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Abstract: This study applies the Boundary Element Method (BEM) for the fracture failure modelling of three-
dimensional concrete structures subjected to concentrated boundary conditions. The non-requirement of 
domain mesh by the BEM enables high accuracy in the domain fields assessment in addition to less complex 
remeshing procedures during crack propagation. However, concentrated boundary conditions often occur in 
fracture mechanics. The Lagrangian version of the BEM enforces such boundary conditions approximately 
by small length elements, which lead to numerical instabilities or even inaccurate problem representation. 
This study proposes a formulation for representing properly concentrated boundary conditions within the 
Lagrangian BEM framework. Nonlinear fracture mechanics describes the material failure processes herein. 
The classical cohesive crack approach governs the nonlinear energy dissipation processes, in which constant 
and tangent operators solve the resulting nonlinear system. Three applications demonstrate the accuracy of 
the proposed formulation, in which the BEM responses are compared against numerical and experimental 
results available in the literature. 

Keywords: concentrated boundary conditions, nonlinear fracture mechanics, enrichment functions, three-
dimensional fracture modelling. 

Resumo: Este estudo utiliza o Método dos Elementos de Contorno (MEC) para a modelagem da falha por 
fratura de estruturas tridimensionais em concreto submetidas a condições de contorno concentradas. A 
ausência de malha de domínio pelo MEC possibilita elevada precisão na avaliação dos campos mecânicos 
internos além de procedimentos menos complexos durante a propagação da fissura. No entanto, condições de 
contorno concentradas são frequentemente encontradas em mecânica da fratura. A versão Lagrangiana do 
MEC impõe tais condições de contorno aproximadamente por meio de elementos pequenos, os quais levam a 
instabilidades numéricas ou mesmo a representação inadequada do problema. Este estudo propõe uma 
formulação para a representação adequada de condições de contorno concentradas dentro da abordagem 
Lagrangiana do MEC. A mecânica da fratura não linear descreve os processos de falha material. A abordagem 
coesiva governa os processos não lineares de dissipação de energia, sendo os operadores constante e tangente 
responsáveis por solucionar o sistema não linear resultante. Três aplicações demonstram a precisão da 
formulação proposta, na qual as respostas do MEC são comparadas às soluções numéricas e experimentais 
disponíveis na literatura. 
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1 INTRODUCTION 
The accurate prediction of material failure processes is a concern for structural engineers. The knowledge and 

effective modelling of such processes enable the design of efficient and safe structural elements. Because cracks explain 
consistently several mechanical-material failures, fracture mechanics theories emerged and demonstrated its robustness 
in the past decades [1], [2]. The material discontinuity associated to the crack leads to the stresses concentrations at its 
tip, which is the preferential triggering failure point. The Linear Elastic Fracture Mechanics (LEFM) predicts correctly 
the mechanical behaviour when the fracture process zone (FPZ) surrounding the crack tip is sufficiently small. In this 
case, Stress Intensity Factors (SIFs) govern the collapse process due to the stresses singularities at the crack tip. On the 
other hand, large FPZ leads to relevant nonlinear effects associated to the material damage. The cohesive crack approach 
represents accurately these nonlinear effects, in which cohesive stresses indicate the residual material resistance at the 
FPZ. Besides, cohesive laws associate the cohesive stresses to the crack opening displacements. It is worth mentioning 
that the mutual dependence among cohesive stresses and crack opening displacements values triggers the nonlinear 
problem, in which efficient iterative schemes allow the accurate solution [3]. 

Analytical approaches handled initially fracture problems, particularly within LEFM framework. However, the complexities 
upon geometry and boundary conditions limit the proper solution to few cases. Then, robust solution strategies in this domain 
require numerical methods, such as the Finite Element Method (FEM). However, its domain mesh leads to the complex 
remeshing schemes during the crack propagation modelling. Besides, the FEM requires fine meshes surrounding the crack tip 
for the accurate representation of stresses concentrations. Despite these limitations, some FEM approaches addressed fracture 
problems. It is worth mentioning Bittencourt et al. [4] and Bouchard et al. [5] in two-dimensional and Bremberg and Dhondt [6], 
Nejati et al. [7] and Wowk et al. [8] in three-dimensional LEFM modelling, among many others. Besides, Galvez et al. [9] and 
Dimitri et al. [10] addressed two-dimensional cohesive fracture problems whereas Gaedicke et al. [11], Chen et al. [12] and Skar 
and Poulsen [13] focused on specific aspects of the three-dimensional cohesive approaches. 

The above-mentioned FEM limitations can be avoided by using adequate functions into the mechanical fields 
description, particularly the displacements. These special functions provide a priori knowledge about the space solutions, 
which enable accurate mechanical representation. This strategy triggers the eXtended Finite Element Method (XFEM). 
Then, the SIFs can be assessed accurately within relatively coarse meshes and the remeshing process efforts can be 
minimised or even avoided. Some contributions of XFEM formulations in LEFM are available in [14]–[16], for instance. 
In the nonlinear fracture mechanics field, it is worth mentioning the developments provided by Duarte et al. [17], Moes 
and Belytschko [18], Mohammadnejad and Khoei [19], Jaśkowiec et al. [20] and Ferte et al. [21], among others. 

On the other hand, the Boundary Element Method (BEM) demonstrates excellent performance in fracture problems, 
especially in the three-dimensional context as demonstrated by Cordeiro and Leonel [22], [23] and Mi and Aliabadi [24], [25]. 
The BEM does not require domain mesh, which enables accurate assessment of internal mechanical fields and non-complex 
remeshing procedures during the crack growth. Several BEM formulations have been proposed in the literature for the solution 
of fracture problems, such as single-domain technique [26], multi-domain technique [27], dipoles approach [28] and cells with 
embedded discontinuities [29], for instance. Nevertheless, the robust BEM approach in fracture mechanics is the dual BEM 
(DBEM) formulation [24], [30]. The DBEM utilises two different integral equations: displacement or singular boundary integral 
equation and traction or hypersingular boundary integral equation. This approach demonstrated its accuracy in the literature, in 
which two-dimensional [31], [32] and three-dimensional problems [33]–[36] have been addressed properly. However, the 
cohesive crack growth modelling in three-dimensional context by BEM has not been explored totally in the literature, which 
inspired the developments presented herein. 

Enrichment techniques have been explored vastly in the context of XFEM. However, its application in the coupling 
of BEM and fracture mechanics is quite recent. Simpson and Trevelyan [37], [38] were the pioneers in this type of 
enrichment within BEM framework, which improved the displacement solutions near the crack tip. Besides, extensions 
of this type of approach in LEFM context are available for two-dimensional isotropic [39], [40] and anisotropic [41] 
materials. Despite these advances, three-dimensional XBEM formulations for crack propagation and fracture problems 
have been explored marginally in the literature especially for the accurate representation of boundary conditions in 
nonlinear fracture mechanics field. 

This study proposes a BEM formulation for the fracture failure modelling of three-dimensional structures composed 
of quasi-brittle materials and subjected to concentrated boundary conditions. The classical cohesive crack approach 
governs the nonlinear problems, which enables the accurate fracture and crack propagation modelling in quasi-brittle 
materials. Two different nonlinear solution techniques solve the nonlinear problem: the constant operator and the 
tangent operator. The constant operator keeps constant all relevant influence matrices during the iterative procedure. 
On the other hand, the tangent operator incorporates the cohesive law derivatives, which improves the convergence 
rate. The performance of each nonlinear solution scheme and its accuracy have been tested in two applications. 
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Despite being an ordinary task for FEM-like models, the enforcement of concentrated boundary conditions in the 
context of elastostatics is not a standard operation within the Lagrangian version of BEM. This particular boundary 
condition type can be enforced approximately by small length or even narrow boundary elements. Nevertheless, because 
of the singular nature of the BEM fundamental solutions, collocation points closely positioned lead to the instabilities 
into the algebraic system of equations and inaccurate problem representation. It is worth stressing that the topic has 
been explored marginally in the literature in conventional elastostatic problems. Qian [42] utilised the Betti’s reciprocity 
theorem and obtained a boundary integration equation with incorporated concentrated forces. Wang and Wang [43] 
obtained similar developments accounting for spline approximation in the boundary integration equation. Recently, 
Zhou et al. [44] proposed singular logarithmic shape functions for approximating tractions and displacements along the 
element domain. In all cases, the validity and accuracy of the proposed methods require further improvements, which 
also motivated the developments presented herein. It is worth stressing that concentrated forces can be handled 
straightforwardly within BEM framework when such forces are at the material domain. Kamiya and Sawaki [45] show 
the solution for this case in plates. However, the proper modelling of concentrated forces and concentrated supports at 
the body’s boundary is still a challenge nowadays. This problem is solved elegantly herein by expanding/enriching the 
traction field along the boundary elements subjected to the concentrated boundary conditions. This scheme avoids 
singularities and enables the adequate representation of concentrated loads and supports. Three applications 
demonstrate the accuracy of the proposed formulation. The responses achieved by the proposed formulation are 
compared against numerical and experimental results available in the literature. 

