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ABSTRACT 

Mechanical components and structures wear out as a result of friction between surfaces in relative motion. 

Residual stresses play an important role for the tribological performance of components since compressive 

residual stresses yield positive effects on wear resistance. However, the real effect of residual stresses on the 

tribological performance of surfaces is not entirely clear. The objective of this work is to evaluate the residual 

stress behavior during a pin-on-disk wear test of quenched and tempered AISI 4340 disk specimens against a 

counter-body of steel AISI E 52100. Tests were performed in shot peened and non-shot peened specimens in 

six steps and residual stresses were evaluated after each one by X-ray diffraction technique using sin
2
 

method. The results shown that wear rate of the shot peened specimens was approximately fifty percent low-

er. Shot peening induced compressive residual stresses contributed to this effect even though they were modi-

fied during the pin-on-disk test. 
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1. INTRODUCTION 

Sustainable development is one of the biggest challenges of century XXI and it is changing many industrial 

processes. In this new model of development, it is essential to improve the usage of natural resources and 

energy. Designing and manufacturing more durable machines and components contribute to the rational use 

of natural resources. Wear represents one of the biggest issues to component lifespan [1,2] thus, it is neces-

sary to improve component wear resistance.  

AISI 4340 steel is a low-alloy martensitic steel widely-used as machine part-members due to its combi-

nation of strength, ductility and toughness [3-5]. Most of these components are submitted to cyclic load dur-

ing its life. Shot peening (SP) has long been a conventional surface mechanical treatment used to improve 

fatigue resistance of high-performance components in the structural and aircraft industries [6], which can 

generate an effective field of compressive residual stresses [7,8]. Although the influence of residual stresses 

in components fatigue life is already well stablished its influence effect in wear behavior is not completely 

understood [9]. 

 Totik et al. [1] employed induction hardness treatment to introduce compressive residual stress in AI-

SI 4140 steel. Moreover, laser peening has been used to obtain similar results [10,11]. In these studies, the 

heat input was high enough to cause microstructural and consequently hardness changes. Considering that 

hardness and microstructure have influence in wear rate [7,12,13], it is not a simple task to evaluate separate-

ly the influence of residual stress in the experimental wear rates. 

The objective of this work was to evaluate the influence of residual stress in the wear mechanisms and 

wear rate of AISI 4340 steel submitted to pin-on-disk test. To avoid any microstructure and hardness changes 
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compressive residual stresses were introduced by shot peening instead of induction hardness or laser peening. 

 

2. MATERIALS AND METHODS 

 

2.1 Specimens preparation and hardness tests 

Disk specimens of AISI 4340 steel, diameter 50.8 mm x thickness 6.0 mm (Figure 1), were cut from an orig-

inal rolling bar using an abrasive cutter. Chemical composition of the AISI 4340 steel is presented in Table 1. 

 

Figure 1: AISI 4340 disks used in wear tests: (a) Dimensions; (b) Worn surface. 

Table 1: Chemical composition of steel AISI 4340 (wt%). 

C Si Mn P S Cr Ni Mo Fe 

0.39 0.25 0.72 0.01 0.025 0.75 1.72 0.24 Balance 

  

 The disks were submitted to austenitizing at a temperature of 860 °C for 60 minutes and subsequently 

oil quenched. Then, all the specimens were tempered at a temperature of 300 °C for 90 minutes. After the 

heat treatments half of them were submitted to shot peening to introduce compressive residual stresses in 

surface and subsurface.  Four replicas were used in each condition (shot peened and non-shot peened). 

 The shot peening mechanical treatment was performed at Almen intensity (A) of 0.25 A determined 

according with SAE J442 specification 7, Grade II, type “C” Almen strips were used firmly screwed to Al-

men blocks. The arcs generated in the strips were measured using an Almen gage provided by a magnetic 

support system with an uncertainty of 0.001 mm.  

 Vickers Microhardness, applying a load of 48 N during 15 seconds, was performed in the section of 

specimens to investigate any hardness change due to shot peening surface treatment. To concentrate the wear 

in the disk, AISI E 52100 high hardness steel spheres with 6.0 mm of diameter and 796 HV 0.5 N was chosen 

as counterbody. 

