
This work presents a numerical model for 3D analyses through the finite element method of reinforced concrete structures subjected to monotonic 
loads. The proposed model for concrete is orthotropic and uses the equivalent uniaxial strain concept. The equivalent uniaxial stress-strain relation 
is generalized to take into account the triaxial stress conditions. The parameters used in the equivalent uniaxial stress-strain curve are determined 
from the failure surface defined in the principal stress space. The implementation in finite elements is based on the consideration of smeared 
cracks with cracks rotating according to the directions of the principal stresses. Also, an embedded reinforcement model was implemented to 
represent existent reinforcing bars. Finally, some results are compared with experimental data from the literature to demonstrate the validity of the 
numerical model developed.
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Este trabalho apresenta um modelo numérico para análise tridimensional de estruturas de concreto armado submetidas a cargas monótonas. O 
modelo proposto para o concreto é um modelo ortotrópico e utiliza o conceito de deformação uniaxial equivalente. A relação tensão-deformação 
uniaxial equivalente é generalizada para levar em consideração as condições triaxiais de tensão. Os parâmetros usados na curva tensão-defor-
mação uniaxial equivalente são determinados a partir da superfície de ruptura definida no espaço de tensões principais. Também, implementou-
se um modelo de armadura incorporada para representar as barras de armadura. Por fim, apresentam-se resultados comparativos com ensaios 
experimentais e analíticos para demonstrar a validade do modelo numérico.

Palavras-chave: concreto armado; método dos elementos finitos; modelos constitutivos; modelo ortotrópico.
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1.	 Introduction

The implementation of finite element models to investigate rein-
forced concrete structures has been the subject of many studies 
in the last years (Patrick and Sharon Huo [1], Kim and Aboutaha 
[2], Park and Aboutaha [3], Hoque et al. [4], Smadi and Belakh-
dar [5], Souza et al. [6], Shayanfar and Safiey [7], Manzoli et al. 
[8]). In several of these studies, a fundamental matter has been 
how to precisely define concrete’s behavior when a multiaxial state 
of stress is in place. This task has been difficult because of the 
behavioral complexity of the material due to a series of factors, 
among which, these can be pointed out: concrete presents a non-
linear stress-strain relation; cracks tend to form when concrete is 
subjected to tensile stresses; concrete is subjected to creep and 
shrinkage; concrete’s behavior is dependent of its load history; and 
concrete presents a volumetric expansion when near collapse.
In the last decades, numerous constitutive models were developed 
for the analysis of concrete structures. However, most of them, in 
general, can describe only certain aspects of concrete’s behavior, 
severely limiting their application. Among the most important char-
acteristics a model for concrete must present, the following can 
be highlighted: to allow a general and precise representation of 
its real mechanical behavior; to employ a formulation that is clear 
to understand; and to make viable the implementation of a robust 
algorithm, stable enough for a nonlinear behavior determination.
In this context, the objective of this work is to present a computa-
tional model to analyze the behavior of reinforced concrete ele-
ments subjected to multiaxial stress states. The constitutive mod-
els adopted for concrete and steel are herein described in details, 
and have been implemented in a computational code, developed 
by Bono [9], to analyze reinforced concrete structures through the 
Finite Element Method. Linear and quadratic isoparametric hexa-
hedral elements can be chosen to model reinforced concrete struc-
tures, with the embedded reinforcing model proposed by Elwi and 
Hrudey [10] extended to the 3D case being used to represent the 
existent reinforcing bars.

2.	 Constitutive model for the concrete

In this work, an orthotropic nonlinear elastic constitutive model 
is used to represent the concrete’s behavior. Among the models 
that have been already developed in this category, there is the 
one presented by Darwin and Pecknold [11] for plane stress state 
analyses. Elwi and Murray [12] continued the development of this 
model, extending its applicability to the 3D case. Afterwards, the 
model was further developed by Balan et al. [13], Balan et al. [14], 
Kwon [15], and Kwon and Spacone [16].
The orthotropic model proposed is based on the work by Kwon 
[15], being capable of simulating the response of concrete under 
a multiaxial stress state. Nevertheless, some modifications have 
been implemented in the original model in order to further improve 
it, which are appropriately commented later along with the model’s 
formulation.