2 THE BOUNDARY ELEMENT METHOD 

2.1 Boundary Integral Equations 
Integral equations describe the mechanical behaviour of solids within BEM framework. Particularly, the DBEM 

formulation accurately represents this behaviour in cracked bodies. The DBEM requires two different integral equations 
because collocation points share the same position along the crack surface. The weighted residual method, the BEM 
fundamental solutions and elasticity equations enable the displacement or singular Boundary Integral Equation (BIE), 
which for a three-dimensional domain 𝛺𝛺 composed of boundary 𝛤𝛤and nil body forces is as follows [25]: 

𝑐𝑐𝑖𝑖𝑖𝑖(𝒙𝒙𝑠𝑠)𝑢𝑢𝑖𝑖(𝒙𝒙𝑠𝑠) + ∫ 𝑃𝑃𝑖𝑖𝑖𝑖∗ (𝒙𝒙𝑠𝑠,𝒙𝒙𝑓𝑓)𝑢𝑢𝑖𝑖(𝒙𝒙𝑓𝑓)𝑑𝑑𝛤𝛤𝛤𝛤 = ∫ 𝑈𝑈𝑖𝑖𝑖𝑖∗ (𝒙𝒙𝑠𝑠 ,𝒙𝒙𝑓𝑓)𝑝𝑝𝑖𝑖(𝒙𝒙𝑓𝑓)𝑑𝑑𝛤𝛤𝛤𝛤   (1) 

in which 𝒙𝒙𝑠𝑠 and 𝒙𝒙𝑓𝑓 are the source (collocation) and field points, respectively. The terms 𝑃𝑃∗ and 𝑈𝑈∗ indicate traction 
and displacement Kelvin fundamental solutions. 𝑐𝑐𝑖𝑖𝑖𝑖 is the free term, which is equal to 

𝛿𝛿𝑖𝑖𝑖𝑖
2

 for smooth boundaries. 𝛿𝛿𝑖𝑖𝑖𝑖 is 
the Kronecker delta. 𝑢𝑢 and 𝑝𝑝 represent the displacements and tractions along the boundary. The fundamental solutions 
presented in Equation 1 are: 

𝑈𝑈𝑖𝑖𝑖𝑖∗ �𝒙𝒙𝑠𝑠 ,𝒙𝒙𝑓𝑓� = 1
16𝜋𝜋𝜋𝜋(1−𝜐𝜐)𝑟𝑟

�(3 − 4𝜐𝜐)𝛿𝛿𝑖𝑖𝑖𝑖 + 𝑟𝑟,𝑖𝑖𝑟𝑟,𝑖𝑖�𝑇𝑇𝑖𝑖𝑖𝑖∗ �𝒙𝒙𝑠𝑠 ,𝒙𝒙𝑓𝑓� = 1
8𝜋𝜋(1−𝜐𝜐)𝑟𝑟2

�𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕

[(1 − 2𝜐𝜐)𝛿𝛿𝑖𝑖𝑖𝑖 + 3𝑟𝑟,𝑖𝑖𝑟𝑟,𝑖𝑖] − (1 − 2𝜐𝜐)(𝑟𝑟,𝑖𝑖𝜂𝜂𝑖𝑖 + 𝑟𝑟,𝑖𝑖𝜂𝜂𝑖𝑖)� (2) 

where 𝑟𝑟𝑖𝑖 indicates the components of the distance vector and 𝑟𝑟 = ‖𝑟𝑟‖ = �𝒙𝒙𝑓𝑓 − 𝒙𝒙𝑠𝑠� its norm; 𝜂𝜂𝑖𝑖 represents the 
components of the normal outward vector; 𝜇𝜇 and 𝜐𝜐 are the shear modulus and Poisson ratio, respectively. Because of 
the singularities into the fundamental solutions, the integral on the left-hand side of Equation 1 requires the evaluation 
in the Cauchy Principal Value sense. 

The Equation 1 and classical elasticity expressions enable the well-known traction or hypersingular BIE. This BIE 
can be obtained by the differentiation of the displacement BIE in terms of the field point position. Then, one applies 
the relation between displacements and strains, the Hooke’s law, and the Cauchy equilibrium formula, which lead to 
the following [24]: 

1
2
𝑝𝑝𝑖𝑖(𝒙𝒙𝑠𝑠) + 𝜂𝜂𝑖𝑖(𝒙𝒙𝑠𝑠)∫ 𝑆𝑆𝑘𝑘𝑖𝑖𝑖𝑖∗ (𝒙𝒙𝑠𝑠,𝒙𝒙𝑓𝑓)𝑢𝑢𝑘𝑘(𝒙𝒙𝑓𝑓)𝑑𝑑𝛤𝛤𝛤𝛤 = 𝜂𝜂𝑖𝑖(𝒙𝒙𝑠𝑠)∫ 𝐷𝐷𝑘𝑘𝑖𝑖𝑖𝑖∗ (𝒙𝒙𝑠𝑠 ,𝒙𝒙𝑓𝑓)𝑝𝑝𝑘𝑘(𝒙𝒙𝑓𝑓)𝑑𝑑𝛤𝛤𝛤𝛤   (3) 
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where 𝑆𝑆∗ and 𝐷𝐷∗ are the derivative kernels associated to 𝑃𝑃∗ and 𝑈𝑈∗, respectively. Then, the singularities in these kernels 
are of order 𝑆𝑆∗ = 1

𝑟𝑟3
 and 𝐷𝐷∗ = 1

𝑟𝑟2
. Because of the hyper singularity on kernel 𝑆𝑆∗, this integral term requires the evaluation 

into Hadamard Finite Part sense. For sake of completeness, the hyper singular kernels are as follows [24], [25]: 

𝐷𝐷𝑘𝑘ℓ𝑖𝑖∗ (𝒙𝒙,𝒙𝒙�) =
1

8𝜋𝜋(1 − 𝜈𝜈)𝑟𝑟2 �
(1 − 2𝜈𝜈)�𝛿𝛿𝑘𝑘ℓ𝑟𝑟,𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑘𝑘𝑟𝑟,ℓ − 𝛿𝛿ℓ𝑖𝑖𝑟𝑟,𝑘𝑘� + 3�𝑟𝑟,ℓ𝑟𝑟,𝑖𝑖𝑟𝑟,𝑘𝑘�� 

𝑆𝑆𝑘𝑘ℓ𝑖𝑖∗ (𝒙𝒙,𝒙𝒙�) =
𝜇𝜇

4𝜋𝜋(1 − 𝜈𝜈)𝑟𝑟3
{3
𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕

[(1 − 2𝜈𝜈)𝛿𝛿ℓ𝑖𝑖𝑟𝑟,𝑘𝑘 + 𝜈𝜈(𝛿𝛿ℓ𝑘𝑘𝑟𝑟,𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑘𝑘𝑟𝑟,ℓ) − 5𝑟𝑟,ℓ𝑟𝑟,𝑖𝑖𝑟𝑟,𝑘𝑘] 

+3𝜈𝜈(𝜂𝜂ℓ𝑟𝑟,𝑖𝑖𝑟𝑟,𝑘𝑘 + 𝜂𝜂𝑖𝑖𝑟𝑟,ℓ𝑟𝑟,𝑘𝑘) + (1 − 2𝜈𝜈)(3𝜂𝜂𝑘𝑘𝑟𝑟,ℓ𝑟𝑟,𝑖𝑖 + 𝜂𝜂𝑖𝑖𝛿𝛿ℓ𝑘𝑘 + 𝜂𝜂ℓ𝛿𝛿𝑖𝑖𝑘𝑘) − (1 − 4𝜈𝜈)𝜂𝜂𝑘𝑘𝛿𝛿ℓ𝑖𝑖}  (4) 

2.2 The DBEM collocation strategy and numerical assembling process 
Collocation points at the same geometrical position lead to the singularities in the algebraic system of equations if 

Equation 1 or Equation 3 separately discretise the boundary. The singularities in the fundamental solutions explain such 
behaviour. Nevertheless, this problem can be avoided if Equation 1 and Equation 3 are coupled properly, which triggers 
the DBEM approach. Figure 1 illustrates the collocation strategy of DBEM at the crack surfaces. Then, the displacement 
BIE discretises the external boundary and one crack surface whereas the traction BIE discretises the opposite crack 
surface. 

 
Figure 1 - Discretisation in the DBEM 

In the DBEM, the displacement BIE is written for collocations at the upper crack surface 𝛤𝛤𝑐𝑐+ as follows: 

𝑐𝑐𝑖𝑖𝑖𝑖(𝒙𝒙𝑠𝑠+)𝑢𝑢𝑖𝑖(𝒙𝒙𝑠𝑠+) + 𝑐𝑐𝑖𝑖𝑖𝑖(𝒙𝒙𝑠𝑠−)𝑢𝑢𝑖𝑖(𝒙𝒙𝑠𝑠−) + ∫ 𝑃𝑃𝑖𝑖𝑖𝑖∗ (𝒙𝒙𝑠𝑠+,𝒙𝒙𝑓𝑓)𝑢𝑢𝑖𝑖(𝒙𝒙𝑓𝑓)𝑑𝑑𝛤𝛤𝛤𝛤 = ∫ 𝑈𝑈𝑖𝑖𝑖𝑖∗ (𝒙𝒙𝑠𝑠+,𝒙𝒙𝑓𝑓)𝑝𝑝𝑖𝑖(𝒙𝒙𝑓𝑓)𝑑𝑑𝛤𝛤𝛤𝛤   (5) 

Complementarily, the traction BIE is written at the lower crack surface 𝛤𝛤𝑐𝑐−as follows: 

1
2
𝑝𝑝𝑖𝑖(𝒙𝒙𝑠𝑠−) − 1

2
𝑝𝑝𝑖𝑖(𝒙𝒙𝑠𝑠+) + 𝜂𝜂𝑖𝑖(𝒙𝒙𝑠𝑠−)∫ 𝑆𝑆𝑘𝑘𝑖𝑖𝑖𝑖∗ (𝒙𝒙𝑠𝑠−,𝒙𝒙𝑓𝑓)𝑢𝑢𝑘𝑘(𝒙𝒙𝑓𝑓)𝑑𝑑𝛤𝛤𝛤𝛤 = 𝜂𝜂𝑖𝑖(𝒙𝒙𝑠𝑠−)∫ 𝐷𝐷𝑘𝑘𝑖𝑖𝑖𝑖∗ (𝒙𝒙𝑠𝑠−,𝒙𝒙𝑓𝑓)𝑝𝑝𝑘𝑘(𝒙𝒙𝑓𝑓)𝑑𝑑𝛤𝛤𝛤𝛤   (6) 

It is worth mentioning that Equations 5 and 6 contain additional free terms, which account for the collocations at the 
same position. Besides, 𝒙𝒙𝑠𝑠+ and 𝒙𝒙𝑠𝑠−at upper and lower crack surfaces, respectively, share the same position and have 
opposite normal outward vectors. 

