Methodology and epistemology of multilevel analysis, London, United Kingdom: 
Kluwer Academic Publishers. 

Durrant, G. B., Vassallo, R., & Smith, P. W. F. (2018). Assessment of multiple membership multilevel models: 
An application to interviewer effects on nonresponse. Multivariate Behavioral Research, 53, 595–611. 

Fávero, L. P. (2008). Time, firm and country effects on performance: An analysis under the perspective 
of hierarchical modeling with repeated measures. Brazilian Business Review, 5, 163–180. 

Multilevel 
modeling for 
longitudinal 

data  

481  



Fávero, L. P. (2010). Modelagem hierárquica com medidas repetidas [Hierarchical modeling with repeated 
measures]. Tese (Livre-Docência) – Thesis – Faculdade de Economia, Administração e Contabilidade, 
Universidade de São Paulo, São Paulo, p. 202. 

Fávero, L. P. (2011). Preços hedônicos no mercado imobiliário comercial de São Paulo: A abordagem da 
modelagemmultinível comclassificação cruzada [Hedonic prices in the commercial real estate 
market of São Paulo: a cross-classified multilevel modeling approach].. Estudos Econômicos (São 
Paulo), 41, 777–810. 

Fávero, L. P., & Belfiore, P. (2017). Manual de análise de dados: Estatística e modelagem multivariada 
com excel®, SPSS® e stata®, Rio de Janeiro, Brazil: Elsevier. 

Fávero, L. P., & Belfiore, P. (2019). Data science for business and decision making, Cambridge, MA: 
Academic Press. 

Fávero, L. P., Santos, M. A., & Serra, R. G. (2018a). Cross-border branching in the Latin American 
banking sector. International Journal of Bank Marketing, 36, 496–528. 

Fávero, L. P., Serra, R. G., Santos, M. A., & Brunaldi, E. (2018b). Cross-classified multilevel determinants of 
firm’s sales growth in Latin America. International Journal of Emerging Markets, 13, 902–924. 

Garner, C. L., & Raudenbush, S. (1991). Neighborhood effects on educational attainment: a multilevel 
analysis. Sociology of Education, 64, 251–262. 

Gelman, A. (2006). Multilevel (hierarchical) modeling: what it can and cannot do. Technometrics, 48, 
432–435. 

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models, New 
York, NY: Cambridge University Press. 

Goldstein, H. (2011). Multilevel statistical models, 4th ed., Chichester, United Kingdom: John Wiley & Sons. 

Goldszmidt, R. G. B., Brito, L. A. L., & Vasconcelos, F. C. (2007). O efeito país sobre o desempenho da 
firma: uma abordagem multinível [Country effect on firm performance: a multilevel approach]. 
Revista de Administração de Empresas,, 47, 12-25. 

Hawawini, G., Subramanian, V., & Verdin, P. (2004). The home country in the age of globalization: How 
much does it matter for firm performance?. Journal of World Business, 39, 121–135. 

Heck, R. H., & Thomas, S. L. (2009). An introduction to multilevel modeling techniques, 2nd ed., New 
York, NY: Routledge. 

Hitt, M. A., Beamish, P. W., Jackson, S. E., & Mathieu, J. E. (2007). Building theoretical and empirical 
bridges across levels: multilevel research in management. Academy of Management Journal, 50, 
1385–1399. 

Holcomb, T. R., Combs, J. G., Sirmon, D. G., & Sexton, J. (2010). Modeling levels and time in 
entrepreneurship research: An illustration with growth strategies and post-IPO performance. 
Organizational Research Methods, 13, 348–389. 

Hough, J. R. (2006). Business segment performance redux: A multilevel approach. Strategic 
Management Journal, 27, 45–61. 

Kreft, I., & De Leeuw, J. (1998). Introducing multilevel modeling, London, United Kingdom: Sage Publications. 
Lazega, E., & Snijders, T. A. B. (2016). Multilevel network analysis for the social sciences: Theory, 

methods and applications, New York, NY: Springer. 

Lee, B. H. (2003). Using hierarchical linear modeling to illustrate industry and group effects on 
organizational commitment in a sales context. Journal of Managerial Issues, 15, 353–368. 

Littell, R. C., Milliken, G. A., Stroup, W. W., & Wolfinger, R. D. (2004). SAS system for mixed models, 
Cary, NC: SAS Institute. 

Makino, S., Beamish, P. W., & Zhao, N. B. (2004a). The characteristics and performance of Japanese FDI 
in less developed and developed countries. Journal of World Business, 39, 377–392. 

Makino, S., Isobe, T., & Chan, C. M. (2004b). Does country matter? Strategic Management Journal, 25, 
1027–1043. 

