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ABSTRACT 

Austenitic stainless steel and nickel-base alloys welds are widely used in nuclear reactor components, plants 

of energy generation, chemical, and petrochemical industries, due to their high corrosion resistance. The post 

weld heat treatments (PWHT) are generally applied to welding in order to relieve the welding residual stress. 

The aim of this work was to evaluate the influence of different PWHT on corrosion behavior of a dissimilar 

weld joint of two AISI 316L austenitic stainless steel plates with a nickel-base alloy as filler material in sa-

line environments. The material was submitted to heat treatments for three hours at 600, 700 and 800 °C. The 

weld joint was examined by optical microscopy to determine the effects of PWHT in the microstructure. The 

corrosion behavior of the samples before and after heat treatment was evaluated using cyclic potentiodynam-

ic polarization (CPP) in sodium chloride solutions (19% v/v) and pH 4.0 at room temperature. Metallograph-

ic analyses showed that delta ferrite dissolute as PWHT temperature increased. CPP curves demonstrated an 

increase of pitting corrosion resistance as the PWHT temperature rises, although the pit size has been in-

creased. The heat treated weld joint at 600 °C showed a similar corrosion resistance compared to as-welded 

material. 
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1. INTRODUCTION 

Dissimilar metal welds (DMWs) or bimetallic welds refer to welds between two different metals [1]. Austen-

itic stainless steel and nickel-base alloys are generally used in DMWs, and such alloys are employed in nu-

clear reactor components, plants of energy generation, chemical, and petrochemical industries due to their 

high corrosion resistance [2–7]. The welds in nuclear power plants are employed in high temperature operat-

ing components [7]. For plant safety it is essential to keep the structural integrity of these DMWs during ser-

vice life [1]. 

Austenitic stainless steel and nickel-base alloys may require a post weld heat treatment (PWHT) in 

order to remove the welding residual stress and the PWHT is generally applied to the weldment [8–10]. Re-

sidual stresses can be significantly reduced by PWHT in austenitic materials at a temperature range from 480 

to 925 °C. At the higher end of this range, nearly 85% of the residual stresses may be relieved. However, 

PWHT at this range may result in sensitizing susceptible material, hence, these heat treatments should be 

only used for low carbon grades "L" and the 321 and 347 stabilized steels [1,5,8,11]. 

The mechanical properties and corrosion resistance of welded joints can be affected by the welding 

process and PWHT resulting in microstructural variations such as carbide precipitation and sigma phase [12–

19]. The dissolution of ferrite occurs as heat treatment temperature increases above 500 °C in stainless steel. 

During its dissolution, part of delta ferrite is transformed into austenite plus carbides and second phases. The 

main intermetallic, in austenitic stainless steel AISI 316 or 316L, is sigma constituted with higher levels of 

carbon, chromium and molybdenum, and lower levels of nickel and iron [2,9,10,20–22]. 

The corrosion behavior of the metals and alloys depends on the transformation of the microstructure 

and the chemical composition caused by the weld thermal history that occurs during the welding process. 

Hence, the corrosion resistance of weld may be inferior to the resistance of base metal, due to precipitation, 

microsegregation, the formation of unmixed zones, contamination of the solidifying weld pool, secondary 

phase and recrystallization and grain growth in the weld heat-affected zone (HAZ) [23,24]. The corrosion 

resistance can be preserved in the welded condition by balancing alloy compositions to avoid undesirable 
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precipitation reactions, by selecting the proper welding parameters, by shielding molten hot metal surfaces 

from reactive gases in the weld environment, by extracting chromium-enriched oxides, and chromium-

depleted base metal from thermally discolored surfaces [25-27]. 

In this work, the influence of different PWHT on corrosion behavior of a dissimilar welds involving 

AISI 316L stainless steel and nickel-base alloy 182 was investigated using the electrochemical technique: 

cyclic potentiodynamic polarization (CPP) in sodium chloride solutions (19 %v/v) and pH 4.0 at room tem-

perature. 