The geometry and mechanical fields on Equations 1, 5 and 6 have been approximated by standard quadrilateral isoparametric 
linear Lagrangian elements. The boundary mesh can be composed of continuous, semi-continuous and discontinuous boundary 
elements. These element-types have been utilised along the external boundary according to the geometry and boundary 
conditions continuities. Solely discontinuous boundary elements have been utilised along the crack surfaces as classically 
required by the dual BEM approach. Besides, the Gauss-Legendre numerical scheme handles the integration over non-singular 
boundary elements, in which sub-element technique improves its accuracy [23]. The singularity subtraction technique proposed 
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by Guiggiani and Gigante [46] and Guiggiani et al. [47] regularizes the kernels over singular-elements and enables the accurate 
assessment of singular and hypersingular BIE. It is worth mentioning that Cordeiro and Leonel [23] presents the regularization 
expressions for hypersingular kernels, which have been utilised herein. 

The integral equations Equations  1, 5 and 6 lead to the classical algebraic representation of BEM, i.e., 𝑯𝑯𝑯𝑯 = 𝑮𝑮𝑮𝑮. 
Thus, 𝑯𝑯 and 𝑮𝑮 are the DBEM influence matrices whereas the vectors 𝑯𝑯 and 𝑮𝑮 indicate the displacement and tractions 
at the collocation points, respectively. 𝑯𝑯 contains the integration of kernels 𝑆𝑆∗and 𝑃𝑃∗and 𝑮𝑮 contains the integration of 
kernels 𝐷𝐷∗ and 𝑈𝑈∗. This linear system of equations can be solved by enforcing the boundary conditions, as usual in 
BEM. Then, all unknowns are moved to the left-hand side, and all knows are moved to the right-hand side of this 
equality. Hence, the final linear system of equations 𝑨𝑨𝒙𝒙 = 𝒃𝒃 can be solved and the unknowns at the entire boundary, 
𝒙𝒙, determined. 

3 THE REPRESENTATION OF CONCENTRATED BOUNDARY CONDITIONS ALONG THE 
BOUNDARY 

3.1 Concentrated force formulation 
Structural modelling frequently idealises tractions over small surfaces as concentrated forces. This idealisation has 

been accepted fully in solid mechanics domain. However, the accurate representation of concentrated forces is a 
complex task for BEM, which applies tractions at the boundary. This condition has been enforced approximately by 
small length elements, which lead to the collocation points closely positioned in the boundary mesh. Because of the 
singular nature of the BEM fundamental solutions, this condition triggers numerical instabilities upon the algebraic 
system of equations, especially in three-dimensional problems. 

This study proposes a simple and effective scheme for the accurate representation of concentrated forces. The 
proposed formulation utilises the Dirac delta function for improving the approximation over the traction field. 
Therefore, the traction field over the boundary can be rewritten as follows: 

𝑝𝑝𝑖𝑖(𝜉𝜉1, 𝜉𝜉2) = 𝑁𝑁𝛼𝛼(𝜉𝜉1, 𝜉𝜉2)𝑝𝑝𝑖𝑖𝛼𝛼 + 𝛥𝛥(𝒙𝒙 − 𝒙𝒙𝑙𝑙)𝐹𝐹𝑖𝑖𝑙𝑙  (7) 

where 𝐹𝐹𝑖𝑖𝑙𝑙 indicates the concentrated force along the j direction applied at the 𝑙𝑙 point of the boundary mesh. 𝑁𝑁indicates 
the shape functions. It is worth emphasizing that 𝑝𝑝 → ∞ at 𝒙𝒙𝑙𝑙, which characterizes the concentrated force. Besides, the 
formulation enables the accurate representation of 𝑁𝑁𝑁𝑁 concentrated forces applied at different positions along the 
boundary. 𝛥𝛥(𝒙𝒙 − 𝒙𝒙𝑙𝑙) indicates the Dirac delta function. 

Then, the traction form in Equation 7 enables the updating of the right-hand side of Equation 1 as follows: 

∫ 𝑈𝑈𝑖𝑖𝑖𝑖∗ 𝑝𝑝𝑖𝑖(𝒙𝒙𝑓𝑓)𝑑𝑑𝛤𝛤𝛤𝛤 = ∫ 𝑈𝑈𝑖𝑖𝑖𝑖∗ [𝑁𝑁𝛼𝛼(𝜉𝜉1, 𝜉𝜉2)𝑝𝑝𝑖𝑖𝛼𝛼 + 𝛥𝛥(𝒙𝒙 − 𝒙𝒙𝑙𝑙)𝐹𝐹𝑖𝑖𝑙𝑙]𝑑𝑑𝛤𝛤𝛤𝛤 = ∫ 𝑈𝑈𝑖𝑖𝑖𝑖∗ 𝑁𝑁𝛼𝛼(𝜉𝜉1, 𝜉𝜉2)𝑝𝑝𝑖𝑖𝛼𝛼𝑑𝑑𝛤𝛤𝛤𝛤 + ∫ 𝑈𝑈𝑖𝑖𝑖𝑖∗ 𝛥𝛥(𝒙𝒙 − 𝒙𝒙𝑙𝑙)𝐹𝐹𝑖𝑖𝑙𝑙𝑑𝑑𝛤𝛤𝛤𝛤   (8) 

It is worth mentioning that the first integral term on the last equation is part of the classical BEM formulation. On the 
other hand, the second term can be further modified by applying the Dirac delta sifting property, which transforms this 
integral term in a simple evaluation of the fundamental solution at points 𝒙𝒙𝑠𝑠 and 𝒙𝒙𝑙𝑙, as follows: 

∫ 𝑈𝑈𝑖𝑖𝑖𝑖∗ 𝛥𝛥(𝒙𝒙 − 𝒙𝒙𝑙𝑙)𝐹𝐹𝑖𝑖𝑙𝑙𝑑𝑑𝛤𝛤𝛤𝛤 = 𝐹𝐹𝑖𝑖𝑙𝑙 ∫ 𝑈𝑈𝑖𝑖𝑖𝑖∗ 𝛥𝛥(𝒙𝒙 − 𝒙𝒙𝑙𝑙)𝑑𝑑𝛤𝛤𝛤𝛤 = 𝑈𝑈𝑖𝑖𝑖𝑖∗ (𝒙𝒙𝑠𝑠,𝒙𝒙𝑙𝑙)𝐹𝐹𝑖𝑖𝑙𝑙  (9) 

Therefore, the improvement term becomes a simple multiplication, which does not require additional numerical 
integration procedures. Because the improvement terms are known in this numerical procedure, such terms lead to an 
independent vector. This vector simply adds to the vector of known values at the boundary. Therefore, the algebraic 
system of equations can be updated as follows: 

�
𝑯𝑯
𝑯𝑯+

𝑯𝑯−
� �

𝑯𝑯
𝑯𝑯+
𝑯𝑯−
� = �

𝑮𝑮
𝑮𝑮+
𝑮𝑮−
� �
𝑮𝑮
𝑮𝑮+
𝑮𝑮−
� + �

𝒃𝒃𝑋𝑋
𝒃𝒃𝑋𝑋+

𝒃𝒃𝑋𝑋−
�  (10) 
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where 𝒃𝒃𝑋𝑋 and 𝒃𝒃𝑋𝑋+ indicate the vector arising from the multiplication of the fundamental solution 𝑈𝑈∗ and the 
concentrated forces whereas 𝒃𝒃𝑋𝑋− results from the multiplication of the fundamental solution 𝐷𝐷∗ and the concentrated 
forces at the hypersingular crack surface. The superscripts + and – indicate the mechanical variables along the upper 
and lower crack surfaces, respectively. 

3.2 Concentrated supports formulation 

Concentrated support conditions have been utilised largely in solid mechanics problems. Such boundary condition 
idealises supports on small surfaces as concentrated in a single point. Because of the singularity characteristics of the 
fundamental solutions previously mentioned, the accurate representation of this boundary condition is not a standard 
task for BEM. 