RAUSP 
54,4    

482  



Martins, H. C., & Terra, P. R. S. (2015). Maturidade do endividamento, desenvolvimento financeiro e 
instituições legais: Análise multinível em empresas latino-americanas [Debt maturity, financial 
development and legal institutions: a multilevel analysis in Latin American companies]. Revista 
de Administração, 50, 381–394. 

Mathieu, J. E., & Chen, G. (2011). The etiology of the multilevel paradigm in management research. 
Journal of Management, 37, 610–641. 

Mauri, A. J., & Michaels, M. P. (1998). Firm and industry effects within strategic management: An 
empirical examination. Strategic Management Journal, 19, 211–219. 

McGahan, A. M., & Porter, M. E. (1997). How much does industry matter, really? Strategic Management 
Journal, 18, 15–30. 

McGahan, A. M., & Porter, M. E. (2002). What do we know about variance in accounting profitability? 
Management Science, 48, 834–851. 

McNeish, D. M., & Stapleton, L. M. (2016). The effect of small sample size on two-level model estimates: 
a review and illustration. Educational Psychology Review, 28, 295–314. 

Meyers, J. L., & Beretvas, S. N. (2006). The impact of inappropriate modeling of crossclassified data 
structures. Multivariate Behavioral Research, 41, 473–497. 

Misangyi, F., Lepine, J. A., Algina, J., & Goeddeke, F. Jr, (2006). The adequacy of repeated-measures 
regression for multilevel research. Organizational Research Methods, 9, 5–28. 

O’Connell, A. A. & McCoach, D. B. (Ed.) (2008). Multilevel modeling of educational data, Charlotte, NC: 
Information Age Publishing. 

Pinheiro, J. C., & Bates, D. M. (2009). Mixed-effects models in S and S-PLUS, New York, NY: Springer. 

Rabe-Hesketh, S., & Skrondal, A. (2012a). Multilevel and longitudinal modeling using Stata: Continuous 
responses (3rd ed., Vol. 1). College Station, TX: Stata Press. 

Rabe-Hesketh, S., & Skrondal, A. (2012b). Multilevel and longitudinal modeling using Stata: 
Categorical responses, counts, and survival (3rd ed., Vol. 2). College Station, TX: Stata Press. 

Raudenbush, S. (1993). A crossed random effects model for unbalanced data with applications in 
cross-sectional and longitudinal research. Journal of Educational Statistics, 18, 321–349. 

Raudenbush, S., & Bryk, A. (1986). A hierarchical model for studying school effects. Sociology of 
Education, 59, 1–17. 

Raudenbush, S., & Bryk, A. (2002). Hierarchical linear models: Applications and data analysis methods 
(2nd ed.). Thousand Oaks, CA: Sage Publications. 

Raudenbush, S., Bryk, A., Cheong, Y. F., Congdon, R., & Du Toit, M. (2004). HLM 6: Hierarchical linear 
and nonlinear modeling, Lincolnwood, IL: Scientific Software International. 

Raudenbush, S. W., Rowan, B., & Kang, S. J. (1991). A multilevel, multivariate model of studying school 
climate with estimation via the EM algorithm and application to U.S. high-school data. Journal 
of Educational Statistics, 16, 295–330. 

Ruefli, T. W., & Wiggins, R. R. (2003). Industry, corporate and segment effects and business 
performance: A non-parametric approach. Strategic Management Journal, 24, 861–879. 

Rumberger, R. W., & Thomas, S. L. (1993). The economic returns to college major, quality and 
performance: A multilevel analysis of recent graduates. Economics of Education Review, 12, 
1–19. 

Santos, M. A., Fávero, L. P., & Distadio, L. F. (2016). Adoption of the international financial reporting 
standards (IFRS) on companies’ financing structure in emerging economies. Finance Research 
Letters, 16, 179–189. 

Schmalensee, R. (1985). Do markets differ much?. The American Economic Review, 75, 341–351. 
Serra, R. G., & Fávero, L. P. (2018). Multiples’ valuation: the selection of cross-border comparable firms. 

Emerging Markets Finance and Trade, 54, 1973–1992. 

Multilevel 
modeling for 
longitudinal 

data  

483  



Short, J. C., Ketchen, D. J., Bennett, N., & Du Toit, M. (2006). An examination of firm, industry, and time 
effects on performance using random coefficients modeling. Organizational Research Methods, 
9, 259–284. 

Short, J. C., Ketchen, D. J., Palmer, T. B., & Hult, G. T. M. (2007). Firm, strategic group, and industry 
influences on performance. Strategic Management Journal, 28, 147–167. 