 

2.2 Wear tests  

Pin-on-disk tests were performed at room temperature in dry conditions. All sliding wear tests were conduct-

ed under constant load of 10.18 N and constant speed (tangential speed) of 91.1 mm/s. The values of these 

parameters were selected according to the results of previous experiments which investigated the minimum 

load and speed to produce a measurable wear track. 

 Tests were performed in six steps of 3600 cycles. Each step corresponds to a travelled distance of 

328 m.  The total distance, after the six steps, is 1928 m. At the end of each step, the experiment was inter-

rupted, the worn specimen was removed, and the residual stresses of the wear track were evaluated. A typical 

specimen with wear track is shown in Figure 1b. Parameters set and samples preparation were selected to 

ensure that the only significant difference between the two groups was the previous residual stress state and 

that other parameters, such as hardness and microstructure, would not influence in test results as reported in 

other works [1,10,11]. 

 The wear coefficient (k) was calculated using the Archard [14] equation that takes the form k=V/N.L. 

Where V is wear volume, N is the normal load and L is the sliding distance. To calculate the wear volume, 

after the sixth step (1928 m), the profiles were recorded by a Mitutoyo profilometer in two points on the track 
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and located in the diameter (points 1 and 2 of Figure 1a). The wear volume was calculated by multiplying the 

track area by its mean perimeter. Surface topography analysis of the worn surface was imaged using optical 

microscopy and scanning electron microscopy - SEM to identify the main wear mechanisms. 

 

2.3 Residual stress measurements  

Residual stresses measurements were carried out by X-ray diffraction technique using sin
2
 method and in-

cremental layer removal by electropolishing. A XSress3000 (Stresstech) stress analyzer was used with a 

Crα ( = 2.29092 Å) radiation source diffracting the (211) plane. Residual stresses were measured at two 

points located in the diameter of tracks (points 1 and 2 of Figure 1.a) in the radial (R) and tangential (T) di-

rections. Measurements were performed in all samples before the first the beginning of wear tests and after 

each step. 

 The removal layer method by electrolytic polishing was used to obtain the profile of residual stress 

variations through the thickness of the disk, which consists on the electrolytic removal of the metal on a high 

ionic solution by means of electrical potential and current. As electrolyte was used a sodium chloride saturat-

ed solution with glycerin, and the voltage and current parameters were 30 V and 0.20 A, respectively. The 

depth of the removed layer was measured with a digital comparison gauge. 

3. RESULTS AND DISCUSSION 

 

3.1 Microstructure and Hardness evaluation 

The sample microstructure, comprised of tempered martensite is show in Figure 2. An average surface hard-

ness of 490  12 HV 0.5 N was found.  

 

Figure 2: Tempered martensite microstructure. Optical microscopy. 

Figure 3 presents Hardness vs. Depth curves for shot peened and non-shot peened conditions. These 

results represent the mean value obtained from the four shot peened samples. Maximum hardness values 

were obtained in specimen surface as a consequence of quenching treatment. The difference between shot 

peened and non-shot peened specimens agrees with the result presented by Llaneza and Belzunce [15] of shot 

peened AISI 4340 steel with several conditions produced hardness increases below 11 %. Same results were 

reported by Zhang et al. [16] whose work evaluated the effect of shot peening in 17CrNiMo6 steel. These 

results were decisive to exclude the influence of hardness in the difference between the wear rates of the two 

groups. 
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Figure 3: Microhardness profile. 

3.2 Residual stresses 

To confirm the effectiveness of shot peening treatment the residual stresses were measured in shot peened 

and non-shot peened specimens. Figure 4 shows the mean residual stress profile of both conditions.  

 

Figure 4: Depth residual stress profile before wear tests. 

As reported by Llaneza and Benzunce [15] and residual stresses reach the maximum compressive val-

ues in subsurface region, around 40 µm. Residual stresses in the wear track were measured before the tribo-

logical tests and after each step. The progress of residual stresses during pin-on-disk test is depicted in Fig-

ures 5 and 6 using the average values of each group.  

 Before the rubbing, it is possible to observe a great effect of shot peening on residual stress. Along the 

travelling distance, the stress values seem to converge. This effect is greater in tangential direction which is 

the test sliding direction.  It reinforces the hypothesis that the stresses introduced by wear test tend to super-

pose the previous stress state, which was also observed by Pyzala et al. [17]. Despite that, the 1928 m trav-

eled during tribological test were not able to completely superpose the residual stresses introduced by shot 

peening process in the samples, which remained compressive even after the tribological efforts. 
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Figure 5: Tangential residual stresses during pin-on-disk test. 