Concentrated supports trigger concentrated forces, which are the supports reactions. Therefore, the formulation 
presented on section 3.1 can be utilised for the accurate modelling of this boundary condition. Therefore, the 
concentrated forces described in Equation 7 and Equation 8 represent the support reactions herein, which are unknown 
in the problem. Because additional unknowns have been included in the problem (the supports reactions itself), this 
scheme requires additional compatibility conditions. These additional compatibilities are the polynomial 
approximations for displacements into the boundary element containing the support, which can be expressed by: 

�̄�𝑢𝑖𝑖𝑙𝑙 = 𝑁𝑁𝛼𝛼(𝜉𝜉1𝑙𝑙 , 𝜉𝜉2𝑙𝑙)𝑢𝑢𝑖𝑖𝛼𝛼  (11) 

where 𝜉𝜉1 and 𝜉𝜉2 are the dimensionless coordinates associated to the concentrated support position. 
It is worth mentioning that the strategy does not modify the conventional influence BEM matrices. It requires a 

slightly modification on the algebraic system of equation, which accommodates new lines and columns associated to 
the concentrated support conditions. Thus, the algebraic system of equations in this scheme is as follows: 

� 𝑨𝑨 −𝑮𝑮𝑺𝑺
𝑨𝑨𝑿𝑿 𝟎𝟎

� �𝒙𝒙𝑹𝑹� = �𝒃𝒃�̄�𝑯�  (12) 

in which 𝑨𝑨 results from the columns change procedure between 𝑯𝑯 and 𝑮𝑮 matrices. 𝐴𝐴 contains the influence terms 
associated to the unknowns at the boundary. 𝒙𝒙 represents the unknowns at the boundary whereas 𝑏𝑏 indicates the 
influence vector associated to the known/prescribed values at the boundary. 𝑅𝑅indicates the support reaction values. The 
sub-matrix 𝑨𝑨𝑋𝑋 is composed of shape function values evaluated from Equation 11, i.e., 𝐴𝐴𝑙𝑙𝑖𝑖𝑋𝑋 = 𝑁𝑁𝛼𝛼(𝑖𝑖,𝑒𝑒)(𝜉𝜉1𝑙𝑙 , 𝜉𝜉2𝑙𝑙), in which 
𝛼𝛼(𝑗𝑗, 𝑒𝑒) is the element incidence associated to the global degree of freedom 𝑗𝑗 in the element 𝑒𝑒. �̄�𝑯 describes the 
concentrated displacement values prescribed at the boundary, which assumes nil values in the case of static supports. 
It is worth remarking that 𝑹𝑹 has similar meaning of 𝐹𝐹 in Equation 7. 𝑮𝑮𝑺𝑺 contains the evaluation of the fundamental 
solution at source point and support point, which is as follows: 

𝑮𝑮𝑖𝑖𝑙𝑙𝐴𝐴 = �
𝑈𝑈1𝑘𝑘∗ (𝑥𝑥𝑖𝑖𝑠𝑠, 𝑥𝑥𝑙𝑙)
𝑈𝑈2𝑘𝑘∗ (𝑥𝑥𝑖𝑖𝑠𝑠, 𝑥𝑥𝑙𝑙)
𝑈𝑈3𝑘𝑘∗ (𝑥𝑥𝑖𝑖𝑠𝑠, 𝑥𝑥𝑙𝑙)

�  (13) 

where only the column 𝑘𝑘, associated to the direction of the prescribed displacement at the point 𝑥𝑥𝑙𝑙, has been accounted 
into the assembling system. The fundamental solutions 𝑈𝑈∗ and 𝐷𝐷∗ have been utilised according to the BIE associated 
to the source point. 

Both concentrated boundary conditions have been prescribed into global coordinates, i.e., coordinates x, y and z. 
Based on this information, a simple Newton-Raphson scheme achieves the dimensionless coordinates 𝜉𝜉1 and 𝜉𝜉2 within 
the boundary element domain. For sake of completeness, Appendix 1 presents a flowchart, in which this procedure is 
described clearly. 
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4 NONLINEAR FRACTURE MECHANICS 
The LEFM represents properly the mechanical behaviour of cracked solids in which the FPZ surrounding the crack 

tip is small in comparison to the crack dimensions. However, various materials do not follow this pattern. In quasi-
brittle materials, for instance, the FPZ is sufficiently large and triggers nonlinear effects that cannot be disregarded. The 
cohesive crack model represents accurately the residual material strength and the energy dissipation phenomena in the 
FPZ of quasi-brittle materials. Then, cohesive tractions 𝑝𝑝𝜕𝜕 close the crack surfaces and represent the residual material 
strength, as illustrated in Figure 2. Besides, the cohesive traction values have been associated to the crack opening 
displacement (COD) by cohesive laws. 

 
Figure 2 - Cohesive crack approach. Cohesive tractions. 

Several cohesive laws have been proposed in the literature to govern the cohesive traction behaviour [48]–[50]. 
Three of them have been applied often in this problem: linear, bi-linear and exponential, as illustrated in Figure 3. 

 
Figure 3 - Cohesive laws: (a) linear, (b) bi-linear and (c) exponential 

The linear cohesive law associates 𝑝𝑝𝜕𝜕 and 𝑁𝑁𝐶𝐶𝐷𝐷 by a linear function. This law requires the material tensile strength 
𝑓𝑓𝑇𝑇 and the threshold opening displacement 𝑁𝑁𝐶𝐶𝐷𝐷𝑐𝑐 values. Then, this law is as follows: 

𝑝𝑝𝜕𝜕(𝑁𝑁𝐶𝐶𝐷𝐷) = �
𝑓𝑓𝑇𝑇 �1 − 𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
� ,  𝑖𝑖𝑓𝑓 0 ≤ 𝑁𝑁𝐶𝐶𝐷𝐷 ≤ 𝑁𝑁𝐶𝐶𝐷𝐷𝑐𝑐

0 𝑖𝑖𝑓𝑓 𝑁𝑁𝐶𝐶𝐷𝐷 > 𝑁𝑁𝐶𝐶𝐷𝐷𝑐𝑐
  (14) 

The bi-linear function leads to the bi-linear cohesive law, which is as follows: 

𝑝𝑝𝜕𝜕(𝑁𝑁𝐶𝐶𝐷𝐷) =

⎩
⎪
⎨

⎪
⎧ 𝑓𝑓𝑇𝑇 − �𝑓𝑓𝑇𝑇−𝑓𝑓𝑇𝑇

∗

𝐶𝐶𝐶𝐶𝐶𝐶∗
� 𝑁𝑁𝐶𝐶𝐷𝐷 𝑖𝑖𝑓𝑓 0 ≤ 𝑁𝑁𝐶𝐶𝐷𝐷 ≤ 𝑁𝑁𝐶𝐶𝐷𝐷∗

𝑓𝑓𝑇𝑇
∗𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶∗−𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐
+ 𝑓𝑓𝑇𝑇∗ �1 − 𝐶𝐶𝐶𝐶𝐶𝐶∗

𝐶𝐶𝐶𝐶𝐶𝐶∗−𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐
� 𝑖𝑖𝑓𝑓 𝑁𝑁𝐶𝐶𝐷𝐷∗ ≤ 𝑁𝑁𝐶𝐶𝐷𝐷 ≤ 𝑁𝑁𝐶𝐶𝐷𝐷𝑐𝑐

0 𝑖𝑖𝑓𝑓 𝑁𝑁𝐶𝐶𝐷𝐷 > 𝑁𝑁𝐶𝐶𝐷𝐷𝑐𝑐

  (15) 
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where the additional parameters 𝑓𝑓𝑇𝑇∗, 𝑁𝑁𝐶𝐶𝐷𝐷∗ and 𝑁𝑁𝐶𝐶𝐷𝐷𝑐𝑐 have been presented by Petersson [51] accounting for concrete: 

𝑓𝑓𝑇𝑇∗ = 𝑓𝑓𝑇𝑇
3
𝑁𝑁𝐶𝐶𝐷𝐷∗ = 0.8 𝐺𝐺𝜎𝜎

𝑓𝑓𝑇𝑇
𝑁𝑁𝐶𝐶𝐷𝐷𝑐𝑐 = 3.6 𝐺𝐺𝜎𝜎

𝑓𝑓𝑇𝑇
  (16) 

where 𝐺𝐺𝜎𝜎 indicates the fracture energy. 

Finally, the exponential cohesive law associates 𝑝𝑝𝜕𝜕 and 𝑁𝑁𝐶𝐶𝐷𝐷 as follows: 

𝑝𝑝𝜂𝜂(𝑁𝑁𝐶𝐶𝐷𝐷) = 𝑓𝑓𝑇𝑇 exp �− 𝑓𝑓𝑇𝑇
𝐺𝐺𝜎𝜎
𝑁𝑁𝐶𝐶𝐷𝐷�  (17) 

The classical cohesive laws represent the material nonlinearity in the modelling. Thus, the cohesive traction values 
depend on the COD and vice-versa. This nonlinear problem has been solved in the present study by the Newton-
Raphson like schemes, in which the DBEM formulation provides the mechanical fields’ values. The nonlinear solution 
technique is presented in the following. 

5 NONLINEAR SOLUTION TECHNIQUE 

5.1 Algebraic description 

The nonlinear formulation utilises the BEM integral equations previously presented. Thus, this BEM approach 
provides the displacements and tractions values along the FPZ, which is named herein as cohesive interfaces. In 
addition, the proposed boundary fields improvement schemes enable the proper modelling of concentrated boundary 
conditions, which is an element of novelty of this study. 

