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ABSTRACT 

The difficulty in the powder reuse favors the study of materials in the form of thin films. ZnO based films 

have high photocatalytic potential. In this work, ZnO:xSm3+ (x = 0, 1, 2 and 4 %mol) thin films were 

prepared by spin coating method. The resins obtained to manufacture the thin films were prepared by 

complex polymerization method. The samples were characterized by X-ray diffraction (XRD), atomic force 

microscopy (AFM), field emission scanning electron microscopy (FE-SEM) and spectroscopy UV-Vis. XRD 

patterns indicate that doping with 4%Sm forms Sm2O3 as the secondary phase. FE-SEM images of the cross 

section of thin films indicated a uniform thickness ranging from 354 to 367 nm between samples. The 

incorporation of Sm3+ ions in the ZnO lattice increases the Egap of the films. The photocatalytic 

performance of the films was tested with the photodegradation of methylene blue dye. Pure ZnO and 

ZnO:1%Sm3+ exhibited the best activity in the photodegradation. Thin films of pure ZnO exhibit the best 

photocatalytic results for the first cycle, but considerably reduce their efficiency with reuse. Sm3+ 

incorporation, without secondary phase formation, was efficient for the maintenance of the photocatalytic 

property after 3 cycles. 
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1.INTRODUCTION 

In recent years, semiconducting oxide photocatalysts, such as zinc oxide (ZnO), have increasingly received 

high attentions as the materials offer great potentials in the degradation of various environmental pollutants 

[1, 2], such as pesticides, heavy metals and dyes [3, 4]. In addition, the ZnO is known as one of the most 

important active photocatalysts due to its advantages, including high initial activity rates, many active sites 

with high surface reactivity, low price and environmental safety [5]. However, the photocatalytic activity of 

ZnO is limited to the ultraviolet region and the rapid recombination of photocatalytic loads (h+/e-) decreases 

the efficiency of the process, making it unfavorable to use as commercial ZnO photocatalyst [6]. Recently, it 

has been reported that doping of rare earth ions on ZnO improves photocatalytic performance [5]. Some 

studies have reported that rare earth ions are useful, since rare earth ions produce energy levels of impurities 

in the gap and their response to visible light. In addition, photogenerated charge carriers are produced, thus 

accelerating the interfacial transfer of the charge and inhibiting the recombination of the electron-hole pairs 

[7, 8]. 

The ZnO powder catalysts show tendency to be difficult to recover and recycle. One substitutive form 

is thin films of ZnO which comprises dispersed immobilized ZnO particles or layers on a surface [2]. The 

ZnO thin films can be manufactured by various techniques, such as pulsed laser deposition (PLD) [9], 

molecular beam epitaxy (MBE) [10], chemical vapor deposition [11], sol gel process [12], spray pyrolysis 

[13] and Pechini [14]. Although physical methods have been widely used in thin film technology, chemical 

methods such as the Complex Polymerization Method (CPM) produce low-cost, simple and highly controlled 

films [15]. 

In this study, the effect of the photocatalytic properties of ZnO:xSm3+ (x = 0, 1, 2 and 4 %mol) thin 
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films produced by the resin obtained by CPM was evaluated. The thin films were characterized by X-ray 

diffraction (XRD), UV-Vis spectroscopy, field emission scanning electron microscopy (FEG-SEM) and 

atomic force microscopy (AFM). The methylene blue dye was used in the degradation test is a batch of 

product in the textile industry. Three photocatalytic tests were performed without any treatment on the film. 

2.MATERIALS AND METHODS 

Polymer resins were prepared using citric acid/metal cations in the ratio of 6:1. Ethylene glycol was added in 

a ratio of 40/60 (%mass) relative to citric acid, keeping this constant value in all compositions. Firstly, Citric 

acid (C6H8O7.H2O) and Zn(NO3)2.6H2O were dissolved in 80 mL of water under stirring at 70°C, ethylene 

glycol was added after 1 hour and the temperature was raised to 90°C to form a homogeneous and 

transparent resin. The samarium resins were obtained in a similar form, where samarium nitrate was added 

stoichiometrically in the molar ratios of 1, 2 and 4%. 

Before the deposition of the resin, silicon substrates (0.7 cm x 0.7 cm) underwent two-step cleaning, 

were first washed in ultrasonic bath in isopropyl alcohol and distilled water. The substrates were dried 

directly in spin coating. The polymeric precursor was then deposited on the substrates by spin coating to 

7000 rpm for 30 sec, four layers being deposited. For each deposited layer was annealed at 350°C for 1 hour 

and 700°C for 2h at a heating rate of 1oC/minute in air. 