Short, J. C., McKelvie, A., Ketchen, D. J., & Chandler, G. N. (2009). Firm and industry effects on firm 
performance: A generalization and extension for new ventures. Strategic Entrepreneurship 
Journal, 3, 47–65. 

Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and 
individual growth models. Journal of Educational and Behavioral Statistics, 23, 323–355. 

Snijders, T. A. B., & Bosker, R. J. (2011). Multilevel analysis: An introduction to basic and advanced 
multilevel modeling (2nd ed.). London, United Kingdom: Sage Publications. 

Steenbergen, M. R., & Jones, B. S. (2002). Modeling multilevel data structures. American Journal of 
Political Science, 46, 218–237. 

Uyar, B., & Brown, K. H. (2007). Neighborhood affluence, school-achievement scores, and housing 
prices: cross-classified hierarchies and HLM. Journal of Housing Research, 16, 97–116. 

West, B. T., Welch, K. B., & Gałecki, A. T. (2015). Linear mixed models: a pratical guide using statistical 
software (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC Press. 

Zhang, Y., Li, X., & Song, W. (2014). Determinants of cropland abandonment at the parcel, household 
and village levels in Mountain areas of China: A multilevel analysis. Land Use Policy, 41, 
186–192. 

Appendix 1. Econometrics of the Three-Level hierarchical linear models with repeated 
measures (HLM3) 
In general, according to Raudenbush et al. (2004), a three-level hierarchical model has three sub- 
models, one for each analysis level of the nested data structure. Therefore, we can define a general 
model with three analysis levels and nested data. The first level presents explanatory variables Z1, 
. . ., ZP that refer to level-1 units i (i = 1, . . ., n). The second level, explanatory variables X1, . . ., XQ that 
refer to level-2 units j (j = 1, . . ., J). Whereas the third level presents explanatory variables W1, . . ., WS 

that refer to level-3 units k (k = 1, . . ., K), as follows: 

Level 1:Yijk ¼ p 0jk þ
XP

p¼1

p pjk � Zpjk þ eijk (A1)  

where ppjk (p = 0, 1, . . ., P) refer to the level-1 coefficients, Zpjk is the p-th level-1 explanatory variable 
for observation i in the level-2 unit j and in the level-3 unit k, and eijk refers to the level-1 error terms 
that follow a normal distribution, with mean equal to zero and variance equal to s 2. 

Level 2:p pjk ¼ bp0k þ
XQp

q¼1

bpqk � Xqjk þ rpjk (A2)  

where bpqk (q = 0, 1, . . ., Qp) refer to the level-2 coefficients, Xqjk is the q-th Level-2 explanatory 
variable for unit j in the level-3 unit k, and rpjk are the level-2 random effects, assuming, for each unit 
j, that the vector (r0jk, r1jk, . . ., rPjk)¨ follows a multivariate normal distribution with each element 
having mean zero and variance t rppp. 
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Level 3: bpqk ¼ g pq0 þ
XSpq

s¼1

g pqs �Wsk þ upqk (A3)  

where g pqs (s = 0, 1, . . ., Spq) refer to the level-3 coefficients, Wsk is the s-th level-3 explanatory variable 
for unit k, and upqk are the level-3 random effects, assuming that, for each unit k, the vector formed by 
terms upqk follows a multivariate normal distribution with each element having mean zero and variance 
tuppp, which results in a variance-covariance matrix Tb with a maximum dimension equal to: 

DimmaxTb ¼
XP

p¼0

Qp þ 1
� �

�
XP

p¼0

Qp þ 1
� �

(A4)  

which depends on the number of Level-3 coefficients specified with random effects. 
Let’s imagine a single Level-1 explanatory variable that corresponds to the periods in which the 

data of the dependent variable are monitored. In other words, Level-2 units j nested into Level-3 units 
k are monitored for a period t (t = 1, . . ., Tj), which makes the dataset have j time series, as shown in 
Table II. The main objective is to verify if there are discrepancies in the temporal evolution of the 
data of the dependent variable and, if yes, if these occur due to characteristics of the Level-2 and 
Level-3 units. This temporal evolution is what characterizes the term repeated measures. 

In this regard, Expression (A1) can be rewritten as follows, in which subscripts i become 
subscripts t: 

Ytjk ¼ p0jk þ p 1jk � periodjk þ etjk (A5)  

where p 0jk represents the intercept of the model that corresponds to the temporal evolution of 
the dependent variable of Level-2 unit j nested into Level-3 unit k, and p 1jk corresponds to the 
average evolution (slope) of the dependent variable for the same unit throughout the period analyzed. 
The substructures that correspond to Levels 2 and 3 remain with the same specifications as those 
respectively presented in Expressions (A2) and (A3). 