2.1	 Tridimensional constitutive law

Originally, Darwin and Pecknold [11] developed a numerical pro-
cedure to analyze the response of concrete under biaxial stress 

states by considering the orthotropic axes parallel to the directions 
of the updated principal stresses. Elwi and Murray [12] extended 
that model to tridimensional analyses. The stress-strain relation 
can be expressed by:

(1) = oσ D ε

where the stress vector, s, and the strain vector, e, can be given by:
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The constitutive matrix for an orthotropic material, Do, can be de-
termined by:

(3)
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where
Ωc = 1 – ν21ν12 – ν31ν13 – ν32ν23 – ν12ν23ν31 – ν21ν32ν13;
Ei – is the secant modulus of elasticity in the orthotropic direction 
i (i = 1, 2, 3);
νij – is the Poisson’s ratio (i, j = 1, 2, 3);
Gij – is the shear modulus of elasticity on the i-j plane (i, j = 1, 2, 3).
The shear moduli, Gij, can be expressed by:

(4)
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If the orthotropic axes are considered parallel to the directions of 
the updated principal stresses, then the constitutive relation can 
be reduced to:

(5)
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The equivalent uniaxial strains are used for determination of con-
crete’s properties, i.e., the secant moduli of elasticity and the Pois-
son’s ratios, which are used in Equation (5). Nevertheless, it can 
be noticed from Equation (6) that, to obtain the equivalent uniaxial 
strains for a nonlinear material, the secant moduli of elasticity, Ei, 
are needed in the directions of the three principal stresses, be-
ing necessary the use of an iterative process for determination of 
these variables (see section 2.8).

2.3	 Equivalent uniaxial stress-strain curves

As mentioned before, the adopted model for concrete follows 
the work of Darwin and Pecknold [11], admitting that the 3D con-
stitutive law can be separated in three uniaxial relations, with 
actual stresses being functions of equivalent uniaxial strains.
Elwi and Murray [12] used an expression by Saenz [17] to de-
scribe equivalent uniaxial stress-strain relations, which was 
both adopted for concrete’s compressive and tensile response 
(see Figure 1):
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where

In relation (5), the values of the secant moduli of elasticity, Ei, 
and the Poisson’s ratios, νij, have to be determined. These val-
ues are obtained from the uniaxial stress-strain curves for the 
concrete using the concept of equivalent uniaxial strain, which 
is detailed next.

2.2	 Equivalent uniaxial strain

In a multiaxial stress state, the actual strain in a given direction 
is not only function of the stress in that direction, but also of the 
stresses acting in the other orthogonal directions. This makes the 
determination of the 3D response of concrete a complex task to 
perform. In order to make it an easier task, the concept of equiva-
lent uniaxial strain can be used, a concept originally introduced by 
Darwin and Pecknold [11] for 2D analyses.
Darwin and Pecknold [11] considered this procedure to be an in-
genious scheme to separate the 2D response of concrete in two 
uniaxial curves, making it easier to determine the material’s behav-
ior. The technique provided an alternative to separate the effects 
of the Poisson’s ratios of each strain, allowing a good approxima-
tion of experimental data. The equivalent uniaxial strains can be 
determined by:

(6)
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where
σi – is the current principal stress in the orthotropic direction i;
Ei – is the secant modulus of elasticity in the orthotropic direction i, 
with i = 1, 2, 3 for 3D analyses.
Kwon [15] also used the concept of equivalent uniaxial strain for 3D 
analyses in concrete, rewritting relation (5) in the following form:
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and the equivalent uniaxial strains are then given by:

(8)
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The principal stresses σ1, σ2, and σ3 can be obtained from the uniax-
ial constitutive relations [Equation (6)], using the equivalent uniaxial 
strains εu1, εu2, and εu3. Therefore, the introduction of these equiva-
lent uniaxial strains allows a representation of the triaxial behavior of 
the concrete through three independent stress-strain curves.
It is worth mentioning that these equivalent uniaxial strains are 
not actual strains, but fictitious strains defined in the updated 
directions of the principal stresses, being accumulated in these 
directions. Thus, εui does not give a strain history in a fixed di-
rection, but rather in an always changing direction with the up-
dated state of principal stresses (Darwin and Pecknold [11]).

Figure 1 – Illustration of the model proposed 
by Saenz 1964
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The other variables were defined in Equations (9)-(10).
The use of the Popovics-Saenz curve (Equation (11)) as an equiv-
alent uniaxial relation gives excellent results for plain concrete. 
Nevertheless, for reinforced concrete elements it has not shown 
to be adequate to take into account the collaboration of concrete 
between cracks (tension-stiffening). Therefore, for the proposed 
model herein, the Popovics-Saenz curve is used to describe only 
the response in compression of concrete under monotonic loads, 
as illustrated in Figure 2, and, for the response in tension, the for-
mulation described next is used.  When εui ≤εci:

(12)si = Eo eui       with i = 1, 2, 3. 

Eo – is the initial modulus of elasticity;
εui – is the equivalent uniaxial strain in the orthotropic direction i;
fci – is the concrete strength or the peak stress;
εci – is the strain that corresponds to fci, i.e., it is the peak strain.
ffi, εfi – are the stresses and strains at the control point in the curve’s 
descending branch.
The proposed curve by Saenz [17] has been considerably used 
as a stress-strain relation for concrete, with only one expres-
sion representing both ascending and descending branches. 
However, this curve works well only when Eo/Eci ³ 2 (where Eci 
= fci/εci), i.e., when the secant modulus of elasticity at the peak 
point, Eci, is not larger than half of the initial modulus of elastic-
ity, Eo. When this condition is not satisfied, the curve will pres-
ent two curvatures between the origin and the peak point. This 
problem can be partially corrected by fixing Eo/Eci to a value of 
2, independently of the actual relation between the two moduli 
(Balan et al. [14]).
Popovics [18] proposed another curve to define concrete’s stress-
strain relation, which is expressed by:
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where Ri = Ki / (Ki – 1) and the other variables have already been 
defined in Equation (9). This curve approximates well the actual 
initial stiffness of concrete in the ascending branch. However, it 
does not adjust well to experimental data when descending.
To avoid any limitation in the definition of the equivalent uniaxial 
curve, Kwon [15] proposed a modification in the curve used by Elwi 
and Murray [12]: two curves are used to describe the responses 
in tension and in compression of concrete. The curve proposed by 
Popovics [18] should describe the ascending branch until the peak 
point, while the curve proposed by Saenz [17] should be used in 
the response of the descending branch. The combination of the 
models by Popovics [18] and Saenz [17], named as Popovics-
Saenz curve, from Equations (9) to (10), can then be expressed 
by the following relation:
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Figure 2 – Stress-strain curves for concrete 
subjected to monotonic 

loads: (a) response in compression; 
(b) response in tension
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But when εui > εci, the valid expression is:

(13)(1 )
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e
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       with i = 1, 2, 3. 

where
αt – is a coefficient for reduction of cracking stresses, and the 
other variables were defined in Equation (9).
The variable εctu, introduced in Figure 2, indicates the limiting strain 
for which the collaboration of concrete between cracks should not 
be considered any longer. In this study, in order to allow a bet-
ter agreement with experimental data, a value of 0.01 has been 
adopted for the strain εctu, as indicated in Equation (13), while the 
value of parameter αt depended on the element analyzed.
In Equations (11) to (13), the expression proposed in CEB-FIP Model 
Code 1990 [19] was adopted for the initial modulus of elasticity, Eo. 
Through those three equations, the secant moduli of elasticity, used in 
Equation (6), could be defined by considering Ei = σi /εui, with i = 1, 2, 3.