2. MATERIALS AND METHODS 

2.1 Materials and welding procedure 

The base metal (BM) used for welding in the present investigation was an austenitic stainless steel AISI 316L 

plates with 300 mm (length), 150 mm (width), and 12.7 mm (thickness). The filler metal was nickel-base 

alloy 182 with diameters of 2.5 and 3.2 mm. The nominal chemical composition of the base and the filler 

metal are shown in Table 1. The plates of stainless steel AISI 316L were prepared for the weld employing a 

single V groove edge preparation with an included angle of 30°. The top plates were welded with a narrow 

gap of 2.5 mm, with pre-heating at 150 °C, and interpass temperature between 100 to 150 °C by shielded 

metal arc welding (SMAW). The weld joint (WJ) was performed with 90 - 100 A for the root weld (filler 

metal of 2.5 mm), and 110 - 120 A for the other beads (filler metal of 3.2 mm). In order to compensate the 

deformations due to the welding process a lift was designed in the central region of the weld, supported by a 

copper plate 300 mm x 50 mm x 10 mm as shown in Figure 1. After welding, a PWHT was performed at 600, 

700 and 800 °C for 3 hours to relieve residual stresses of the welded joints. All samples were taken from sim-

ilar places of the welds. The sampling location was the root welding. 

Table 1: Nominal chemical composition of base metal (AISI 316L) and filler metal (Inconel® 182) (% in weight). 

MATERIAL CU CO CR MO FE SI MN C TI S P NB NI 

AISI 316L - - 16,000 2,000 Bal. 0,750 2,000 0.030 - 0,030 0,045 - 10,000 

Inconel
®
 182 0,040 0,050 16,533 - 3,580 0,506 5,703 0,026 0,116 0,008 0,010 1,910 Bal. 

 

Figure 1: Scheme of the copper plate position prior to welding. 

2.2 Microstructure analysis 

The cross-section of the welded specimens were mechanically polished with 1 µm and electrolytically etched 

in a 10% oxalic acid solution at 2.2 V DC for 60 s in order to examine the microstructure and to identify 

grains, dendrite boundaries, and precipitates. The microstructures analyses were carried out by an optical 

microscope. 

2.3 Eletrochemical measurements 

The specimens for electrochemical measurements were weld to a copper wire, and embedded in epoxy resin. 
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The working surface was then abraded with SiC papers of grit size from 80 to 600 mesh and cleaned with 

distilled water and alcohol. The surface area of the samples was measured by Image J software. The average 

size of sample area was about 2.0 cm². 

Electrochemical measurements were performed using an Autolab PGSTAT 20 potentiostat and an 

electrochemical cell of three electrodes: base metal and the welded samples as working electrode, platinum 

mesh as counter electrode and silver chloride electrode (Ag/AgCl, 3M KCl) as reference electrode. The elec-

trochemical tests were carried out at 25 ºC and pH 4.0 containing 190 g/L NaCl and 0.4 g/L sodium acetate 

(5 mM CH3COONa). The open circuit potential (OCP) was recorded for 1 h or until stabilization, and the 

CPP curves were collected by scanning to the anodic direction at a scan rate of 0.167 mV s
-1

, -0.02 VAg/AgCl 

from the stabilized OCP. When the current reached 1 mA/cm
2
 the scan was reversed. All the electrochemical 

measurements were repeated at least three times to ensure the reproducibility. The pitting potential (Epit) was 

defined as the potential value at which the current density sharply rose. After the electrochemical tests, sur-

face morphology was examined using an optical microscope and scanning electronic microscope (SEM). 

3. RESULTS AND DISCUSSION 

The microstructure of the base metal (AISI 316L) consists of austenite grains and stringers of delta ferrite, 

and the PWHT caused dissolution of delta ferrite as shown in Figure 2. The weld metal microstructure con-

sists of dendrite grains, with inclusions and precipitates. The amount of precipitates in the weld metal de-

creased with an increase in temperature of the PWHT. The delta ferrite was partially dissolved in the HAZ 

with an increasing temperature of the PWHT. The delta ferrite content of the base and weld metals decreased 

with an increase in the annealing temperature [14,15]. It was measured for the base metal by image analyzing 

software for microstructure analyzing Quantikov, and shown in Table 2 [28]. 
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Figure 2: Micrographs of base metal, weld metal, and weld joint before and after PWHT. The arrows points to delta 

ferrite. 

Table 2: Delta ferrite content measured by color analyzing software. 