The thin films were characterized by XRD using a Shimadzu diffractometer (Model XRD-7000, CuK 

radiation (λ = 1.54 Å), 40 kV and 30 mA and 2θ from 30° to 40°. The morphology was observed by SEM 

(Carl Zeiss Supra 35 VP-Model, Germany). Surface of the thin films was investigated by atomic force 

microscope (AFM). The reflectance of the films was obtained by the UV–Vis–NIR spectrophotometer 

(Shimadzu, UV 2600) over the spectral wavelength ranges from 200 nm to 900 nm. All the measurements 

were taken at room temperature. The total amount of organic carbon was used for mineralization analysis. 

For this, the TOC analyzer Shimadzu 500 was used. 

Photocatalytic properties of ZnO:xSm3+ thin films (x = 0, 1, 2 and 4 %mol) were evaluated by 

measuring the photodegradation of MB (methylene blue) dye with a molecular formula C16H18N3SCl 

(99.5% purity) in an aqueous solution were illuminated by UVC lamps (Philips TUV 15 W, with maximum 

intensity at 254 nm = 4.9 eV). Samples with dimensions of 0.7 cm2 were placed in a quartz cell under visible 

light MB containing solution (1x10-5 mol.L-1). These suspensions were 1 hour in contact MB dye before the 

test is to allow the saturated absorption of MB onto the catalyst. The variations of the maximum absorption 

band of supernatant solutions were monitored at intervals of 30 minutes by UV-visible absorbance spectra 

measurements using a Shimadzu (UV-2600 model) spectrophotometer. The absorbance variation was 

observed for 420 minutes. All measurements were taken at room temperature. The reuse occurred in a similar 

manner to that described above, where after each cycle the thin films were air dried and the aqueous solution 

of MB (1x10-5 mol.L-1) was replaced with the aqueous solution of 420 minutes. The photodegradation was 

calculated by the equation 1 [9], given below: 

 

% of MB=  (Co-C)/Co                          (1) 

 

Where: C0 is the concentration of MB before irradiation (concentration of MB after 1 hour adsorption in 

dark) and C is the concentration of MB after the irradiation certain team. 

3.RESULTS 

Fig. 1 shows the XRD patterns obtained for the thin films of ZnO:xSm3+ (x = 1, 2 and 4 %mol). All thin 

films show the characteristic peaks of ZnO layer type structure with hexagonal Wurtizita (JCPD 36-1431) 

were three diffraction peaks are related to reflection planes (100), (002) and (101). Thin films of ZnO:xSm 

with x = 1 and 2% did not present the formation of secondary phases. The presence of Sm2O3 phase was 

observed in ZnO:4%Sm thin film. According to Fig. 1, it is observed that the incorporation of Sm3+ in the 

ZnO lattice provides a shift of the peaks to smaller angles, indicating that the doping occurred successfully. 

The shift in the peaks occurs due to the difference between the ionic radius of the cations, being 0.096 and 

0.074 nm for the Sm3+ and Zn2+, respectively [16]. 

It is interesting to note that the formation of secondary phase Sm2O3 caused reduction in intensity of 

peaks, as observed in the crystal planes (100), (020) and (011). The same happened in Rani et work. al. in his 

research depositing doped ZnO films with Nd3+ was performed by synthesis by spray pyrolysis, XRD pat-

terns showed that when a new peak by doping 5 mol% of Nd3+ was the formation of oxide neodymium, and 

the intensities of the diffraction peaks (200) and (110) the doped ZnO film decreases significantly compared 
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to pure ZnO sample [17]. The reduction in intensity occurred along with increasing the mean peak height 

width. This fact is associated with a reduction in crystallite size [18]. For more information on crystallite size, 

the Scherrer's equation was used, as shown in equation 2 [19]. Where β is the full width at half maximum of 

the main peak in XRD pattern. The estimated values for crystallite size are shown in table 1. 

 

𝐷 =
𝐾𝛾

𝛽𝑐𝑜𝑠𝜃
                          (2) 

 
Figure 1: XRD patterns of ZnO:xSm thin film X-ray obtained by spin coating: (a) x = 0, (b) x = 1, (c)  x = 2 and (d) x = 

4 %mol. 

 
Table 1: Crystalyte size and thickness of the ZnO:xSm (x = 0, 1, 2 and 4 %mol) thin films. 