The algebraic formulation description starts by splitting the classical influence BEM matrices. Thus, such matrices 
account for the collocation point positions, which are either external boundary (b), left (L) or right (R) cohesive 
interfaces. Then, the classical algebraic system of equations can be rewritten as follows: 

𝑯𝑯𝑏𝑏𝑯𝑯𝑏𝑏 + 𝑯𝑯𝑅𝑅𝑯𝑯𝑅𝑅 + 𝑯𝑯𝐿𝐿𝑯𝑯𝐿𝐿 = 𝑮𝑮𝑏𝑏𝑮𝑮𝑏𝑏 + 𝑮𝑮𝑅𝑅𝑮𝑮𝑅𝑅 + 𝑮𝑮𝐿𝐿𝑮𝑮𝐿𝐿  (18) 

The mechanical fields along the FPZ can be described in terms of the local coordinate system illustrated in Figure 4. 
Such operation enables the straightforward enforcement of the crack displacement discontinuities, i.e. the crack opening 
displacements. Thus, the variables at the right and left crack surfaces can be rotated accordingly, which leads to the 
following: 

𝑯𝑯𝑏𝑏𝑯𝑯𝑏𝑏 + 𝑯𝑯𝜕𝜕
𝑅𝑅𝑯𝑯𝜕𝜕𝑅𝑅 + 𝑯𝑯𝑙𝑙

𝑅𝑅𝑯𝑯𝑙𝑙𝑅𝑅 + 𝑯𝑯𝑡𝑡
𝑅𝑅𝑯𝑯𝑡𝑡𝑅𝑅 + 𝑯𝑯𝜕𝜕

𝐿𝐿𝑯𝑯𝜕𝜕𝐿𝐿 + 𝑯𝑯𝑙𝑙
𝐿𝐿𝑯𝑯𝑙𝑙𝐿𝐿 + 𝑯𝑯𝑡𝑡

𝐿𝐿𝑯𝑯𝑡𝑡𝐿𝐿 = 𝑮𝑮𝑏𝑏𝑮𝑮𝑏𝑏 + 𝑮𝑮𝜕𝜕𝑅𝑅𝑮𝑮𝜕𝜕𝑅𝑅 + 𝑮𝑮𝑙𝑙𝑅𝑅𝑮𝑮𝑙𝑙𝑅𝑅 + 𝑮𝑮𝑡𝑡𝑅𝑅𝑮𝑮𝑡𝑡𝑅𝑅 + 𝑮𝑮𝜕𝜕𝐿𝐿𝑮𝑮𝜕𝜕𝐿𝐿 + 𝑮𝑮𝑙𝑙𝐿𝐿𝑮𝑮𝑙𝑙𝐿𝐿 + 𝑮𝑮𝑡𝑡𝐿𝐿𝑮𝑮𝑡𝑡𝐿𝐿  (19) 

where 𝑯𝑯𝜕𝜕
𝑅𝑅, 𝑯𝑯𝑙𝑙

𝑅𝑅, 𝑯𝑯𝑡𝑡
𝑅𝑅, 𝑯𝑯𝜕𝜕

𝐿𝐿 , 𝑯𝑯𝑙𝑙
𝐿𝐿, 𝑯𝑯𝑡𝑡

𝐿𝐿, 𝑮𝑮𝜕𝜕𝑅𝑅, 𝑮𝑮𝑙𝑙𝑅𝑅, 𝑮𝑮𝑡𝑡𝑅𝑅, 𝑮𝑮𝜕𝜕𝐿𝐿 , 𝑮𝑮𝑙𝑙𝐿𝐿 and 𝑮𝑮𝑡𝑡𝐿𝐿 indicate the product between the rotation matrix and the 
corresponding influence matrices. 𝑙𝑙 and 𝑡𝑡 indicate tangential crack surface directions whereas 𝜂𝜂 refers to the normal 
crack surface direction. 



M. Rocha, and E. D. Leonel 

Rev. IBRACON Estrut. Mater., vol. 15, no. 5, e15504, 2022 9/24 

 
Figure 4 - Local coordinate system for nonlinear fracture analysis 

Equation 19 enables the introduction of the crack displacements discontinuities: crack opening displacement (COD), 
crack sliding displacement (CSD) and crack tearing displacement (CTD). Such variables account for the local 
coordinate system defined in Figure 4. Besides, it has been defined as follows: 

𝑁𝑁𝐶𝐶𝐷𝐷 = −𝑢𝑢𝜕𝜕𝐿𝐿 − 𝑢𝑢𝜕𝜕𝑅𝑅𝑁𝑁𝑆𝑆𝐷𝐷 = 𝑢𝑢𝑙𝑙𝑅𝑅 + 𝑢𝑢𝑙𝑙𝐿𝐿𝑁𝑁𝑇𝑇𝐷𝐷 = 𝑢𝑢𝑡𝑡𝑅𝑅 − 𝑢𝑢𝑡𝑡𝐿𝐿  (20) 

Equation 20 modifies Equation 19, which eliminates the left crack displacements in the formulation. Besides, 
the latter equation can be further modified by enforcing the equilibrium conditions along the crack surfaces, 
i.e., ,   and R L R L R L

l l t tp p p p p p    . In addition, the cohesive approach predicts 𝑝𝑝𝜕𝜕 as a function of 

COD. Finally, one enforces the boundary conditions at the external boundary. All those algebraic manipulations 
lead to the following: 

𝑨𝑨𝑏𝑏𝒙𝒙𝑏𝑏 + �𝑯𝑯𝜕𝜕
𝑅𝑅 − 𝑯𝑯𝜕𝜕

𝐿𝐿�𝑯𝑯𝜕𝜕𝑅𝑅 + (𝑯𝑯𝑙𝑙
𝑅𝑅 − 𝑯𝑯𝑙𝑙

𝐿𝐿)𝑯𝑯𝑙𝑙𝑅𝑅 + (𝑯𝑯𝑡𝑡
𝑅𝑅 + 𝑯𝑯𝑡𝑡

𝐿𝐿)𝑯𝑯𝑡𝑡𝑅𝑅 − 𝑯𝑯𝜕𝜕
𝐿𝐿𝑪𝑪𝑪𝑪𝑪𝑪 + 𝑯𝑯𝑙𝑙

𝐿𝐿𝑪𝑪𝑺𝑺𝑪𝑪 −𝑯𝑯𝑡𝑡
𝐿𝐿𝑪𝑪𝑪𝑪𝑪𝑪 = 𝒇𝒇𝑏𝑏 + (𝑮𝑮𝑙𝑙𝑅𝑅 + 𝑮𝑮𝑙𝑙𝐿𝐿)𝑮𝑮𝑙𝑙 + (𝑮𝑮𝑡𝑡𝑅𝑅 + 𝑮𝑮𝑡𝑡𝐿𝐿)𝑮𝑮𝑡𝑡 + (𝑮𝑮𝜕𝜕𝑅𝑅 + 𝑮𝑮𝜕𝜕𝐿𝐿)𝑮𝑮𝜕𝜕(𝑪𝑪𝑪𝑪𝑪𝑪)  (21) 

in which matrix 𝑨𝑨𝑏𝑏multiplies the unknown fields 𝒙𝒙𝑏𝑏 at the external boundary, obtained from the columns change 
procedure of BEM, i.e., by enforcing the boundary conditions. Besides, 𝒇𝒇𝑏𝑏 results from the product between the known 
values at the boundary and the respective influence values. 

The cohesive law governs𝑝𝑝𝜕𝜕(𝑁𝑁𝐶𝐶𝐷𝐷), which describes the material nonlinearity at the FPZ during the crack 
propagation. Because Equation 21 is nonlinear, it requires an incremental-iterative nonlinear solution technique based 
on trial and correction steps. In the present study, these solutions have been proposed in the context of Newton-Raphson 
like schemes. Thus, this approach assumes an elastic prediction as trial step. Afterwards, the correction steps follow the 
cohesive law threshold values. Each step leads to the increment values over each mechanical variable in the analysis. 
Such increments must be added, which provide its accumulated values. Obviously, 𝑝𝑝𝜕𝜕(𝑁𝑁𝐶𝐶𝐷𝐷) updates at each correction 
step according to the adopted cohesive law. The tractions values at the FPZ predicted in the elastic step may differ from 
the limit values assumed by the cohesive law. This difference may also appear during the iterations of the correction 
steps. This difference is named as exceeding traction 𝛥𝛥𝑝𝑝𝜕𝜕𝑒𝑒𝑒𝑒𝑐𝑐. Then, the 𝑝𝑝𝜕𝜕(𝑁𝑁𝐶𝐶𝐷𝐷) updates as follows: 

𝑝𝑝𝜕𝜕(𝑁𝑁𝐶𝐶𝐷𝐷) = 𝑝𝑝𝜕𝜕 + 𝛥𝛥𝑝𝑝𝜕𝜕𝑒𝑒𝑒𝑒𝑐𝑐  (22) 

The nonlinear solution process converges when the norm of 𝛥𝛥𝑝𝑝𝜕𝜕𝑒𝑒𝑒𝑒𝑐𝑐 is smaller than a prescribed tolerance. Then, the 
non-equilibrated traction vector is sufficiently small. In the present study, the correction steps, and consequently the 
search for the equilibrium configuration at each load step, have been solved by two different techniques: Constant 
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Operator (CO) and Tangent Operator (TO). In both, the solution is incremental. However, CO keeps constant all 
relevant influence matrices during the correction steps. On the other hand, TO updates the search for the equilibrium 
configuration accounting for the tangent direction provided by the cohesive law. This study assesses the performance 
of each nonlinear solution technique in three-dimensional cohesive crack growth, which is an element of novelty. 

5.2 Solution Technique by Constant Operator (CO) 
The CO is a nonlinear solution technique, in which all relevant influence matrices are kept constant during the 

iterative process. This approach utilises the initial body stiffness and the search for the equilibrium configuration 
reapplies the exceeding traction within the initial stiffness [27]. In this approach, the first step refers to the elastic 
prediction, which provides the increments 𝛿𝛿on the mechanical fields. Then, the exceeding traction i is evaluated from 
Equation 22. Thus, for a given correction step i, the exceeding traction leads to the following increments in the 
mechanical fields: 

( ) ( )
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where the increments on the mechanical fields are calculated and added to the responses from the previous iterations. 
Besides, the search for 𝛥𝛥𝑝𝑝𝜕𝜕𝑒𝑒𝑒𝑒𝑐𝑐 = 0 occurs simultaneously for all collocations at the cohesive interface. Then, the 
convergence occurs when �𝛥𝛥𝑮𝑮𝜕𝜕𝑒𝑒𝑒𝑒𝑐𝑐� is smaller than a prescribed tolerance, which indicates that the non-equilibrated 
traction vector is sufficiently small. 