2.4	 Failure surface of concrete

The determination of the variables Ki, Kεi, Kσi, used in Equation (11), 
which are functions of the peak stresses and strains, fci and εci, 
is necessary for definition of the three equivalent uniaxial curves. 
This peak stresses and strains, for a determined current stress 
state, are calculated from failure surfaces in the space of principal 
stresses (σ1, σ2, σ3).
Numerous formulations have been proposed as failure surfaces 
for concrete. A series of failure criteria was presented by Chen 
and Han [20] and by Menétrey and Willam [21], classifying these 
criteria according to the number of parameters that appear in the 
respective expressions.
Among the more used failure surfaces for description of con-

crete’s triaxial strength, there are the four-parameter surface 
by Ottosen [22] and the five-parameter surface by Willam and 
Warnke [23]. These surfaces have been highly used because 
the failure points they determine are quite close to available ex-
perimental data, as can be seen in Chen and Han [20]. There-
fore, for the present model, the failure surfaces by Ottosen [22] 
and Willam and Warnke [23] were implemented for concrete. 
The equations used for these two surfaces are presented in 
details in the next sections.

2.4.1 The failure surface by Willam and Warnke

This failure surface can be expressed by the following equation:

(14)f(sm, r, q) = r  –  rf(sm, q) = 0   |  q  |  £ 60o

where
3 octr τ=  – is the stress component perpendicular to the hydro-

static axis;
ρf(σm, q) – defines the failure curve on deviatoric planes, being 
determined by:
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The five-parameter surface by Willam and Warnke [23] presents 
parabolic curves for tensile and compression meridians (Figure 3) 
expressed by:

(16)

2
m 0 1 t 2 ta a as r r= + +

    tensile meridian ( 0oq = )

2
m 0 1 c 2 cb b bs r r= + +

    compression meridian ( 60oq = )

where
σm – is the mean normal stress;
ρt, ρc – are stress components perpendicular to the hydrostatic axis 
for q = 0o and q = 60o, respectively;
ao, a1, a2, bo, b1, b2 – are material constants.

Figure 3 – The model by Willam and Warnke 
1974: tensile and compression meridians
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From Equation (16), the stress components perpendicular to the 
hydrostatic axis, ρc and ρt, are determined by:

(17)
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    for the compression meridian.

Since the two meridians should cross the hydrostatic axis at 
the same point, results that a0 = b0. Based on biaxial tests by 
Kupfer et al. [24] and other triaxial tests, the five parameters 
of the failure surface by Willam and Warnke [23] can be deter-
mined from the following values on the failure surface (Chen 
and Han [20]):
fc – uniaxial compression strength (q = 60o);
ft = 0.1 fc – uniaxial tensile strength (q = 0o);
fcc = 1.15 fc – biaxial compression strength (q = 0o);
(σmc, ρc) = (–1.95fc; 2.770fc) – confined biaxial compression strength 
with σ1 > σ2 = σ3;
(σmt, ρt) = (–3.90fc; 3.461fc) – confined biaxial compression strength 
with σ1 = σ2 > σ3.
From these failure states, the values of the five parameters 
used in the compression and tensile meridians, ρc and ρt, 
respectively, of the surface by Willam and Warnke [23] can 
be found: a0 = b0 = 0.1025; a1 = –0.8403; a2 = –0.0910; b1 = 
–0.4507 and b2 = –0.1018.
In the present study, however, another approach, using the ex-
pressions for ft and fcc recommended by the CEB-FIP Model Code 

1990 [19] have been adopted. In this approach, the uniaxial tensile 
strength, ft, is determined by:

(18)
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_ 38
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where 0.95 £ a £ 1.85 (MPa), while the biaxial compres-
sion strength is given by fcc = 1.20 fc. Since, according to the 
Model Code, the tensile strength of concrete is more variable 
than its compression strength and can be substantially re-
duced by environmental factors, and after comparisons with 
experimental data, then the maximum value of a (1.85 MPa) 
has been considered. From the rupture data previously men-
tioned, expressions for a0, a1, a2, b0, b1, b2, all functions of αu 
= ft / fc, have then been determined. These expressions are 
given by:

(19)

2.4.2 The Failure Surface by Ottosen

The failure criterion proposed by Ottosen [22] defines that the 
failure surface for concrete subjected to multiaxial stress states is 
given by:

(20)
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Where
l = c1 cos[1/3 arccos(c2 cos 3q)],		  for cos 3q ≥ 0; 
l = c1 cos[p/3 – 1/3 arccos(–c2 cos 3q)],	  for cos 3q < 0;

3
2

2
2 octJ τ =  

 
– is the second invariant of the deviatoric stress tensor;

31 octI σ=  – is the first invariant of the stress tensor.

The four parameters, a, b, c1, and c2, used in this failure surface 
can be determined from the following conditions:
fc – uniaxial compression strength (q = 60o);
ft – uniaxial tensile strength (q = 0o);
fcc @ 1.16 fc – biaxial compression strength (q = 0o);
(x, r) = (–5fc; 4fc) – triaxial state in the compression meridian (q = 60o).
Figure 4 shows the compression and tensile meridians that are 

Figure 4 – The model by Ottosen 1977: 
tensile and compression meridians
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presented by the surface given by Ottosen [22]. In the present 
work, however, parameters a, b, c1, and c2 have been determined 
from the relation k = ft / fc, using the expressions recommended by 
the CEB-FIP Model Code 1990 [19]:

(21)

a = 1 / (9k1.4) 

b = 1 / (3.7 k1.1) 

c1 = 1 / (0.7 k0.9) 

c2 = 1 – 6.8(k – 0.07)2 

2.4.3 Determination of peak stresses (fc1, fc2, fc3)

From the failure surface by Willam and Warnke [23] or from the one 
by Ottosen [22], the peak stresses, fc1, fc2, and fc3, regarding the 
three directions for a determined current principal stress state (σ1, 
σ2, and σ3), can be found. To calculate the values of these peak 
stresses, the following procedure has been used:
1. 	A straight line from the origin of the principal stress system to 

the point of current stresses Mc(σ1, σ2, σ3) is determined;
2. 	Next, this straight line is extended until the failure surface is 

reached, identifying the point Mr(fc1, fc2, fc3), as can be seen in 
Figure 5.

The equation of the straight line that goes from the origin to the 
updated principal stress state (σ1, σ2, σ3) can be expressed as a 
function of the octahedral stresses σoct and τoct:

(22)
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updated octahedral shear stress.
Numerically, the procedure is carried out by solving a system of 
equations that corresponds to the determination of the intersec-
tion of the line, Equation (22), with the failure surface by Willam 
and Warnke [23], Equation (14), or with the failure surface by 
Ottosen [22], Equation (20). These calculations, in this case, 
were carried out by the subroutine DNEQNF, available in IMSL 
FORTRAN 90 MP Library [25] to solve the nonlinear system of 
equations. By solving the system of equations, the octahedral 
stresses ( r

octσ , r
octτ ) at the intersection point of the line with 

the specified failure surface is obtained, and with these octahe-
dral stresses, the peak stresses are determined by the following  
expressions:

(23)
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In Figure 5, it can be noticed that the failure surface has its origin in 
a failure point of hydrostatic tension and opens up in the negative 
direction of the hydrostatic axis. Therefore, a compressive hydro-
static load can not cause failure (Chen and Han [20]). With increas-
ing lateral confinement, the updated stress state (σ1, σ2, σ3) gets 
closer to the hydrostatic axis. In this situation, depending on the 
triaxial state of compression stresses, Equation (22) used to define 
peak stresses could not intercept the failure surface, not allowing 
the determination of values for fc1, fc2, and fc3. In this case, a second 
alternative is used for definition of the ultimate stresses, where the 
octahedral normal stress, σoct, is considered constant, while the 
octahedral shear stress, τoct, should vary until reaching the failure 
surface. This procedure is similar to the previous one, only replac-
ing Equation (22) by:

(24) 0c
oct octs s- =

Figure 5 – Determination of peak stresses
(fc1, fc2, fc3) of concrete
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2.4.4 Determination of peak strains (εc1, εc2, εc3)

After determining the peak stresses, the expressions proposed 
by Bouzaiene and Massicotte [26] are used to calculate the peak 
strains, εc1, εc2, and εc3. These expressions are given by:

(25)1.6 2.25 0.35

3 2

ci ci ci
ci c

c c c

f f f

f f f
e e

é ùæ ö æ ö æ ö
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where  
i = 1, 2, 3;
fc – uniaxial compression strength of concrete;
εc – strain that corresponds to fc.
Expression (27), according to Bouzaiene and Massicotte [26], 
was adjusted to experimental data, respecting the continuity with 
Equation (26). For the directions in tension, εci = εt was considered, 
where εt is the corresponding strain to the uniaxial tensile strength, 
ft..

2.5	 Control Point of Popovics-Saenz curve

It is known that concrete exhibits a softening in its stress-strain 
curve after peak stresses are reached. This behavior is a phe-
nomenon that depends on specimens’ dimensions and shape, 
as well as on boundary conditions existent in the tests con-
ducted. Moreover, the post-peak branch of the curve presents 
considerable variability, depending on test characteristics (Ba-
lan et al. [14]). Therefore, to perform a realistic analysis, the 
definition of an appropriate model to describe the material’s 
post-peak behavior is essential. With Popovics-Saenz curve, 
an adequate estimative of concrete’s compression response 
can be reached by using a control point located in the post-
peak branch of the equivalent uniaxial stress-strain curve. Ac-
cording to Balan et al. [13], from experimental tests, the follow-
ing values are proposed for the stresses and strains that define 
this control point:

(28)
ffi = 0.85 fci 

efi = 1.41 eci

 

(29)
ffi = 0.25 fci 

efi = 4.0 eci

 

where
fci – is the material strength in the i direction, with i = 1, 2, 3;
εci – is the strain that corresponds to fci.
Increases in confinement stresses in triaxial compression tests 
were verified to affect strength, ductility, dilatancy, and failure 
modes of concrete. In addition, increases in lateral confine-
ments make the failure mode of concrete change from brittle 
to ductile (Balan et al. [14]). However, the established values 
in (28) and (29) define the softening surface of the material 
as a surface that has its shape proportionally reduced in rela-
tion to the failure surface, independently of loading conditions. 
Thus, for a better consideration of concrete’s experimental be-
havior when subjected to compression, the stress values ffi of 
the control point are defined as function of the peak stresses, 
which are dependent on the confinement stresses applied to 
the structure (Balan et al. [13]). 

From the experimental results by Smith et al. [27], Kwon [15] 
defined the following coordinates for the control point:

(30)
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where, fc is concrete’s uniaxial compression strength. As can be 
noticed, in this work, the above relations have also been adopted 
for the control point used on the definition of the equivalent uniaxial 
stress-strain curve of the concrete subjected to compression.