Figure A1 shows the plotting of the set of models represented by Expression (A5) in a conceptual 
way. Through the plotting of the models, we can see that the individual models that represent Level-2 
units j can present different intercepts and slopes throughout period t. The fact that this may occur is due 
to certain characteristics of the Level-2 units j themselves or due to characteristics of the Level-3 units k. 

Figure A1. 
Individual models 
that represent the 

temporal evolution of 
the dependent 

variable for each of 
the J Level-2 units 
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Thus, there must be characteristics of level-2 units j, temporally invariable, and of Level-3 units k, invariable 
also for Level-2 units j nested into each Level-3 unit k (as shown in Table II), that can explain the differences 
in the model intercepts and slopes Ŷ tjk ¼ p̂ 0jk þ p̂ 1jk � periodjk represented in Figure A1. 

Hence, assuming there is a single explanatory variable X that represents a characteristic of Level-2 units 
j, and a single explanatory variable W that represents a characteristic of Level-3 units k, from Expression (A5) 
and based on Expressions (A2) and (A3), we can define the following model with three analysis levels. In this 
model, the first level refers to the measure repeated and only contains the temporal variable:  

Level 1: Ytjk ¼ p 0jk þ p 1jk � periodjk þ etjk (A6)   

Level 2:p 0jk ¼ b00k þ b01k � Xjk þ r0jk (A7)   

p 1jk ¼ b10k þ b11k � Xjk þ r1jk (A8)   

Level 3: b00k ¼ g 000 þ g 001 �Wk þ u00k (A9)   

b01k ¼ g 010 þ g 011 �Wk þ u01k (A10)   

b10k ¼ g 100 þ g 101 �Wk þ u10k (A11)   

b11k ¼ g 110 þ g 111 �Wk þ u11k (A12)  

By combining Expressions (A6) to (A12), we obtain the following expression: 

Ytjk ¼ g 000 þ g 001 �Wk þ g 010 � Xjk þ g 011 �Wk � Xjk þ u00k þ u01k � Xjk þ r0jk
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
random effects intercept 

þ g 100 þ g 101 �Wk þ g 110 � Xjk þ g 111 �Wk � Xjk þ u10k þ u11k � Xjk þ r1jk
� �

� periodjk

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
random effects slope 

þ etjk (A13)  

where g 000 represents the expected value of the dependent variable at the initial moment and when 
X = W = 0 (general intercept), g 001 represents the increase in the expected value of the dependent 
variable at the initial moment (alteration in the intercept) for a certain Level-2 unit j that belongs to a 
Level-3 unit k when there is a unit alteration in the characteristic W of k, ceteris paribus. 
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Besides that, g 010 represents the increase in the expected value of the dependent variable at the 
initial moment for a certain unit jk when there is a unit alteration in the characteristic X of j, ceteris 
paribus, and g 011 represents the increase in the expected value of the dependent variable at the initial 
moment for a certain unit jk when there is a unit alteration in W.X, ceteris paribus. Moreover, u00k and 
u01k represent the error terms that indicate there is randomness in the intercepts, and the last one 
impacts the alterations in variable X. 

Additionally, g 100 represents the alteration in the expected value of the dependent variable 
when there is a unit alteration in the analysis period (change in the slope due to a unit temporal 
evolution), ceteris paribus, g 101 represents the alteration in the expected value of the dependent 
variable due to a unit temporal evolution for a certain unit jk when there is a unit alteration in the 
characteristic W, ceteris paribus. 

Finally, g 110 represents the alteration in the expected value of the dependent variable due to a 
unit temporal evolution for a certain unit jk when there is a unit alteration in the characteristic X, 
ceteris paribus, and g 111 represents the alteration in the expected value of the dependent variable due 
to a unit temporal evolution for a certain unit jk when there is a unit alteration in W.X, ceteris paribus. 
Terms u10k and u11k represent errors that indicate there is randomness in the slopes, and the last one 
impacts the alterations in variable X. 

Expression (A13) facilitates the visualization that the intercept and slope can be 
influenced by random effects resulting from different behaviors of the dependent variable 
throughout time for each of the level-2 units (different time series), and this phenomenon can be 
a result of these units’ characteristics, as well as of characteristics of the groups to which such 
units belong. 