 

Figure 6: Radial residual stresses during pin-on-disk test. 

 

3.3 Worn surface characterization 

Figure 7 shows the worn surface optical micrograph after 1928 m distance. Deeper and regular wear scars 

can be observed in non-shot peened specimens (Figure 4.b). These scars are the evidence of abrasion [18,19], 

which is the main wear mechanism, along with the formation of layer patches and some delamination regions. 

Lorenzo-Martin and Ajayi [20], whose work evaluated the tribological performance of surface hardened AISI 

4140 steel, reported a very similar behavior for non-treated specimens. However, shot peened specimens suf-

fered more severe adhesive wear, especially in the sides of wear track as observed by Totik et al. [1]. 
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Figure 7: Optical micrography of the wear track (1928 m travelled): (a) Non-shot peened specimen (b) Shot peened spec-

imen. 

The wear tracks, also analyzed by SEM, are shown in Figure 8. A delamination crack can be observed 

in non-shot peened specimen. According to the delamination theory of wear by Suh [21], when sliding sur-

faces are submitted to cyclic loads the surface traction exerted by harder asperities on softer surfaces induces 

plastic shear deformation which accumulates with repeated loading and cracks are nucleated, especially in 

subsurface layers. Once cracks are present, they tend to extend and propagate parallel to the surface when 

they finally shear to the surface long and then wear sheets delaminate [21-23].  

 

 

Figure 8: SEM micrography of wear track (1928 m travelled): (a) Non-shot peened specimen (b) Shot peened specimen. 

Considering shot peening process introduced high compressive residual stress in surface and subsur-

face layers it is possible to conclude that the existence of compressive stress state delayed the propagation of 

subsurface cracks and inhibited the delamination wear mechanism. Similar results were obtained by Ya-

kimets et al. [11] when 100Cr6 specimens submitted to laser peening treatment presented lower wear rates 

than untreated. 

 

3.4 Wear rate  

Average wear rate of shot peened specimens is 46 % lower than the average wear rate observed in non-shot 

peened specimens as shown in Table 2.  

Table 2: t-Student evaluation for wear rate. 

 
Average wear 

rate 

Variance 

(mm
3
/N.km)

2 t-Student tc bi-lateral 
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(mm
3
/N.km) 

Non-shot peened 8.95x10
-4

  4.31x10
-4

 

3.55 2.78 

Shot peened 4.82x10
-4

 1.12x10
-4

 

 

These results show that shot peening was able to reduce the wear rates in pin-on-disk tests. Sánchez-

Santana et al. [24] obtained a similar result comparing wear of 6061-T6 aluminum alloy treated by laser 

peening process and ascribed it to the compressive residual stresses introduced by laser peening process.  

Considering both groups had same microstructure and very similar hardness, the great difference of their 

wear rates can be assigned to the high compressive residual stress state present in shot peened specimens. 

Compressive residual stresses were able to delay delamination wear and reduce wear rate. 

To confirm the statistical significance of results a bi-lateral t-test was used with a significance level of 

5 % (Table 2). Considering the calculated t value is greater than the critical significance, the null hypothesis 

was rejected and the difference of two wear rates is statistically significant. Hence, the shot peening effec-

tively reduces the wear in pin-on-disk test under the studied conditions. 

 

4. CONCLUSIONS 

In this study, dry sliding friction tests were carried out to determine the influence of residual stresses on the 

wear performance of quenched and tempered AISI 4340 steel tested against AISI E 52100 counterbody with-

out lubrication.  

The results showed shot peening improved specimens wear behavior reducing the wear rate from 

8.95x10
-4

 mm
3
/N.km in non-shot peened specimens to 4.82x10

-4
 mm

3
/N.km in shot peened specimens with 

statistical significance level of 0.05. Considering that there is no significance variation of hardness and mi-

crostructure, this great difference in wear rate can be attributed to the previously residual stress state of the 

two groups. The presence of residual compressive residual stresses in shot peened samples seems to delay the 

formations of the microcracks and consequently the delamination wear. 
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