5.3 Solution Technique by Tangent Operator (TO) 

The solution technique via TO requires the definition of a residue 𝑹𝑹 from the algebraic equations presented in 
Equation 21 [27]. Such residue accounts for the problem variables as follows: 

𝑹𝑹(𝑿𝑿) = 𝑨𝑨𝑏𝑏𝒙𝒙𝑏𝑏 + (𝑯𝑯𝜕𝜕
𝑅𝑅 − 𝑯𝑯𝜕𝜕

𝐿𝐿)𝑯𝑯𝜕𝜕𝑅𝑅 + (𝑯𝑯𝑙𝑙
𝑅𝑅 − 𝑯𝑯𝑙𝑙

𝐿𝐿)𝑯𝑯𝑙𝑙𝑅𝑅 + (𝑯𝑯𝑡𝑡
𝑅𝑅 + 𝑯𝑯𝑡𝑡

𝐿𝐿)𝑯𝑯𝑡𝑡𝑅𝑅 − 𝑯𝑯𝜕𝜕
𝐿𝐿𝑪𝑪𝑪𝑪𝑪𝑪 + 𝑯𝑯𝑙𝑙

𝐿𝐿𝑪𝑪𝑺𝑺𝑪𝑪 −𝑯𝑯𝑡𝑡
𝐿𝐿𝑪𝑪𝑪𝑪𝑪𝑪 − 𝒇𝒇𝑏𝑏 − (𝑮𝑮𝑙𝑙𝑅𝑅 + 𝑮𝑮𝑙𝑙𝐿𝐿)𝑮𝑮𝑙𝑙 −

(𝑮𝑮𝑡𝑡𝑅𝑅 + 𝑮𝑮𝑡𝑡𝐿𝐿)𝑮𝑮𝑡𝑡 − (𝑮𝑮𝜕𝜕𝑅𝑅 + 𝑮𝑮𝜕𝜕𝐿𝐿)𝑮𝑮𝜕𝜕(𝑪𝑪𝑪𝑪𝑪𝑪)  (24) 

where 𝑿𝑿 indicates the vector of mechanical fields. 
It is worth mentioning that the equilibrium configuration leads to the nil residue value. Then, in the (i-1)-th iteration, 
the coupling of Equation 22 in Equation 24 enables the definition of the residue variation as follows: 

𝑹𝑹(𝑿𝑿(𝑖𝑖−1)) = −(𝑮𝑮𝜕𝜕𝑅𝑅 + 𝑮𝑮𝜕𝜕𝐿𝐿)𝛥𝛥𝑮𝑮𝜕𝜕𝑒𝑒𝑒𝑒𝑐𝑐
(𝑖𝑖)  (25) 

The TO determines the increment set 𝛿𝛿𝑿𝑿 leading to the nil residue 𝑹𝑹(𝑿𝑿 + 𝛿𝛿𝑿𝑿)value. For this purpose, one assumes the 
residue function as continuous. Therefore, this function can be expanded in a linear Taylor’s expansion around 𝑿𝑿. 
Finally, one truncates this expansion to the first term, which provides the corrections 𝛿𝛿𝑿𝑿 as follows: 

𝑹𝑹(𝑿𝑿 + 𝛿𝛿𝑿𝑿) = 𝟎𝟎 ⇒ 𝑹𝑹(𝑿𝑿(𝑖𝑖−1)) + 𝜕𝜕𝑹𝑹
𝜕𝜕𝑿𝑿
𝛿𝛿𝑿𝑿(𝑖𝑖) = 𝟎𝟎 ⇒ 𝑨𝑨𝑏𝑏𝛿𝛿𝒙𝒙𝑏𝑏

(𝑖𝑖) + (𝑯𝑯𝜕𝜕
𝑅𝑅 − 𝑯𝑯𝜕𝜕

𝐿𝐿)𝛿𝛿𝑯𝑯𝜕𝜕𝑅𝑅 + (𝑯𝑯𝑙𝑙
𝑅𝑅 − 𝑯𝑯𝑙𝑙

𝐿𝐿)𝛿𝛿𝑯𝑯𝑙𝑙𝑅𝑅 + (𝑯𝑯𝑡𝑡
𝑅𝑅 + 𝑯𝑯𝑡𝑡

𝐿𝐿)𝛿𝛿𝑯𝑯𝑡𝑡𝑅𝑅 − (𝑯𝑯𝜕𝜕
𝐿𝐿 − (𝑮𝑮𝜕𝜕𝑅𝑅 +

𝑮𝑮𝜕𝜕𝐿𝐿) 𝜕𝜕𝑝𝑝𝜂𝜂
𝜕𝜕𝐶𝐶𝐶𝐶𝐶𝐶

)𝛿𝛿𝑪𝑪𝑪𝑪𝑪𝑪 + 𝑯𝑯𝑙𝑙
𝐿𝐿𝛿𝛿𝑪𝑪𝑺𝑺𝑪𝑪 −𝑯𝑯𝑡𝑡

𝐿𝐿𝛿𝛿𝑪𝑪𝑪𝑪𝑪𝑪 = 𝛿𝛿𝒇𝒇𝑏𝑏 + (𝑮𝑮𝑙𝑙𝑅𝑅 + 𝑮𝑮𝑙𝑙𝐿𝐿)𝛿𝛿𝑮𝑮𝑙𝑙 + (𝑮𝑮𝑡𝑡𝑅𝑅 + 𝑮𝑮𝑡𝑡𝐿𝐿)𝛿𝛿𝑮𝑮𝑡𝑡 + (𝑮𝑮𝜕𝜕𝑅𝑅 + 𝑮𝑮𝜕𝜕𝐿𝐿)𝛥𝛥𝑮𝑮𝜕𝜕
𝑒𝑒𝑒𝑒𝑐𝑐(𝑖𝑖)  (26) 

where 𝜕𝜕𝑝𝑝𝜂𝜂
𝜕𝜕𝐶𝐶𝐶𝐶𝐶𝐶

 represents the cohesive law derivative, which modifies the BEM influence matrices. Then, the influence 
matrices associated to such derivative compose the tangent operator. 
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Therefore, the TO incorporates the mechanical degradation properties into the algebraic system of equations, which 
enables the efficient search for the nonlinear solution. Then, the equilibrium trajectory follows the tangent direction of 
the global equilibrium path, which names this solution technique. It is worth mentioning that linear functions often 
describe the cohesive laws, such as observed in linear and bi-linear cohesive laws, see Figure 3. In such cases, 𝜕𝜕𝑝𝑝𝜂𝜂

𝜕𝜕𝐶𝐶𝐶𝐶𝐶𝐶
 

becomes constant and the convergence can be achieved by solely one iteration. Then, the TO solution scheme tends to 
be numerically efficient when compared to the classical procedures. In this scheme, the iterative process stops when 
�𝛥𝛥𝑮𝑮𝜕𝜕𝑒𝑒𝑒𝑒𝑐𝑐� is smaller than a prescribed tolerance. 

6 APPLICATIONS 
Three applications demonstrate the accuracy of the proposed formulations. The first application handles a LEFM 

problem in pure mode I, in which the BEM predictions have been compared to the responses provided by an analytical 
solution and FEM/ANSYS. The second application illustrates the cohesive cracks propagation modelling in the four-
point bending test. This application demonstrates the robustness of the proposed formulation in the multiple cohesive 
crack growth modelling. The last application presents the nonlinear fracture analysis of the Brokenshire torsion test, 
which is subjected to complex crack propagation in mixed modes I-II-III. 

6.1 Pure mode I problem 
The first application handles the mechanical analysis of the prismatic cracked solid illustrated in Figure 5. This 

structure is subjected to concentrated boundary conditions (forces) at its top and bottom surfaces. The numerical responses 
provided by the BEM formulations are compared against the analytical solution presented in Gross et al. [52] and 
Tada et al. [53] for LEFM condition, in addition to the responses of an equivalent model in FEM/ANSYS. Concentrated 
supports at (5.0; 25.0; 1.25), (5.0; 25.0; 2.5) and (5.0; 25.0; 3.75) avoid rigid body motion in this application. The material 
properties are: Young’s modulus 1000 (stress unity) and Poisson ratio 0.3. Furthermore, four different meshes have been 
utilised in this mechanical modelling as illustrated in Figure 5. The meshes A, B, C and D contain 543, 1,482, 2,887 and 
4,755 linear quadrilateral boundary elements, which lead to 1,156, 2,972, 5,636 and 9,148 collocation points, respectively. 
The FEM model utilises a mesh with 609,508 nodes and 138,240 hexahedral quadratic elements (SOLID 186). It is worth 
mentioning that a previous convergence analysis enabled the FE mesh. For sake of completeness, an additional analysis 
accounts for uniform traction applied at the structure top instead of concentrated force. The results of this modelling 
hypothesis demonstrate the importance of handling accurately the prescribed boundary conditions. In such modelling, 
concentrated supports avoid rigid body motion, similarly as the previously mentioned cases. 