SAMPLE DELTA FERRITE CONTENT (%) 

No PWHT 3,46 ± 0,63 

PWHT 600 °C 2,32 ± 0,44 

PWHT 700 °C 1,80 ± 0,16 

PWHT 800 °C 1,58 ± 0,20 

 

The polarization curves for base metal and weld joints, before and after PWHT (600 – 800 °C) in a 

19% wt. NaCl solution (pH 4.0), are shown in Figure 3. According to literature, chloride-containing acidic 

environments lead to more severe pitting corrosion [29]. Table 3 contains the results of polarization studies, 

which comprises the corrosion potential (Ecorr), passive current (Ipass), pitting potential (Epit) and protection 

potential (Eprot). 
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Figure 3: Polarization curves for base metal (left) and weld joints (right) as welded and after PWHT in 19% wt. NaCl 

solution 

Table 3: Electrochemical parameters in solution containing NaCl concentration 19% wt 

SAMPLE 
Ecorr 

(mVAg/AgCl) 

ipass 

(µA.cm
-2
) 

Epit 

(mVAg/AgCl) 

Eprot 

(mVAg/AgCl) 

WJ No PWHT -211,0 ± 1,0 3,0 ± 1,3 -43,0 ± 15,1 29,6 ± 23,5 

WJ PWHT 600 °C -217,5 ± 21,9 9,9 ± 6,2 - 49,5 ± 0,7 8,9 ± 0,4 

WJ PWHT 700 °C -197,0 ± 9,0 1,8 ± 1,2 -18,3 ± 9,6 -42,5 ± 25,9 

WJ PWHT 800 °C -217,0 ± 30,0 0,6 ± 0,4 43,0 ± 11,7 -112,9 ± 32,0 

 

All weld joints showed a passive behavior, although the specimen of PWHT at 800 °C clearly demon-

strated a wider and more defined passive region. PWHT has no influence on Ecorr value; this parameter was 

measured around -200 mVAg/AgCl for all the specimens. The weld joint heat treated at 600 °C has similar cor-

rosion behavior compared to the as-welded joint. As the temperature of PWHT increased, Epit also increased, 

and Eprot decreased. This increase of Epit can be explained by a higher dissolution of delta ferrite at higher 

temperatures, this phase has deleterious effects on corrosion resistance [4,30-35]. It is known that delta ferrite 

provides a favorable sites for pitting initiation [34]. Pitting potential and current density shift towards higher 

values, the passive region becomes wider for the base metal when compared with welded joints [36]. There-

fore, the welded joint showed lower corrosion resistance than the base metal [18,19,37] as summarized in 

Figure 4. 

 

Figure 4: Epit for weld joints and base metal before and after PWHT. 
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Metallographic examination of the weld joints after the cyclic potentiodynamic polarization revealed 

pitting corrosion as shown in Figure 5. The pit morphologies are roughly circular or elliptical and their diam-

eter depends on PWHT temperature. Higher PWHT temperature has led to larger pits, showing a large hyste-

resis loop (Epit – Eprot) due to the difficulty to attain the passive layer. According to Chen et. al. [39], after the 

pit initiation, the pit may continue growing between the Epit and Eprot [38,39]. The majority pits were found 

near the fusion line in the weld metal, since the local properties of the fusion zone are often inferior to those 

of the base metal [19], which can be attributed to segregation during solidification [23,34]. It was observed 

that after PWHT the phosphorus and aluminum segregation decreased, and it is known that phosphorus seg-

regation can enhance corrosion [40]. The overlapped regions are usually the weakest sites to resist the corro-

sion attack in the weld metal, due to their microstructure morphology differences which promote a galvanic 

attack [23]. 

 

Figure 5: SEM micrographs of weld joints as welded and after PWHT after cyclic polarization. 

4. CONCLUSIONS 

Polarization curves showed that heat treatments at higher temperatures increase the weld joint tendency to 

passivate. The PWHT at 800 °C had a wider and more defined passive region and the highest pitting corro-

sion resistance. The PWHT at this temperature provided a better corrosion resistance to the weld joint. How-

ever, also presented the lowest protection potential, thus, once a pit is developed, it will grow to larger sizes 

until its repassivation. The pitting corrosion resistance increased with temperature due to higher dissolution 

of delta ferrite at higher temperatures. The corrosion resistance of the weld joints was lower than the base 

metal before and after PWHT. 
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