2.6	 Cracked and Crushed Concrete

In this work, a smeared crack model has been implemented, with 
cracks rotating according to the directions of updated principal 
stresses. No special treatment is given to post-peak behavior of 
concrete after crushing or cracking, since the equivalent uniaxial 
laws entirely govern the response of the material.
The criterion adopted to verify cracking or crushing occurrence 
was to check the equivalent uniaxial strain, in a specific direction, 
to see if it is greater than the corresponding strain to the peak 
stress, also considering the signal of the ongoing stress.

2.7	 Poisson’s ratio

The values of the Poisson’s ratios, νij, have to be determined to 
complete the definition of the constitutive law represented by Equa-
tion (5). It is known that the volume of concrete in a specimen under 
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compression initially decreases and, later on, increases when fail-
ure is imminent. This dilatancy occurs because of the opening (or 
expansion) of existent microcracks in the material., Several works 
from the literature, like the ones published by Elwi and Murray [12], 
Balan et al. [13] and Kwon [15], suggest the use of an increasing 
function for the Poisson’s ratio to simulate that volumetric variation. 
In this work, the expression proposed by Kwon [15] is the one used 
to define Poisson’s ratios:

(31)
 

i
ij ui uj

j

E

E
n n n=

where νui is the Poisson’s ratio for the equivalent uniaxial direction i. 
The symmetry of the constitutive matrix, Do, which was expressed 
in Equation (3), is guaranteed when Equation (31) is considered. 
For definition of νui, the following expression is used:
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where
νo – is the initial Poisson’s ratio;
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Figure 6 – Bilinear constitutive model for steel
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Equation (32) is similar to the cubic expression defined by Elwi and 
Murray [12], which later on was used by Balan et al. [13]. Kwon [15] 
proposed the addition of the coefficient Kn to that cubic function to 
avoid Ωc, which appears in Equation (3), to become close to zero or 
a negative number, since a zeroed value for Ωc would create numer-
ical problems in the finite element formulation of the constitutive law.

2.8	 Implementation of the Numerical Model 
	 for the Concrete

In this section, the determination of the stresses in the concrete 
is detailed. Initially, an isotropic behavior is admitted for the con-
crete, considering the secant moduli of elasticity equal to the initial 
modulus of elasticity, i.e., s s s

1 2 3 oE E E E= = = . With these 
secant moduli of elasticity and the current strains for a determined 
load step, the total stresses are calculated, as presented in Table 
1. With these total stresses related to the global system of ref-
erence, the current principal stresses, σ1, σ2, σ3, are determined. 
From these principal stresses, the equivalent uniaxial strains for 
the three principal directions are determined.
With the principal stresses and the failure surface chosen for the 
concrete, the peak values of stresses and strains are also deter-
mined, as explained in 2.4.3 and 2.4.4. Next, the stresses and 
strains of the control point used in the descending branch of the 
Popovics-Saenz curve [Equation (11)] are also obtained. The new 
equivalent uniaxial stress-strain curves are defined for the three 
directions of principal stresses with the determination of these vari-
ables. From these three equivalent uniaxial curves, the new values 
of the current principal stresses are calculated.
Finally, from the principal stresses, the total stresses related to the glob-
al system of reference are updated. In an iterative process, all the de-
scribed steps are repeated until convergence, as indicated in Table 1.

3.	 Constitutive model for the steel

Since reinforcing bars resist to forces that primarily develop along 
their axial direction, i.e., perpendicular forces to rebars’ axes can 
be neglected, it is enough to know rebars’ properties relatively to 
an uniaxial stress state.
The shape of the stress-strain diagram for steel can be represented 
by four branches: an elastic branch; a yielding branch; a hardening 
branch; and a softening branch. In the literature, however, there are 
several simplified representations for that uniaxial stress-strain be-
havior: elastic-perfectly plastic model; elastic-linear work hardening 
model; trilinear approximation; and a complete stress-strain curve. 
In this work, a bilinear diagram with work hardening was adopted 
for the monotonic stress-strain curve, as defined in Figure 6 and by:

(33)

ss = es Eso   if  |es| < ey 

ss = +fy + (es – ey) Es1  if  ey £ es £ esu 

ss = – fy + (es + ey) Es1  if es £ – ey 
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where
εsu – is the strain which corresponds to the ultimate stress, fsu, of 
the steel;
σs, εs – are the stress and strain in the reinforcing bar;
fy, εy – are the yielding stress and strain;

Figure 7 – Beams' cross sections for the tests by Bresler and Scordelis 1963

Eso – is the initial modulus of elasticity;
Es1 – is the tangent modulus of elasticity of the hardening branch.
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4.	 Numerical Application

In this section, the results obtained with the computational 
model developed are compared with values determined ex-
perimentally for reinforced concrete beams. These experi-
mental results were presented by Bresler and Scordelis [28], 
concerning twelve beams in reinforced concrete primarily 
subjected to shear.
The twelve beams were arranged in four series of three units, 
with each series concerning a different quantity of longitudinal 
reinforcement, quantity of stirrups, span length, cross-section-
al dimensions, and concrete’s strength. All beams had rectan-
gular cross-sections and their details can be seen in Figure 
7, with additional information presented in Tables 2 and 3. All 
bottom longitudinal bars were 28.7 mm in diameter, while bars 
of 12.7 mm were used at the top of the beams, and, when 
present, stirrups were made of 6.4 mm bars. One of the series 
had no stirrups at all, and was labeled as OA series. All beams 

Figure 8 – Schematics of the beams tested 
by Bresler and Scordelis 1963

Figure 9 – Discretization and 
boundary conditions adopted for the 
computational analyses of the beams 
tested by Bresler and Scordelis 1963

Figure 10 – Load-deflection curves for the tests by Bresler and Scordelis 1963: Series 1

were subjected to monotonic concentrated loads applied at 
midspan, as illustrated in Figure 8.
For the computational analysis, a finite element discretization 
of ten quadratic hexahedral elements was adopted to model 
the beams. Taking advantage of the problem’s symmetry, the 
discretization and boundary conditions were the ones shown in 
Figure 9. Load-displacement curves, as presented in Figures 
10 to 12, were used for validation of the numerical analysis. In 
Table 4, the failure loads obtained with the numerical program 
are presented and can be compared with the experimental re-
sults also indicated.
In a general manner, an excellent correlation was obtained be-
tween the numerical response obtained and the experimental 
results given by Bresler and Scordelis [28]. The failure loads 
obtained with the numerical model are quite close to the ex-
perimental responses for most of the beams analyzed.
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Figure 11 – Load-deflection curves for the tests by Bresler and Scordelis 1963: Series 2

Figure 12 – Load-deflection curves for the tests by Bresler and Scordelis 1963: Series 3

5.	 Conclusions

This work presents a general formulation for nonlinear analyses 
through finite elements of reinforced concrete structures. The con-
stitutive law used for concrete is orthotropic with its axes parallel 
to the updated principal stresses’ directions. The model also uses 
the concept of equivalent uniaxial strain; a concept originally pre-

sented by Darwin and Pecknold [11], for determination of ultimate 
stresses, and allows the use of two 3D failure criteria, namely the 
criterion by Willam and Warnke [23] and the one by Ottosen [22].
The model describes well the response of concrete subjected to 
several loading types, being capable of representing crushing and 
cracking of concrete. The concept of smeared cracking was used 
for consideration of cracked concrete, while the modified Popov-
ics-Saenz curve was used.
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The models were implemented in a finite element program origi-
nally developed by Hinton [29] and, in order to consider reinforcing 
bars in it, the embedded reinforcement model proposed by Elwi 
and Hrudey [10] was used after its extension to the 3D case. 
A uniaxial constitutive model with bilinear elastic with work-hardening 
was implemented to represent steel’s stress-strain curve. Moreover, 
comparisons made between the predictions given by the numerical 
model with experimental data showed an excellent agreement.
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