 
Figure 5 - Notched prismatic solid and boundary conditions. Dimensions in length unity and Force in force unity. Geometry, 

DBEM and FEM meshes 

Gross et al. [52] and Tada et al. [53] present the analytical plane solution assuming LEFM behaviour, in which the 
crack mouth opening displacement (CMOD) can be determined as follows: 
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𝑁𝑁𝐶𝐶𝐶𝐶𝐷𝐷 = 4𝜎𝜎𝜎𝜎
𝐸𝐸′
𝑉𝑉1 �

𝜎𝜎
𝑏𝑏
� 𝑉𝑉1 �

𝜎𝜎
𝑏𝑏
� =

1.46+3.42�1−𝑐𝑐𝑐𝑐𝑠𝑠�𝜋𝜋𝜋𝜋2𝑏𝑏��

𝑐𝑐𝑐𝑐𝑠𝑠2�𝜋𝜋𝜋𝜋2𝑏𝑏�
𝐸𝐸′ = 𝐸𝐸

1−𝜈𝜈2  for plane strain and 𝐸𝐸′ = 𝐸𝐸 for plane stress  (27) 

where 𝜎𝜎 is the applied normal traction, 𝑎𝑎 is the crack length, 𝑏𝑏 is the solid width, 𝐸𝐸 is the Young’s modulus and 𝜈𝜈 is 
the Poisson ratio. In this application, 𝑎𝑎 = 2.5 and 𝑏𝑏 = 5.0. Then, the analytical CMOD value is 0.0448 (displacement 
unity) for plane strain case. It is worth stressing that the analytical solution assumes the application of uniform tractions 
at the structure ends, as illustrated in Figure 6. Therefore, this application demonstrates the accuracy of BEM in fracture 
problems. Additionally, the Saint-Venant principle enables the performance assessment between FEM and BEM within 
concentrated boundary conditions framework. 

The concentrated force scheme has been applied initially in this analysis. This approach leads to consistent 
displacement behaviour as illustrated in Figure 7, which accounts for the displacement along 𝑥𝑥2 direction for mesh D. 
It is worth emphasizing the displacement discontinuity caused by the notch in addition to the good agreement with 
FEM/ANSYS predictions. 

 
Figure 6 – Analytical solution geometry and boundary conditions [52], [53] 

 
Figure 7 – Deformed shape and displacements along 𝑥𝑥2 direction: Mesh D and FEM/ANSYS® 

Figure 8 illustrates the CMOD responses at the crack front points as a function of the boundary mesh refinement 
considering the concentrated force formulation (conc) and the uniform traction application (dist). Besides, Figure 9 
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presents the convergence behaviour for CMOD at the point (0.0; 25.0; 2.5) accounting for the percentual error between 
the BEM and analytical responses approaches for the concentrated forces at the structural ends (Conc) and for the 
uniform traction along these faces (Dist). The proposed scheme provided good agreement with the reference solution. 
As expected, the mesh D provided the best solutions, in which the displacements at the point (0.0; 25.0; 2.5) obtained 
by mesh D differs from the reference solution by 1.50%. On the other hand, the FEM response at the same point differs 
from the analytical solution by 12.37%, which indicates the superior performance of BEM in the problem. Because the 
analytical solution considers the remote uniform traction, there is an excellent agreement between the analytical 
predictions and the BEM modelling assuming uniform traction. Thus, these results illustrate the accuracy of BEM in 
fracture mechanics problems in addition to the superior performance of BEM in comparison with FEM when 
concentrated boundary conditions are observed. 

 

Figure 8 - CMOD (displacement unity) results for each mesh and reference: concentrated force application 

 

Figure 9 - CMOD percentual error (0.0; 25.0; 2.5). 

Figure 10 illustrates the Von-Mises stress values evaluated by FEM/ANSYS and BEM for an internal line at the 
following position: 𝑥𝑥1 = 3.75, 0 ≤ 𝑥𝑥2 ≤ 50.0 and 𝑥𝑥3 = 2.5. As expected, stresses concentrations have been observed 
along the structure ends, in which the BEM represented properly the mechanical effects triggered by the concentrated 
forces. Besides, one emphasizes the complex stress behaviour at the coordinate 𝑥𝑥2 = 25.0 caused the crack tip, which 
has been identified properly by the BEM. 
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Figure 10 – Von-Mises stress values for internal line 𝑥𝑥1 = 3.75, 0 ≤ 𝑥𝑥2 ≤ 50.0, 𝑥𝑥3 = 2.5 

For sake of completeness, the concentrated supports formulation has been applied also in this application to attest 
its accuracy. Then, prescribed concentrated displacements are applied instead of concentrated forces in the following 
results. Moreover, to keep the comparison reference, the concentrated displacements have been enforced at the same 
positions of the concentrated forces modelling previously presented. Besides, the prescribed displacement value refers 
to the displacement evaluated in the respective concentrated force modelling. Therefore, the reaction force achieved by 
the concentrated displacement formulation must agree with the prescribed concentrated force value. Table 1 presents 
the reaction force values obtained by each BEM mesh and the correspondent prescribed displacement. Good agreement 
is observed once the prescribed force value is 25. Additionally, Figure 11 presents the CMOD responses for 
concentrated force (force) and concentrated supports (displ) conditions. Excellent agreement is observed for the 
correspondent meshes, which illustrates the accuracy of the concentrated displacement formulation. 

Table 1 – Prescribed displacements and reaction values for concentrated supports case 

Mesh Prescribed displacement Reaction value 
A 0.03037 25.00155 
B 0.03559 25.00233 
C 0.04008 25.00273 
D 0.04434 25.00297 

 
Figure 11 – Comparison between CMOD for concentrated force and concentrated displacement at structural ends. 
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The results presented for the BEM models in the last figures demonstrate the accuracy of the proposed boundary 
conditions representation scheme. Good agreement has been observed as the number of degrees of freedom increase, 
as expected. Moreover, smooth convergence behaviour was observed, which demonstrates the numerical stability of 
these formulations. Besides, it is remarkable the superior performance of BEM in comparison to FEM in this problem, 
in which BEM achieved accurate responses with less degrees of freedom. 

6.2 Four-point bending problem. Multiple cohesive crack growth 
This application deals with the cohesive crack growth modelling of the specimen illustrated in Figure 12. 

The cracks positions and boundary conditions trigger the multiple crack propagation in mixed fracture mode I-
II. Bocca et al. [54] analysed this specimen experimentally whereas Saleh and Aliabadi [55] performed the 
numerical analysis using a two-dimensional BEM approach. The specimen geometry is parallelepiped with 
length of 0.8m, height of 0.2m, thickness of 0.2m and notches depth of 0.04m. The material properties are, 
according to Bocca et al. [54]: Young’s modulus𝐸𝐸 = 27𝐺𝐺𝑃𝑃𝑎𝑎, Poisson ratio 𝜈𝜈 = 0.1, tensile material strength 
𝑓𝑓𝑇𝑇 = 2𝐶𝐶𝑃𝑃𝑎𝑎 and fracture energy 𝐺𝐺𝜎𝜎 = 100 𝑁𝑁
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Figure 12 - Four-point bending test with two initial notches 

Figure 13 illustrates the final boundary element mesh in this analysis, which contains 2,347 collocation points and 
1,379 quadrilateral linear boundary elements. Besides, Figure 14 presents the discretisation along the cohesive 
interfaces for the last load step, in which each of them is composed of 320 collocation points and 80 quadrilateral linear 
boundary elements. This figure also illustrates the crack surfaces geometry determined by the experimental analysis 
[54] and the two-dimensional numerical modelling [55], in which good agreement has been observed among the 
predictions of the proposed formulation and that provided by [54]. 

 
Figure 13 - Boundary mesh 



M. Rocha, and E. D. Leonel 

Rev. IBRACON Estrut. Mater., vol. 15, no. 5, e15504, 2022 16/24 

 
Figure 14 – Crack geometry. present study, experimental [54] and numerical [55] 

The proposed boundary conditions representation schemes (conc) handle the boundary conditions in this 
application. Then, the prescribed displacements have been enforced in concentrated form by the concentrated supports 
approach. For sake of simplicity, concentrated supports have been applied at the centre of each boundary element 
positioned along the supports’ regions indicated in Figure 12. Displacements along directions 𝑥𝑥1 and 𝑥𝑥2 are nil in the 
following ranges 𝑥𝑥1 = 0.32; 𝑥𝑥2 = 0; 0 ≤ 𝑥𝑥3 ≤ 0.2𝑚𝑚 and 𝑥𝑥1 = 0.8; 𝑥𝑥2 = 0; 0 ≤ 𝑥𝑥3 ≤ 0.2𝑚𝑚. Besides, the points (0.32; 
0.0; 0.0)m and (0.8; 0.0; 0.0)m have concentrated supports along 𝑥𝑥3 direction, which avoid rigid body motion. For the 
sake of comparison, the standard boundary conditions application (dist) has been enforced along the entire supports’ 
regions indicated in Figure 12. The non-nil displacements have been applied within 16 increments, in which the 
tolerance for convergence is 10−3𝑘𝑘𝑃𝑃𝑎𝑎, in terms of �𝛥𝛥𝑮𝑮𝜕𝜕𝑒𝑒𝑒𝑒𝑐𝑐�. In addition, the cohesive laws linear, bi-linear and 
exponential represent the residual material strength at the FPZ in this analysis. The CO and TO solve the nonlinear 
equations in this application. It is worth mentioning that Saleh and Aliabadi [55] applied solely the linear cohesive law 
in their numerical modelling. 