If researchers wish to elaborate an analysis about the fixed and random effects components that 
can influence the behavior of the dependent variable, given that this procedure even facilitates the 
insertion of the commands to estimate multilevel models in Stata, as we will see below we just need to 
rearrange the terms of Expression (A13) as follows: 

Ytjk ¼ g 000 þ g 001 �Wk þ g 010 � Xjk þ g 011 �Wk � Xjk

þ g 100 � periodjk þ g 101 �Wk � periodjk þ g 110 � Xjk � periodjk þ g 111 �Wk � Xjk � periodjk

)

Fixed Effects

þ u00k þ u01k � Xjk þ u10k � periodjk þ u11k � Xjk � periodjk þ r0jk þ r1jk � periodjk þ etjk

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Random Effects

(A14)  

As multilevel models allow interactions between variables in the fixed effects component and, more 
than that, allow interactions between error terms and variables in the random effects component, the 
model can be naturally heteroskedastic. Regarding Expression (A14), if the variances of the random 
terms u10k, u11k, r0jk and r1jk are statistically different from zero, traditional parameter estimations, 
such as OLS, will not be adequate. 

In three-level hierarchical models, we can define two intraclass correlations given the existence 
of two variance proportions. One corresponds to the behavior of the data that belong to the same 
Level-2 units j and the same Level-3 units k (Level-2 intraclass correlation), and the other corresponds 
to the behavior of the data that belong to the same Level-3 units k. But the data are from different 
Level-2 units j (Level-3 intraclass correlation). 

While fixed effects parameters are estimated traditionally th rough maximum likelihood, the 
variance components of the error terms can be estimated through maximum likelihood or through 
REML. 
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Appendix 2. Commands in stata 
We now present all Stata commands (Version 15) used throughout the paper to generate tables and 
graphs and to estimate models: 

Figure 3:  
graph twoway connected performance year if student <= 50, 

connect(L) 
Figure 4:  
statsby intercept=_b[_cons] slope=_b[year], by(school) saving 
(ols, replace): reg performance year  
sort school  
merge school using ols  
drop _merge  
gen yhat_ols= intercept 1 slope*year  
sort school year  
separate performance, by(school)  
separate yhat_ols, by(school)  
graph twoway connected yhat_ols1-yhat_ols15 year || lfit 

performance year, clwidth(thick) clcolor(black) legend(off) 
ytitle(performance at school)  

Figure 5:  
xtmixed performance || school: || student:, var nolog reml  

This command shows two random effects components, one that corresponds to level 3 (school) and 
another to level 2 (student). The order in which the random effects components are inserted into the 
command xtmixed is decreasing when there are more than two levels. That is, we must begin with 
the highest data nesting level and continue until the lowest level (level 2): 

Obtention of intraclass correlation:  
estat icc  
right after the estimation of the corresponding model.  

Figure 6:  
xtmixed performance year || school: || student:, var nolog reml  
estimates store randomintercept  
predict u00 r0, reffects  

Figures 7 and 8:  
graph hbar (mean) u00, over(school) ytitle(“Random Intercepts 

per School”)  
graph hbar (mean) r0, over(student) ytitle(“Random Intercepts 

per Student”)  

Figure 9: 
xtmixed performance year || school: year || student: year, var 

nolog reml  
estimates store randomslope  

Figure 10:  
lrtest randomslope randomintercept  

Figure 11:  
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gen genderyear = gender*year  
xtmixed performance year gender genderyear || school: year || 

student: year, var nolog reml  

If the researcher wants to type directly the command without the necessity of previously calculate 
the product term gender * year, the following command can be used alternatively:  

xtmixed performance year gender i.gender##c.year || school: 
year || student: year, var nolog reml  

Figure 12:  
gen texpyear = texp*year  
xtmixed performance year gender texp genderyear texpyear 

|| school: year || student: year, var nolog reml estimates store 
finalindependent  

Figure 13:  
xtmixed performance year gender texp genderyear texpyear || 

school: year, covariance(unstructured) || student: year, covari-
ance(unstructured) var nolog reml  
estimates store finalunstructured predict yhatstudent, fitted 

level(student)  

which defines the variable yhatstudent, which can also be obtained through the following command:  
gen yhatstudent = 54.7343514.515641*year - 14.70213*gender 1 

1.178656*texp 1 0.6518855*genderyear - 0.0566496*texpyear 1 
u00final 1 u10final*year 1 r0final 1 r1final*year  

Figure 14:  
estat recovariance  

Figure 15:  
lrtest finalunstructured finalindependent  

Figure 16:  
sort student year graph twoway connected yhatstudent year if stu-

dent <= 50, connect(L)  

Figure 17:  
quietly reg performance year gender texp genderyear texpyear  

predict yhatreg  
graph twoway scatter yhatreg performance || scatter yhatstudent 

performance || lfit performance performance ||, legend(label(1 
“OLS”) label(2 “HLM3”) label(3 “Observed Values”))   
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