ZnO:xSm thin films Crystallite size (nm) Thickness thin films (nm) 

x = 0% 13.5 367.7 

x = 1% 12.8 354.5 

x = 2% 11.8 360.7 

x = 4% 9.5 361.3 

 

Fig. 2 shows the micrographs obtained by AFM. It is possible to observe the formation of grains 

grown and homogeneously distributed on the surface of the thin films, where this growth is associated to the 

time and temperature used in calcination [20]. The increase of the samarium concentration promotes the 

growth of the particles on the surface of the films. Fig. 3 shows the histograms referring to the average diam-

eters of the ZnO particles on the surface of the films, where the mean particle size of ZnO follows the order: 

ZnO:1%Sm < ZnO < ZnO:2%Sm < ZnO:4%Sm. The addition of samarium at concentrations above 1% pro-

vides a greater number of defects, which imply the local energetic increase that acts as a driving force for 

growth with the calcination temperature [21].  
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Figure 2: AFM images of ZnO:xSm thin films obtained by spin coating method: (a) x = 0, (b) x = 1, (c) x = 2 and (d) x = 

4 %mol. 

 

 
Figure 3: Histogram of the average particle diameters on the surface of the thin films. 

The surface and cross aspects of the films were examined by FE-SEM. Fig. 4a presents the surface 

image of the thin film of pure ZnO, where the presence of small pores on its surface is noticed and that the 

grains present hexagonal aspect. The appearance of hexagonal grains on the surface of ZnO thin films is 

reported in other works [22]. According Nayeri et al. [23], the grain growth on the surface occurs due to the 

high energy applied to the system, where the larger grains grow through the coalescence of smaller grains. 

The measured thicknesses of the thin films ZnO:xSm  (with x = 0, 1, 2 and 4 %mol) are shown in table 1. 

Fig. 4b shows the cross section of the ZnO:4%Sm, indicating that the thin film obtained by spin coating and 

calcined at 700°C is uniform and dense. As can be seen in table 1, the films have thicknesses in the range of 

354.5 to 367.7 nm. 
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Figure 4: FE-SEM micrograph of (a) surface and (b) cross section of ZnO:4%Sm thin film. 

 

The optical gap was obtained by extrapolating the linear region of the curve according to the Wood 

and Tauc method [24]. The main changes in the value of the energy of the optical band gap (Egap) can be 

correlated with the reduction or creation of structural defects or states located within the prohibited area, 

which may decrease or increase the intermediate energy levels. The band gap energy values Egap were calcu-

lated and shown in Fig. 5. The calculated band gap energy of ZnO films varies from 3.57 eV to 3.60 eV, 

indicating that with increasing concentration of the dopant, there was a slight increase in the energy band of 

these films. Chen et al. [25] reported that the band gap effects are directly related to the film thickness and 

the crystallite size of the material. As shown, the increase in Sm concentration reduces the crystallite size and 

the thickness of the thin films, increase their gap energy. The reductions in crystallite size and film thickness 

with the incorporation of rare earth ions, followed by the small increase in gap energy is widely discussed in 

the literature [26, 27]. 

 
Figure 5: UV-vis spectra of ZnO:xSm films (a) x = 0, (b) x = 1, (c)  x = 2 and (d) x = 4 %mol. 
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Generally, in the optical absorption, the electrons near the edge of the valence band become excited to 

the bottom of the conduction band due to gap energy [28]. During this transition process, if these electrons 

encounter disorder, it causes density of their states ρ(hν), where hν is the photon energy, tailing into the ener-

gy gap. This tail of ρ(hν) extending into the energy band gap is termed as Urbach tail [29]. We used a linear 

curve fitting to obtain the Urbach tail, which is defined as the width of the localized states available in the 

optical band gap that affects the optical band gap structure and optical transitions. The Urbach tail is deter-

mined by the following equation 3 [29]: 

 

𝛼 = 𝛼0𝑒𝑥𝑝
𝐸

𝐸𝑈
               [3] 

 

Where: α is optical absorption, E is the photon energy, () is constant and EU is the Urbach energy, 

which refers to the width of the exponential absorption edge [29]. The value of EU was calculated from the 

slope, and the obtained values are given in Table 2, which indicates that no major changes occurred, as well 

as band gap values. 
 

Table 2: Urbach energy for ZnO:xSm (x = 0, 1, 2 and 4 %mol) thin films. 

ZnO:xSm thin films Urbach energy (eV) 

x = 0% 
x = 1% 

x = 2% 

x = 4% 

0.416 
0.443 

0.436 

0.410 

ZnO is a class of semiconductor enriched with lattice defects, such as zinc vacancy (VZn), zinc intersti-

tial (Zni), oxygen vacancy (VO), and oxygen interstitial (Oi). Similarly, the dopants can introduce defects to 

the ZnO [30]. The cationic substitution of Zn2+ by Sm3+ can cause many structural, morphological, optical 

and photocatalytic changes, such as the lattice parameter, gap, grain size, active defect sites and visible light 

absorption. It is known that the catalytic activity of ZnO nanoparticles doped with lanthanide ions is greater 

than that of pure ZnO [31]. The doping process with lanthanide ions effectively suppress electron-hole re-

combination and produce excess free radicals necessary for degradation [6]. These radicals are strong oxidiz-

ing agents to degrade refractory organic compounds such as organic dyes and convert them into harmless 

materials such as H2O and CO2 [32]. The catalytic activities of Sm doped ZnO were evaluated by the degra-

dation of aqueous methylene blue. Methylene blue dye is widely used in the textile industry [4].  