Figure 15 illustrates the performance of the proposed nonlinear BEM formulations in this application. The 
dimensionless load and deflection values have been utilised for this purpose. The dimensionless load relates the reaction 
forces 𝑃𝑃1 and 𝑃𝑃2 at the supports to the prescribed displacement to geometrical and material parameters as follows: 

1 2

adim
T

P P
F

f dt


  (28) 

in which 𝑓𝑓𝑇𝑇 is the tensile material strength and 𝑑𝑑 and 𝑡𝑡 are, respectively, the specimen’s height and the thickness. 
Besides, the dimensionless displacement corresponds to the division between 6.104 times the applied displacement and 
the specimen’s height. 

 
Figure 15 - Dimensionless load x deflection curves 
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As expected, the numerical responses demonstrate good agreement at the elastic part of the curve. Besides, the BEM 
results strongly agree to the reference [55] for the linear cohesive law, once the reference applied solely such cohesive 
law. In addition, the peak loads predicted by BEM through bi-linear and exponential cohesive laws are slightly smaller 
than the reference value, as expected. However, the latter cohesive law leads to the smooth behaviour during the 
softening part. The BEM solutions evaluated by CO and TO are in excellent agreement among them. Such behaviour 
indicates the accuracy of the nonlinear solution schemes into the determination of the equilibrium configuration at each 
load step. Finally, the application of boundary conditions in conventional form (dist) leads to rigid response, as 
expected. Because the experimental and numerical references account concentrated boundary conditions, the 
conventional scheme does not represent accurately the boundary conditions in this problem. Then, the application of 
boundary conditions using the proposed formulation (conc) enables accurate responses in comparison to the 
conventional scheme. Table 2 presents the number of iterations required by each nonlinear solution technique in the 
search for the equilibrium configuration. Then, this table enables the efficiency analysis by the ratio TO/CO. The TO 
leads to reductions superior to 82% in this application, which demonstrates its efficiency. 

Table 2 - Comparative of iterations. Required number of iterations 

Cohesive Law 
Concentrated supports Distributed supports 

Constant Operator Tangent 
Operator Reduction Constant 

Operator Tangent Operator  Reduction 

Linear 366 42 88.5% 419 49  88.3% 
Bi-linear 282 41 85.5% 270 45  83.3% 

Exponential 323 53 83.6% 336 61  81.8% 

For sake of clarity, Figure 16 illustrates the displacement values along the 𝑥𝑥2 direction and the deformed shape in 
the last load step 1,000 times magnified. The linear cohesive law and the TO nonlinear solution schemes provided these 
values. It is worth remarking the strong discontinuities into the displacement fields introduced by the cracks. 

 
Figure 16 - Deformed shape and displacements at 𝑥𝑥2 direction 

Finally, Figure 17 illustrates the evolution of the mechanical degradation processes at the FPZ. The numbers in this figure 
indicate the residual resistance at the FPZ. Then, zero indicates free traction crack surfaces and one refers to the continuous 
material. The results in this figure account for the bilinear cohesive law and CO solution techniques at load increments 14 
and 15. It is worth remarking the significant mechanical degradation observed between these load increments. 

Increment 14 Increment 15
 

Figure 17 - Residual material resistance at the FPZ. 
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6.3 Brokenshire torsion test: complex mixed mode crack propagation path 
The Brokenshire test refers to a torsion test in a notched prismatic specimen composed of concrete. The experimental 

details and results are in Jefferson et al. [56]. Besides, many authors [21], [48], [49] have analysed this problem via 
FEM/XFEM approaches because it requires a full three-dimensional formulation. Nevertheless, by the best knowledge 
of the authors, this problem has not been solved by BEM until the present. Figure 18 illustrates the geometry and 
boundary conditions. The prismatic solid has length of 0.4m, width of 0.1m and height of 0.1m. There is a notch inclined 
by 45º at the centre, which depth is 0.05m. Besides, the steel frame is placed at both specimen ends, where the boundary 
conditions have been applied. It is worth mentioning that the steel frame has been accounted in the modelling and 
represented by the classical sub region BEM technique. The material properties [56] are: Young’s modulus of concrete 
𝐸𝐸𝑐𝑐 = 35𝐺𝐺𝑃𝑃𝑎𝑎, Poisson ratio of concrete 𝜈𝜈𝑐𝑐 = 0.2, Young’s modulus of steel frame 𝐸𝐸𝑠𝑠 = 200𝐺𝐺𝑃𝑃𝑎𝑎, Poisson ratio of steel 
frame 𝜈𝜈𝑠𝑠 = 0.3, energy fracture 𝐺𝐺𝜎𝜎 = 120 𝑁𝑁

𝑚𝑚
 and tensile material strength 𝑓𝑓𝑇𝑇 = 1.6𝐶𝐶𝑃𝑃𝑎𝑎. 

The supports positioned along 𝑥𝑥3 = 0 restrict displacements along directions𝑥𝑥1, 𝑥𝑥2 and 𝑥𝑥3. The other supports in 
this modelling restrict the displacement solely along the 𝑥𝑥2 direction. Besides, the prescribed displacement is 0.8mm 
along 𝑥𝑥2direction, which has been applied within 16 load steps. The boundary mesh is composed of 7,430 collocation 
points and 2,592 quadrilateral boundary elements with linear approximation as illustrated in Figure 19. The CO and TO 
achieve the equilibrium configuration in the nonlinear problem, in which linear, bi-linear and cohesive laws represent 
the material residual resistance at the FPZ. The tolerance for convergence is 10−3𝑘𝑘𝑃𝑃𝑎𝑎, in terms of �𝛥𝛥𝑝𝑝𝜕𝜕𝑒𝑒𝑒𝑒𝑐𝑐�. Because 
of the accurate results achieved in the previous application, solely the proposed BEM formulation is applied herein. 
Besides, the experimental scheme described in Jefferson et al. [56] accounts for concentrated boundary conditions. 
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Figure 18 - Brokenshire torsion test: prismatic solid. 

 
Figure 19 - Initial boundary element mesh. (a) Complete model (b) concrete specimen (c) Steel frame 
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The numerical responses obtained by the proposed BEM formulation are compared to experimental results presented 
by Jefferson et al. [56], particularly, the pair values of load and crack mouth opening displacement (CMOD) between 
the points A and B illustrated in Figure 18. Figure 20 illustrates this comparison, in which one observes good agreement 
among numerical and experimental responses. It is worth emphasizing that the application involves a complex mixed 
mode fracture problem, in which modes I and III are preponderant. Despite the good agreement observed among 
numerical and experimental results, the differences observed in Figure 20 might reduce if the material strength is 
penalized accordingly for mode III solicitation, once the classical cohesive model utilised herein penalizes solely the 
material strength along the perpendicular direction to the crack surfaces. 

The proposed formulation provides accurate result for the peak load value, especially through the linear cohesive 
law. Besides, all cohesive laws lead to the adequate modelling of the softening part. In addition, the CO and TO 
responses are in excellent agreement, which demonstrates the numerical stability of the proposed nonlinear solution 
techniques. 
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Figure 20 - Load x CMOD curves 

Table 3 presents the number of iterations required by CO and TO in the search for the equilibrium configuration in 
this application. Analogously to the previous application, TO demonstrates excellent performance. In addition to the 
accuracy, TO lead to reductions superior to 58% in the present analysis. 

Table 3 - Comparative of iterations. Required number of iterations 

Cohesive Law Constant Operator Tangent Operator Reduction 
Linear 175 68 61.1% 

Bi-linear 192 68 64.6% 
Exponential 189 79 58.2% 

Figure 21 presents the evolution of the mechanical degradation processes at the FPZ. In this figure, zero indicates 
free traction crack surfaces and one represents continuous material. The results in this figure account for the linear 
cohesive law and CO solution technique. It is worth remarking the significant increase of the FPZ size between 
increments 8 and 12, in which the softening behaviour start. The crack path predicted by the BEM approach has been 
compared to the experimental response of Jefferson et al. [56] and the XFEM results obtained by 
Kaczmarczyk et al. [57] in Figure 22. This figure illustrates good agreement between the numerical approaches. 
Besides, one observes good agreement among numerical and experimental results in the beginning of the propagation 
path and slight differences near the specimen collapse. 
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Increment 4 Increment 8

Increment 12 Increment 16  
Figure 21 - Residual material resistance at the FPZ 

 
Figure 22 - Comparison of crack propagation paths obtained by different approaches and the proposed BEM formulation 

7 CONCLUSIONS 
This study handled the mechanical representation and crack propagation modelling of three-dimensional cracked 

quasi-brittle materials by the BEM. In addition, this study presented a simple and effective scheme for representing 
accurately concentrated boundary conditions within BEM framework. Despite being a standard task for FEM-like 
models, concentrated boundary conditions are challenge for BEM, which applies boundary conditions distributed over 
elements. Concentrated boundary conditions have been applied approximately by small size boundary elements by the 
Lagrangian version of BEM, which requires fine meshes. Besides, singularities may appear in the final algebraic system 
of equations because of the singular nature of the BEM fundamental solutions. Therefore, the proposed formulation 
contributes for the accurate representation of concentrated boundary conditions within BEM. The solutions obtained 
by the proposed formulation are accurate than the responses provided by the standard BEM approach for the same mesh 
refinement level, as illustrated in considered applications. Besides, the proposed formulation led to good performance 
in comparison to experimental tests, as illustrated in all applications. 

Further extensions of the proposed schemes can consider three-dimensional isogeometric BEM approaches, in 
which the representation of concentrated boundary conditions is still more complex than the observed in classical 
Lagrangian approaches. 
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APPENDIX 1: SEARCH FOR DIMENSIONLESS COORDINATES 
Because concentrated boundary conditions have been applied in global coordinates, the search for the correspondent 

element dimensionless coordinates can be performed by a Newton-Raphson scheme. The flowchart below describes 
the procedure utilised in the proposed formulation. 
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