Fig. 6 shows photocatalytic activity of ZnO:xSm3+ (x = 0, 1, 2 and 4 %mol). The photolysis curves 

were plotted without the presence of catalyst. The degradation efficiency of pure and Sm doped ZnO films 

for an irradiation time of 420 min was measured to be ZnO = 89.3%, ZnO:1%Sm3+ = 90.4%, ZnO:2%Sm3+ = 

88.1% and ZnO:4%Sm3+ = 68.2% while photolysis reduced only 3.1%. The increase in photocatalytic activity 

for the ZnO:1%Sm3+ sample is associated with the introduction of intermediate levels in the ZnO conduction 

band [33]. The reduction of photocatalytic activity for doping above 1% Sm3+ may be associated with reduc-

tion of anionic vacancy and excess cationic vacancy generated by the substitution of Zn2+ by Sm3+. In addi-

tion, Sm2O3 phase formation reduces the photocatalytic activity of ZnO. The photocatalytic activity may also 

be associated with the concentration and size of the ZnO particles on the films surface. As observed through 

the AFM images, the ZnO:1%Sm3+ sample has the smallest mean particle size, consistent with the photocata-

lytic results. The TOC tests indicated that ZnO, ZnO:1%Sm3+, ZnO:2%Sm3+, ZnO:4%Sm3+ samples and the 

photolysis reduced the amount of organic carbon by 80.1, 84.7, 78.3 and 1.4%. 
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Figure 6: Photocatalytic degradation of the ZnO:xSm (x = 0, 1, 2 and 4 %mol) thin films. 

Recycles and maintaining high photocatalytic activity are critical issues for long-term use in practical 

applications of the catalyst. Therefore, two criteria are required to be considered: (i) the stability of the cata-

lyst to maintain its high activity over time [28] and (ii) the ease with which the catalyst could be recycled 

from solution [34]. Fig. 7 shows the reuse curves for pure and Sm doped ZnO films. According to Fig. 7, the 

photocatalytic activity of ZnO reduces its efficiency with the course of the reuse. Efficiency reduces from 

89.3 to 77% at the end of the third cycle. Yassitepe et al. [1] reported that the photocatalytic activity of ZnO 

film gradually decreased, but if the photocatalyst are stored in the dark overnight, the photocatalyst activity 

can be recovered. Doping with Sm gives a lower efficiency reduction with the course of the reuse. The film 

with 1% Sm reduces from 90.4 to 83.4% and the film with 2% Sm reduces from 88.1 to 84.4%. Thus, the 

sample with 2% Sm presents the best photocatalytic activity after the third cycle of use, indicating that the 

incorporation of Sm increases the stability of the catalyst. As shown in Fig. 2, the increase in Sm concentra-

tion generates larger grains on the surface of the films. Larger grains have lower surface energy, interacting 

less with the dye molecules, maintaining the photocatalytic activity after more cycles [35]. The use of films 

instead of particles facilitates their reuse, avoiding the need for complex treatments for the non-release of 

particulates as residue. In addition, nanoparticles are difficult to separate, making the process impracticable 

on larger scales. 

 
Figure 7: Cycling degradation curve for ZnO:xSm thin films obtained by spin coating method: (a) x = 0, (b) x = 
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1, (c)  x = 2 and (d) x = 4 %mol.  

 

4.CONCLUSIONS 

ZnO:xSm3+ (x = 0, 1, 2 and 4 %mol) thin films were successfully obtained by the Complex Polymerization 

Method (CPM) and spin coating. XRD analysis is showed that the thin film samples have wurtzite structure, 

presenting the formation of secondary phase only for ZnO:4%Sm sample. FE-SEM illustrate that the thin 

films of ZnO produced by CPM method have a homogeneous and dense characteristic. The incorporation of 

Sm3+ into the ZnO lattice provides the reduction of the crystallite size and thickness of the thin films, in 

addition to generating a slight increase in gap energy. The sample with 1% Sm shows a smaller particle size 

on the surface of the film, thus having the best photocatalytic activity. Larger particles on the surface of thin 

films make them more stable, where the sample with 2% Sm presented better reuse property. The appearance 

of the Sm2O3 phase reduced the activity of the thin film obtained with 4% Sm.  
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